
Received 13 February 2017; Revised 3 July 2018 (revised preprint with corrections) ; Accepted 22 August 2017

DOI: 10.1002/mma.4597 is revision 18 Sep 2017, published in Mathematical Methods in the Applied Sciences, 41(11)4088–4105, 30 July 2018, Special Issue: ENGAGE

SPECIAL ISSUE PAPER

Triple Conformal Geometric Algebra for Cubic Plane Curves

Robert Benjamin Easter1 | Eckhard Hitzer2

1Bangkok, Thailand. Email:
reaster2015@gmail.com

2College of Liberal Arts, International
Christian University, 3-10-2 Osawa,
181-8585 Mitaka, Tokyo, Japan. Email:
hitzer@icu.ac.jp
Communicated by: Dietmar Hildenbrand
MSC Primary: 15A66;
MSC Secondary: 14H50; 53A30;

Correspondence
Eckhard Hitzer, College of Liberal Arts,
International Christian University, 3-10-2
Osawa, 181-8585 Mitaka, Tokyo, Japan.
Email: hitzer@icu.ac.jp

Summary

The Triple Conformal Geometric Algebra (TCGA) for the Euclidean ℝ2-plane ex-
tends CGA as the product of three orthogonal CGAs, and thereby the representation
of geometric entities to general cubic plane curves and certain cyclidic (or roulette)
quartic, quintic, and sextic plane curves. The plane curve entities are 3-vectors that
linearize the representation of non-linear curves, and the entities are inner product
null spaces (IPNS) with respect to all points on the represented curves. Each IPNS
entity also has a dual geometric outer product null space (OPNS) form. Orthogonal or
conformal (angle-preserving) operations (as versors) are valid on all TCGA entities
for inversions in circles, reflections in lines, and, by compositions thereof, isotropic
dilations from a given center point, translations, and rotations around arbitrary points
in the plane. A further dimensional extension of TCGA, also provides a method for
anisotropic dilations. Intersections of any TCGA entity with a point, point pair, line
or circle are possible. TCGA defines commutator-based differential operators in the
coordinate directions that can be combined to yield a general n-directional derivative.

KEYWORDS:
Clifford algebra, cubic plane curve, conformal geometric algebra, 3-vector entity

1 INTRODUCTION

This paper1 assumes familiarity with Clifford’s geometric algebras (GA) p,q [14] over an (n = p + q)-dimensional (n-D) pseudo-
Euclidean2 vector space ℝp,q over real numbers ℝ, and with the general theory of the corresponding Conformal Geometric
Algebra (CGA) [23] p+1,q+1, especially for an (n = p)-D Euclidean vector space ℝn. References [3] and [25] are books that in-
clude full discussions of CGA 4,1 for modeling three-dimensional Euclidean space ℝ3. The paper [19] shows different aspects
of 4,1, its quaternionic subalgebra structure, its relationship with Minkowski space algebra, and a self-contained Java imple-
mentation. Moreover, [21] provides a short self-contained general purpose tutorial for Clifford’s geometric algebra (including
CGA). See also [20], with an emphasis on common geometric features of the basic flat and round entities in CGA.
As further background, it is also helpful to have familiarity with the recently introducedDouble Conformal Geometric Algebra

(DCGA) 2(3+1),2(0+1) = 8,2 [5] for ℝ3, and with the Double Conformal Space-Time Algebra (DCSTA) 2(1+1),2(3+1) = 4,8 for
the Minkowski pseudo-Euclidean vector space ℝ1,3 [9][6].
The CGA p+1,q+1 non-linearly embeds the vector space ℝp,q for which geometric entities are modeled conformally.

1This revised version (3 July 2018) includes corrections to the published version (18 Sep 2017), which is published as DOI:10.1002/mma.4597 in the journalMathemati-
cal Methods in the Applied Sciences, 41(11):4088–4105, 30 July 2018, Special Issue: Empowering Novel Geometric Algebra in Graphics and Engineering (ENGAGE). The
special issue contains full/long papers from the Computer Graphics International 2017 (CGI’17), Empowering Novel Geometric Algebra for Graphics and Engineering
(ENGAGE)Workshop held Tuesday 27th June 2017 in Yokohama, Japan. We thank the ENGAGEWorkshop organizers: Andreas Aristidou (a.m.aristidou@gmail.com),
Dietmar Hildenbrand (dietmar.hildenbrand@gmail.com), Eckhard Hitzer (hitzer@icu.ac.jp), G. Stacey Staples (sstaple@siue.edu), Werner Benger, Olav Egeland, George
Papagiannakis, Kanta Tachibana, and Yu Zhaoyuan.

2We use Euclidean for vector spaces with n = p, q = 0, and pseudo-Euclidean for vector spaces with p < n, q > 0.

https://doi.org/10.1002/mma.4597
https://mathscinet.ams.org/msc/msc2010.html?t=&s=15A66&btn=Search&ls=s
https://mathscinet.ams.org/msc/msc2010.html?t=&s=14H50&btn=Search&ls=s
https://mathscinet.ams.org/msc/msc2010.html?t=&s=53A30&btn=Search&ls=s
https://doi.org/10.1002/mma.4597
http://fj.ics.keio.ac.jp/cgi17/

2 R. B. Easter and E. Hitzer

The use of CGA can be motivated3 by a consideration of stereographic embedding: In [25], the conformal embedding (t)
is defined as a stereographic embedding followed by a Minkowski homogenization. The stereographic embedding of t ∈ ℝ2,
denoted (t), is the point on the unit 2-sphere centered on the origin in ℝ3(e1, e2, e+

)

where the line e+ + td̂, with d = t − e+,
intersects the unit circle around the origin in the t̂e+-plane. (t) can be solved by similar triangles as

(t) = 2‖t‖
‖t‖2 + 1

t̂ + ‖t‖2 − 1
‖t‖2 + 1

e+. (1)

The Minkowski homogenization is (t) = (t) + e− ∈ ℝ3,1. Since (t) is homogeneous, it can be scaled by an arbitrary
non-zero scalar without affecting the point that is represented. The common practice is to define the final conformal embedding
as

(t) = ‖t‖2 + 1
2

(

(t) + e−
)

(2)

=
‖t‖2 + 1

2

(

2‖t‖
‖t‖2 + 1

t̂ + ‖t‖2 − 1
‖t‖2 + 1

e+ + e−
)

(3)

= t + t
2

2
(

e− + e+
)

+ 1
2
(

e− − e+
)

(4)

= t + t
2

2
e∞1 + eo1. (5)

For ‖t‖ = 0, then (t) → eo1, where

eo1 =
1
2
(

e− − e+
)

(6)

is the entity for the point at the origin. In the limit as ‖t‖ → ∞, then 2(t) ∕‖t‖2 → e∞1, where

e∞1 = e− + e+ (7)

is the entity for the point at infinity. In CGA2 and CGA3, the corresponding points are named {e∞2, eo2} and {e∞3, eo3},
respectively. Since (t) is on the unit circle, then ‖(t) ‖ = 1 and

(

(t) + e−
)2 = 0 such that (t) is a null vector.

The CGA p+1,q+1 can also be extended by multiplicity k to a k-CGA k(p+1),k(q+1) by multiplying k orthogonal copies of
CGA, each with the same scalar coefficients on corresponding CGA basis blades. The main motivation for this approach is,
that in k-CGA one can formulate k-vectors by linear combination of k-vector extraction operators for coordinate polynomials
of degree k and (selectively) up to degree 2k. These k-vectors represent algebraic curves of degree k to 2k, which is generally
not possible in standard CGA. The advantages of this formulation are the complete freedom to use linear versor operators for
translation, rotation, dilation, reflection, inversion and transversion, and the freedom of intersection with standard CGA entities
is preserved.
The paper is organized as follows. Section 2 introduces the (simple) CGAmodel for the Euclidean planeℝ2, and provides some

motivation for the non-linear embedding of points in CGA. Next, Section 3 describes a triple version of the CGA model for the
Euclidean plane ℝ2, called TCGA. It describes how plane curves of degree three to six can be encoded as 3-vectors, how these
curves can be transformed, intersected with simple CGA entities, and differentiated. It also includes selected examples of these
curves, their TCGA expressions and graphs. Finally, Section 4 explains several aspects of computer algebra implementation of
triple CGA. We conclude with Section 5. Appendix A explains computational details of efficient versor operations.

2 CGA 2+1,1 OF THE EUCLIDEAN PLANE ℝ2

The CGA p+1,q+1 non-linearly embeds the (n = p + q)-dimensional vector space ℝp,q for which geometric entities are
modeled conformally4. These geometric entities in CGA represent points, point pairs, circles, spheres, hyperplanes, hy-
per(pseudo)spheres, and their intersections (by wedge products) in ℝp,q (see [18]).
The Conformal Geometric Algebra (CGA) 3,1 of the Euclidean plane ℝ2, also called the Compass Ruler Algebra [16],

provides entities for points, lines, circles, and their intersections. The basis of ℝ3,1 is given by four orthonormal vectors

3For the notation used in this paragraph, please refer to Section 2.
4In the framework of k-CGA, standard (single) CGA could be labeled 1-CGA. To avoid cluttered notation we omit this. The current section briefly reviews standard

CGA of the Euclidean plane.

R. B. Easter and E. Hitzer 3

{e1, e2, e3 = e+, e4 = e−}, where the first three square to +1, and the last to −1. The unit pseudoscalar of the Euclidean plane
ℝ2 is I = e1e2. The unit pseudoscalar of 3,1 is I = e1e2e+e−.

Notation 1. The symbolic test vector in the Euclidean plane is denoted by t = t = xe1 + ye2, and a specific point by p = p =
pxe1 + pye2.

Notation 2. The reverse A∼ of a multivector A reverses the order of all vector products in A (e.g., I∼ = e2e1; in this case,
I∼ = I−1 = −I).

In the following subsections, we will introduce relevant multivector entities in CGA for geometric objects and for transfor-
mation operators.

2.1 2-D CGA null point entity
The CGA null point entity T = (t) is the conformal embedding

(t) = t + t
2

2
e∞1 + eo1 (8)

of the 1
2 Euclidean vector

5 t ∈ ℝ2. The Minkowskian pair of null vectors representing origin and infinity is given by6

eo = eo1 =
1
2
(

e− − e+
)

, e∞ = e∞1 = e− + e+. (9)

This implies that a conformally embedded point (t) squares itself to zero, (t)2 = 0 (i.e., it is also a null-vector). Furthermore,
every finite conformal point is embedded, such that it is on the 3-D hyperplane in ℝ3,1 defined by

(t) ⋅ e∞1 = −1, (10)

which includes the origin point as well, since by construction eo1 ⋅ e∞1 = −1.
A point P can be transformed to the normalized point P̂ that has unit scale on the homogeneous component eo1 as

P̂ =
P

−P ⋅ e∞1
. (11)

Points are assumed to be initially normalized as the embedding P̂ = 
(

p
)

. After performing operations on a point (or other
entity), it may no longer be normalized. Some operations do not preserve the homogeneous scale.
The projection (inverse embedding) of a CGA point P back to a vector p ∈ ℝ2 is

p =
(

P̂ ⋅ I
)

I−1 . (12)

The Euclidean distance d(p,q) between two finite CGA points P = (p) and Q = (q) is

d
(

P ,Q
)

=
√

−2P̂ ⋅ Q̂ =
√

(p − q)2. (13)

Remark 1. In the CGA 1,2+1 of the anti-Euclidean plane ℝ0,2, we still have e∞1 ⋅ eo1 = −1, and the squared distance becomes
d2 = 2P̂ ⋅ Q̂ . The 1,3+1 CGA of the anti-Euclidean 3-space ℝ0,3, called Conformal Space Algebra (CSA), is used in DCSTA
[9][6] and its subalgebras CSTA and CSA. Usingℝ0,2 is possible by just changing the signs on some results7, like in the distance
definition (13).

2.2 2-D CGA OPNS entities
A 2-D CGA point T = (t) is on a CGA geometric outer product null space (OPNS) [25] plane curve entityX∗

 if T ∧X∗
 = 0,

where

X∗
 = XI−1 (14)

5In Clifford algebra, the notation kp,q indicates the subset of k-vectors, i.e. all elements of grade k, 0 ≤ k ≤ (n = p + q), in p,q .
6In standard CGA of the Euclidean plane 3,1, usually the notation for origin null vector eo, and for infinity null vector e∞, respectively, are used. But to prepare for the

TCGA notation, and to avoid confusion, we already give the notation eo1 and e∞1 as well.
7Note that in Clifford analysis [2] the m-dimensional Euclidean space is usually defined by ℝ0,m, and the norm of a vector is then defined as |p| =

√

−p2.

4 R. B. Easter and E. Hitzer

is the CGA dual of the CGA IPNS entity X , treated in Section 2.3. An entity and its dual entity represent the same plane curve.
A CGA OPNS entity can be directly formed as the wedge of up to four CGA points as

X∗
 =

⋀

Pj , for 1 ≤ j ≤ 4, (15)

where the Pj are points on the plane curve that span the plane curve. The entire plane, as a surface, can be represented by the
4-blade entity I .
The CGA OPNS 3-blade line L∗

 is the wedge of two CGA points Pj on the line and the point e∞1

L∗
 = P1 ∧ P2 ∧ e∞1 = L∕I (16)

and is the CGA dual of the CGA IPNS 1-blade line L .
The CGA OPNS 3-blade circle C∗

 is the wedge of three CGA points Pj on the circle

C∗
 = P1 ∧ P2 ∧ P3 = C∕I (17)

and is the CGA dual of the CGA IPNS 1-blade circle C .
The CGA OPNS 2-blade point pair 2∗ is the wedge of two finite CGA points Pj

2∗ = P1 ∧ P2 = 2∕I (18)

and is the CGA dual8 of the CGA IPNS 2-blade point pair 2 . If one of the points is e∞1, then it is a CGA OPNS 2-blade flat
point ℙ∗

 .
The point pair decomposition [3]

P̂± =
2∗ ∓

√

2∗ ⋅ 2
∗


−e∞1 ⋅ 2∗
(19)

gives the two normalized points of the point pair 2∗ = P+ ∧ P− .
The CGA OPNS 2-blade flat point ℙ∗

 is the wedge of one finite CGA point P and e∞1

ℙ∗
 = P ∧ e∞1 = ℙ∕I (20)

and is the CGA dual of the CGA IPNS 2-blade flat point ℙ . A unit scale (normalized) flat point is ℙ̂∗
 = P̂ ∧e∞1. As explained

in [3], a CGA IPNS 2-blade flat point ℙ can represent the intersection of two non-parallel CGA IPNS 1-blade lines Lj in the
plane as

ℙ∗
 = ℙ∕I = (L1 ∧ L2)I

−1
 . (21)

The CGA point P of CGA OPNS 2-blade flat point ℙ∗
 is projected [3] to a vector as

p = −1(P
)

=

(

eo1 ∧ e∞1
)

⋅
(

eo1 ∧ ℙ∗

)

−
(

eo1 ∧ e∞1
)

⋅ ℙ∗


=
−ℙ∗


(

eo1 ∧ e∞1
)

⋅ ℙ∗


⋅ eo1 − eo1. (22)

The null point embedding P = 
(

p
)

, with the property P2 = P ⋅ P + P ∧ P = 0, is both a CGA IPNS and OPNS point
entity. There also exists the interpretation of undual IPNS 3-blade point PI .

2.3 2-D CGA IPNS entities
A CGA point T = (t) is on the CGA geometric inner product null space (IPNS) [25] plane curve entity X if T ⋅ X = 0.
In the two dimensions of the plane ℝ2, as considered in this paper,9 geometric entities represent plane curves and some of their
intersections.
The CGA IPNS 1-blade circle10 C , centered at CGA point P = 

(

p
)

with radius r or with finite surface point Q , is
defined as

C = P − 1
2
r2e∞1 = P +

(

P ⋅ Q̂

)

e∞1. (23)

8Note, that the two point pairs 2 and its dual 2∗ are orthogonal to each other. We thank the anonymous reviewers for pointing out this clarification.
9In three or more dimensions ℝn≥3, not considered in this paper, geometric entities more generally represent surfaces or hypersurfaces and some of their intersections.
10Sphere in ℝ3.

R. B. Easter and E. Hitzer 5

A normalized circle Ĉ has a unit scale (normalized) center point P = P̂ and Ĉ2
 = r2. The circle entity C is derived, from

the constant distance r = d
(

P ,Q
)

between the finite center point P and any point Q of the circle, by the inner product test
with T = 

(

t
)

as
d2
(

P ,Q
)

= −2P̂ ⋅ Q̂ = −2P̂ ⋅ T = r2, (24)

which can be rewritten as
T ⋅ P̂ + 1

2
r2 = T ⋅

(

P̂ − 1
2
r2e∞1

)

= T ⋅ C = 0. (25)

The CGA IPNS 1-blade line11 L , normal to unit vector n̂ at distance d from the origin, or through point p , is defined as

L = n̂ + de∞1 = n̂ +
(

p ⋅ n̂
)

e∞1. (26)

In terms of the line direction d̂ through point p , where d̂∗ = n̂ = d̂I−1 , the line entity can be written as

L = d̂∗ +
(

p ⋅ d̂∗
)

e∞1. (27)

The line L with unit direction d̂ is also unit scale (normalized), where L = L̂ and L̂2
 = 1.

In general, the wedge of 2 ≤ k ≤ 4 CGA IPNS 1-blade entities forms a CGA IPNS k-blade entity that represents the
intersection of the k 1-blade entities.

2.4 2-D CGA versor operations
It can be shown that reflection of point P in circle C as the versor (sandwich product) operation

P′ = CPC−1
 (28)

produces P′ as the inversion of P in the circle C . The center point of circle C is Ce∞1C . Successive inversions in two
concentric circles, C1 of radius r1 followed by C2 of radius r2, produces isotropic dilation (uniform scaling) relative to the
circle center by the factor d = r22∕r

2
1. It can also be shown that reflection of a point P in a line L as the versor operation

P′ = LPL−1
 (29)

produces P′ as the reflection of P in the lineL . Successive reflections in two parallel lines that are separated by a displacement
d∕2 from the first line toward the second line produces translation by displacement d . Successive reflections in two non-
parallel lines subtending an angle �∕2 at their intersection point from the first line toward the second line produces rotation by
angle � around the intersection point in the direction of the first line toward the second line.
The line entity L will also be called the 1-versor reflection operator (reflector), and the circle entity C will also be called

the 1-versor inversion operator (inversor), since they are geometric entities and also version operators (versors).
The translator (translation versor, translation operator) T = L2L1 = L2 ⋅L1 +L2 ∧L1 is defined as successive reflections

in two parallel lines separated by half the translation displacement d∕2 =
(

L̂2 ∧ L̂1

)

⋅ eo1, or T 2 = L2L1 if by d .
The rotor R = L2L1 is defined as successive reflections in two non-parallel lines subtending half the rotation angle �∕2 =
acos

(

L̂2 ⋅ L̂1

)

, or R2 = L2L1 if subtending �. The isotropic dilator D = C2C1 is defined as successive inversions in two
concentric circles with relative dilation factor d = r22∕r

2
1, or D

2 = C2C1 with d
2 = r22∕r

2
1. T , R, and D are called 2-versors

V ∈ {T ,R,D}. The product of k vectors, with the product having an inverse, is called a k-versor Vk [14][13]. Their operation
on a CGA entity X has the form X′ = V XV −1, called a versor “sandwich” operation. Each even CGA 2-versor V has an
exponential form V = exp(logV).
A translator is a type of versor. The CGA 2-versor translator T , for a translation by the displacement vector d = dxe1+dye2,

is defined by reflections in parallel lines as

T = 1 + 1
2
e∞1d = exp

(1
2
e∞1d

)

, (30)

where 1 = L̂2 ⋅ L̂1 = cos(0), and e∞1d∕2 = L̂2 ∧ L̂1 represents the intersection of the two parallel lines in infinity as a free
vector [3] of the half displacement d∕2.

11Plane in ℝ3.

6 R. B. Easter and E. Hitzer

A rotor is a rotation operator. The CGA 2-versor rotor R, for rotation around the point P̂ = 
(

p
)

by � radians
counter-clockwise in the right-handed xy-plane, is defined by translation of the origin rotor exp

(

�e2e1∕2
)

by d = p (i.e.,
T exp

(

�e2e1∕2
)

T −1) as

R = cos
(�
2

)

+sin
(�
2

)

(

e2e1 −
(

p ⋅
(

e2e1
))

e∞1
)

= cos
(�
2

)

+sin
(�
2

)(

P̂ ∧ e∞1

)

I = exp
(�
2
ℙ̂∗
I

)

= exp
(�
2
ℙ̂

)

, (31)

where sin
(

�
2

)

ℙ̂ = L2 ∧ L1 is the IPNS flat point representing the intersection of the lines.
A dilator is a dilation operator. The CGA 2-versor isotropic dilator D, by dilation factor d > 0 relative to the point P̂ =


(

p
)

in the plane, is defined by inversions in circles (centered on p with r1 = 1 and r2 =
√

d) as

D = d + 1
2

+ d − 1
2

ℙ̂∗
 =

√

dD̂ =
√

d exp
(

atanh
(d − 1
d + 1

)

ℙ̂∗


)

=
√

d exp
(

ln(d)
2

ℙ̂∗


)

, (32)

where the exponential D̂ = exp(A) is a unimodular versor (n.b., D̂∼ = D̂−1) and the constant modulus (radius or invariant
interval) is

√

d =
√

(d + 1)2∕4 − (d − 1)2∕4 for hyperbolic rotation by angle ' = ln(d) through point ((d +1)∕2, (d −1)∕2) of
the hyperbolic plane. If D̂ is used as the dilator, then the homogeneous scale on eo is not preserved.
For dilation around eo, then ℙ̂∗

 = eo ∧ e∞ = e4e3 and the hyperbolic rotation is in the hyperbolic Minkowski e3e4-plane.
Then, for this rotation to form the dilation of the point 

(

t
)

, we must have the squared versorD2 = C2C1 (for r1 = 1, r2 = d,
and center eo) as the ratio

D2 =

(

d2
t2
2
e∞1 + eo1

)(

t2
2
e∞1 + eo1

)−1

=

(

d2t2 − 1
2

e3 +
d2t2 + 1

2
e4

)(

t2 − 1
2

e3 +
t2 + 1
2

e4

)−1

=
(

�′e3 + �′e4
) (

�e3 + �e4
)−1 = d2 + 1

2
+ d2 − 1

2
e4e3, (33)

which can be verified after some algebra. For r2 =
√

d, we get the square root
√

D2 = D. It can also be verified that

D
(

xe1 + ye2
)

D∼ =
√

dD̂
√

dD̂∼ (xe1 + ye2
)

= dxe1 + dye2, (34)
D2 (�e3 + �e4

)

= D
(

�e3 + �e4
)

D∼ = �′e3 + �′e4, (35)
D

(

t
)

D∼ = 
(

dt
)

, (36)

which preserves the homogeneous scale on the term eo. Dilation centered on eo is generalized to dilation centered on a point
P = 

(

p
)

with the translation by d = p , D′ = TDT −1.
By outermorphism, all of the CGA versors operate correctly on all of the CGA OPNS entities formed as wedges of points.

By dualization, the versors also work correctly on all of the CGA IPNS entities. Consider the test point12 T = 
(

t
)

, an OPNS
entity X∗

 , and the outermorphism of their surface point test (their wedge) by a versor V as

V
(

T ∧ X∗

)

V −1 =
(

V TV
−1) ∧

(

V X∗
V

−1) = T′
 ∧

(

⋀

V PjV
−1
)

= T′
 ∧ X∗′

 . (37)

Since the transformations of points by the versor operations (compositions of inversions in general circles C , including reflec-
tions in lines L) are correct, then the transformation of X∗

 into the entity X∗′
 is also correct, and the surface point test is zero

only for correctly transformed surface points T′
 . Considering the IPNS entity X = X∗

I = X∗
 ⋅ I , then the test is

V
(

T ⋅
(

X∗
 ⋅ I

))

V −1 = V
((

T ∧ X∗

)

⋅ I
)

V −1 = V
(

T ∧ X∗

)

IV −1 = V
(

T ∧ X∗

)

V −1I . (38)

12A surface in CGA is described by an outer products of points on the surface in OPNS, or the dual of this outer product in IPNS. A surface in k-CGA is described
by a k-vector in IPNS. We call a conformally embedded general point test point, its Euclidean position is the corresponding test vector. In IPNS, setting to zero the inner
product of a test point with a multivector representing a surface, produces an equation for all points on the surface.

R. B. Easter and E. Hitzer 7

3 TRIPLE 2-D CGA 3(2+1),3 OF THE EUCLIDEAN PLANE ℝ2

The Triple Conformal Geometric Algebra (TCGA)  = 3(2+1),3 for the 2-D Euclidean plane ℝ2 is a high-dimensional Ge-
ometric Algebra of the 12-D pseudo-Euclidean vector space ℝ9,3. With 212 basis blades,  is currently considered to be a
high-dimensional Clifford algebra. TCGA is a staightforward extension of the concepts introducedwith Double Conformal “Dar-
boux Cyclide” Geometric Algebra (DCGA) 8,2 [10][8][7][5][4] and Double Conformal Space-Time Algebra (DCSTA) 4,8
[9][6]. Theoretically, there is no problem to similarly establish TCGA 12,3 for the 3-D Euclidean space ℝ3. However, current
computer algebra implementations cannot yet easily cope with elaborate computations in a high-dimensional Clifford algebra
12,3 of 215 basis blades. Therefore, we pragmatically use the TCGA  of the Euclidean plane to explain the principles of this
approach, where we only have to deal with currently feasible computations in a Clifford algebra of 212 basis blades.
Triple conformal geometric algebra of the Euclidean plane 9,3 includes three copies of 3,1 CGA, which are named CGA1

1, CGA2 2, and CGA3 3. Each CGAi i has a Euclidean plane ℝ2 subalgebra 2, denoted  i.
The metric for 1 ism1 = diag(1, 1, 1,−1) = [ei ⋅ej] : i, j ∈ {1, 2, 3, 4}. The metric for 2 ism2 = diag(1, 1, 1,−1) = [ei ⋅ej]

: i, j ∈ {5, 6, 7, 8}. The metric for 3 is m3 = diag(1, 1, 1,−1) = [ei ⋅ ej] : i, j ∈ {9, 10, 11, 12}. The metric for TCGA 
combines the metrics for 1, 2 and 3 as m = diag(1, 1, 1,−1, 1, 1, 1,−1, 1, 1, 1,−1) = [ei ⋅ ej] : i, j ∈ {1…12}, because
together the basis vectors of 1, 2 and 3 spanℝ9,3. This can be summarized as metric m for the 1-vectors of TCGA 1

9,3 with

m = [mij] = diag(1, 1, 1,−1, 1, 1, 1,−1, 1, 1, 1,−1) ,
mij = ei ⋅ ej ∶ i, j ∈ {1, 2,… , 12}. (39)

The unit pseudoscalars for 1, 2, 3 are I1 = e1e2, I2 = e5e6, I3 = e9e10, respectively, and are the dualization operators on
elements A i ∈  i by the division A∗

 i = A i∕I i . Similarly, the unit pseudoscalars for 1,2,3 are I1 = e1e2e3e4, I2 =
e5e6e7e8, I3 = e9e10e11e12, respectively, and are the dualization operators on elements Ai ∈ i by the division A∗

i = Ai∕Ii .
The TCGA 12-blade unit pseudoscalar is I = I1I2I3 = e1e2 … e12.
In Section 2 we already discussed 2-D CGA essentially in terms of CGA1 1 =  and its Euclidean subalgebra 1 = 

with unit vector elements e1, e2, e3, e4, where e+ = e3 and e− = e4. In the following subsections, we will introduce relevant
multivector entities in TCGA for geometric objects and for transformation operators.

3.1 TCGA IPNS 3-blade standard entities
The TCGA 3-blade point P is the k-CGA of multiplicity k = 3 (TCGA) embedding

P = 
(

p
)

= 1(p1

)

2(p2

)

3(p3

)

= 1(p1

)

∧ 2(p2

)

∧ 3(p3

)

, (40)

where
1(p1

)

= p1 + 1
2
p2e∞1 + eo1, 2(p2

)

= p2 + 1
2
p2e∞2 + eo2, 3(p3

)

= p3 + 1
2
p2e∞3 + eo3, (41)

and
p1 = pxe1 + pye2, p2 = pxe5 + pye6, p3 = pxe9 + pye10, p2 = p2x + p

2
y, (42)

e∞1 = e3 + e4, e∞2 = e7 + e8, e∞3 = e11 + e12, (43)

eo1 =
1
2
(

e4 − e3
)

, eo2 =
1
2
(

e8 − e7
)

, eo3 =
1
2
(

e12 − e11
)

. (44)

The symbolic TCGA 3-blade test point T = 
(

t
)

is the product of the embeddings of the symbolic vector t1 = xe1 + ye2 in
CGA1 and its copies in CGA2 and CGA3. The scalar coefficients on all corresponding CGAi canonical basis blades are equal
as copies.

Remark 2. Note that any CGAi IPNS r-blade entity Ei has a representation as the TCGA IPNS 3r-blade entity E =
E1E2E3 = E1∧E2∧E3 . If theEi are IPNS 1-blade entities representing an implicit curve function F (x, y) = Ti ⋅Ei = 0,
which is a circle, line, or point, then E represents the function F 3(x, y) = T ⋅ E of multiplicity 3. Therefore, we also have
the TCGA IPNS 3-blade circle C and line L entities, and also the IPNS 3r-blade entities representing their intersections.

8 R. B. Easter and E. Hitzer

3.2 TCGA IPNS 3-vector extraction operators Ts
The test point T is a sum of 43 = 64 basis 3-blades, which is a subset of the

(12
3

)

= 220 canonical basis 3-blades in 9,3 TCGA.
Each of the 64 3-blades has a scalar coefficient of a certain value in the variables x and y. By using each of the 64 canonical
basis 3-blade reciprocals13 as an extraction operator, each scalar coefficient can be extracted by inner product with T . Not
every coefficient holds a unique value, but twenty unique values s can be extracted by certain extraction operators Ts (with index
s) as s = T ⋅ Ts. Together, these twenty coefficients comprise all of the available distinct coordinate polynomial coefficients
(

x, y, x2, xy, y2,… , t6
)

of cubic, quartic, quintic, and sextic degrees. The extraction operators Ts are given in Tables 1, 2, and
3. For example, when expanding (40), the x-coordinate is found on three 3-blade terms: x

(

e1eo2eo3 + eo1e5eo3 + eo1eo2e9
)

.
Furthermore, −e∞1, −e∞2, and −e∞3 are reciprocal to eo1, eo2, and eo3, respectively. Inspecting the expression for Tx in Table
1, we see that it corresponds to reversing the product order in

(

e1eo2eo3 + eo1e5eo3 + eo1eo2e9
)

, and replacing eoi ↔ e∞i, i ∈
{1, 2, 3}, followed with division by 3, since there are three terms with x in (40). The other extraction operators in Tables 1, 2,
and 3 are constructed by the same method.

Table 1. Extraction operators Ts for general quadric plane curves.

Tx =
1
3

(

e∞3e∞2e1 + e∞3e5e∞1 + e9e∞2e∞1
)

, Ty =
1
3

(

e∞3e∞2e2 + e∞3e6e∞1 + e10e∞2e∞1
)

Tx2 =
1
3

(

e1e5e∞3 + e1e∞2e9 + e∞1e5e9
)

, Ty2 =
1
3

(

e2e6e∞3 + e2e∞2e10 + e∞1e6e10
)

Txy =
1
6

(

e1e6e∞3 + e2e5e∞3 + e1e∞2e10 + e2e∞2e9 + e∞1e5e10 + e∞1e6e9
)

T1 = e∞ = e∞1e∞2e∞3, Tt2 = 2
3

(

eo1e∞2e∞3 + e∞1eo2e∞3 + e∞1e∞2eo3
)

Table 2. Extraction operators Ts for general cubic plane curves.

Tx3 = e9e5e1, Ty3 = e10e6e2
Txy2 =

1
3

(

e10e6e1 + e10e5e2 + e9e6e2
)

, Tx2y =
1
3

(

e10e5e1 + e9e6e1 + e9e5e2
)

Txt2 = 1
3

(

e∞3e5eo1 + eo3e5e∞1 + e9e∞2eo1 + e9eo2e∞1 + e∞3eo2e1 + eo3e∞2e1
)

Tyt2 = 1
3

(

e∞3e6eo1 + eo3e6e∞1 + e10e∞2eo1 + e10eo2e∞1 + e∞3eo2e2 + eo3e∞2e2
)

Table 3. Extraction operators Ts for quartic, quintic, and sextic plane curves.

Tx2t2 = 2
3

(

e1e5eo3 + e1eo2e9 + eo1e5e9
)

, Ty2t2 = 2
3

(

e2e6eo3 + e2eo2e10 + eo1e6e10
)

Txyt2 = 1
3

(

e1e6eo3 + e2e5eo3 + e1eo2e10 + e2eo2e9 + eo1e5e10 + eo1e6e9
)

Txt4 = 4
3

(

eo3eo2e1 + eo3e5eo1 + e9eo2eo1
)

, Tyt4 = 4
3

(

eo3eo2e2 + eo3e6eo1 + e10eo2eo1
)

Tt4 = 4
3

(

e∞1eo2eo3 + eo1e∞2eo3 + eo1eo2e∞3
)

, Tt6 = 8eo = 8eo1eo2eo3

13Reciprocals may also be called pseudoinverses (see [25] and [10]).

R. B. Easter and E. Hitzer 9

3.3 TCGA IPNS 3-vector entities
The most general TCGA IPNS 3-vector plane curve entity
 is a linear combination of the twenty extraction operators Ts

 =
∑

s
csTs. (45)

A linear combination of extraction operators from Tables 1 and 2 forms a TCGA IPNS 3-vector general quadratic or cubic plane
curve entity. A linear combination that includes the extraction operators from Table 3 can form an entity for certain types of
quartic (degree 4), quintic (degree 5), and sextic (degree 6) plane curves.
The TCGA dual of any TCGA IPNS k-vector (or blade) entity E is its corresponding TCGA OPNS (12 − k)-vector (or blade)

entity

E∗ = EI−1 , (46)

which represents the same geometric point set or plane curve, where T ∧ E∗ = 0.

3.4 TCGA IPNS intersection entities
The outer product of 2 ≤ k ≤ 4 TCGA IPNS 3-blade entities forms the TCGA IPNS 3k-blade entity that represents their
intersection, which corresponds to the CGA entities but has multiplicity 3.
The outer product of any one TCGA IPNS 3-vector entity
 and one or two (k ∈ {1, 2}) TCGA IPNS 3-blade entities forms

the TCGA IPNS 3(k + 1)-vector entity that represents their intersection. The outer product of any two 3-vector entities (in the
form of
) cannot be interpreted straightforward as intersection. Therefore, it is possible by the same method to intersect any
TCGA entity with a 3-blade line or circle, but it is not possible to intersect the other general cubic and certain quadric, quintic,
and sextic entities with each other. The reason for this is the general non-blade character14 of TCGA tri-vector entities for cubic
curves, and is explained in more detail in the corresponding section of [10].

3.5 TCGA versor operations
The CGAi 1-versors Ci , Li and 2-versors Ti , Ri , and Di (collectively indicated by Vi of grade k ∈ {1, 2}) each have
a representation as a TCGA 3k-versor V = V1V2V3 (the product of the same versor as represented in each CGAi). By
outermorphism [25], a TCGA versor V operates correctly, as E′ = V EV −1

 , on each CGAi element or factor of any TCGA
IPNS entity E (or its OPNS dual E∗), and therefore a TCGA versor V operates correctly on any TCGA entity E.
In particular, we can rotate (by rotor R = R1R2R3), translate (T), and isotropically dilate (D) any TCGA geometric

entity
 for general cubic plane curves and any of the types of quartic, quintic, and sextic plane curves that can be formed as
linear combinations of extraction operators Ts. For any TCGA entity E (which may be a quadric, cubic, etc.) and any TCGA
IPNS 3-blade circle C , then E′ = C EC∼

 is the correct inversion of E in the circle C . Similarly, any TCGA entity can be
reflected in the TCGA 3-blade line L .
We note, that only the use of three full copies of CGA in TCGA allows to use all conformal versor operators known from

CGA. If instead only one or two copies of CGA would be used for ℝ2, combined with two or one copies of GA for ℝ2, then it
would, e.g., not be possible to use the above translation operators for cubic plane curves, etc.

3.6 TCGA differential operators
The extraction operators Tx3 and Ty3 are 3-blades that have inverses. This makes it possible to form the following two ratios of
extraction operators

Dx = 3Tx2T −1
x3 , Dy = 3Ty2T −1

y3 . (47)
Clearly,DxTx3 = 3Tx2 andDyTy3 = 3Ty2 , such thatDx andDy act as differential operators on the extraction operators Ts. Using
the commutator product ×, defined for any two multivectors A and B as

A × B = 1
2
(AB − BA) = −B × A, (48)

14At the moment we see no possibility to model higher degree cubic, quadric, quintic and sextic curves and surfaces by blades in k-CGA, and preserve the expressions
of geometric transformations by means of versors at the same time. See the discussion in [10] and on conics in [25].

10 R. B. Easter and E. Hitzer

Dx and Dy produce the correct and exact derivative extraction operators Dx × Ts and Dy × Ts as shown in Tables 4, 5, and 6.

Table 4. Differential operations Dx × Ts, Dy × Ts on quadric Ts of Table 1, and t = xe1 + ye2.

× Tx Ty Tx2 Txy Ty2 T1 Tt2
Dx T1 0 2Tx Ty 0 0 2Tx

Dy 0 T1 0 Tx 2Ty 0 2Ty

Table 5. Differential operations Dx × Ts, Dy × Ts on cubic Ts of Table 2.

× Tx3 Txy2 Tx2y Ty3 Txt2 Tyt2
Dx 3Tx2 Ty2 2Txy 0 2Tx2 + Tt2 2Txy

Dy 0 2Txy Tx2 3Ty2 2Txy 2Ty2 + Tt2

Table 6. Differential operations Dx × Ts, Dy × Ts on quartic, quintic, and sextic Ts of Table 3.

× Tt4 Tx2t2 Txyt2 Ty2t2 Txt4 Tyt4 Tt6
Dx 4Txt2 2Tx3 + 2Txt2 2Tx2y + Tyt2 2Txy2 4Tx2t2 + Tt4 4Txyt2 6Txt4
Dy 4Tyt2 2Tx2y 2Txy2 + Txt2 2Ty3 + 2Tyt2 4Txyt2 4Ty2t2 + Tt4 6Tyt4

For a unit direction n = nxe1 + nye2 in ℝ2, n2 = 1, the n-directional derivative operator is Dn = nxDx + nyDy and the
n-directional derivative of any TCGA IPNS 3-vector entity
 representing an implicit plane curve function F (x, y) = T ⋅

is)n
 = Dn ×
, which represents the implicit plane curve function)nF = ((⋅ n)F = T ⋅

(

Dn ×

)

, where the gradient
operator is the geometric calculus symbolic vector (= ()∕)x) e1 + ()∕)y) e2. For a TCGA IPNS 3-blade 3-CGA entity C ,
which represents the third power15 of a function F 3(x, y) = F (x, y)F (x, y)F (x, y), the product T ⋅

(

Dx × C
)

= 3F 2)xF etc.,
which is in agreement with the chain rule of differentiation. Mixed partial derivatives of higher orders are formed by nesting
successive differential operations in any sequence (e.g., Dy ×

(

Dx ×

)

or Dx ×
(

Dy ×

)

), etc.

3.7 Examples of plane curve TCGA 3-vector entities
The TCGA plane curves are represented in algebraic geometry by implicit plane curve functionsF (x, y), with equationF (x, y) =
0, that have a straightforward representation as TCGA entities (i.e., as linear combinations of the extraction operators in Tables 1,
2, and 3), as will be shown in the following subsections. Points of a plane curve are solutions of the implicit equation F (x, y) = 0,
equivalent to the inner product null space of a TCGA IPNS 3-vector plane curve entity
 (i.e., points P where P ⋅
 = 0).
Many functions F (x, y) include some real scalar parameters a, b, and c that vary the curve.
An exhaustive description of all possible linear, quadric, cubic, quartic, quintic, and sextic plane curves that can be repre-

sented as TCGA IPNS 3-vector entities would be beyond the limits of this introductory paper. The current subsection instead
presents some examples of TCGA IPNS 3-vector entities for some of the plane curves commonly discussed in algebraic geometry
literature.

15The third power arises, because we use three copies of CGA to produce TCGA.

R. B. Easter and E. Hitzer 11

folium of Descartes �defective hyperbola
hyperbola �

right strophoid � nodal cubic � ; � 0nodal cubic �A B

right strophoid �; � 0

CT
CT

C
Figure 1. Examples of cubics: right strophoid, nodal cubic, and folium of Descartes.

3.7.1 General cubic plane curves
TCGA IPNS 3-vector entities can represent general cubic (degree 3) plane curves as linear combinations of the general quadric
(degree 2) and general cubic extraction operators listed in Tables 1 and 2. In algebraic geometry, references [24] and [12] contain
numerous implicit cubic plane curve equations F (x, y) = 0, all of which can be represented as TCGA IPNS 3-vector entities.
Examples of TCGA cubic plane curve entities are shown in Table 7.

Table 7. Examples of TCGA IPNS 3-vector cubic plane curve entities.

Name Cubic F (x, y) TCGA IPNS 3-vector entity

Apollonian cubic (x − a)
(

x2 + y2
)

+ bx + cy Txt2 − aTt2 + bTx + cTy

cissiod of Diocles x3 + xy2 − y2 Tx3 + Txy2 − Ty2

cubic egg axy2 + x2 + y2 − 1 aTxy2 + Tt2 − T1

egg of Newton y2 − x3 + ax2 + x − a Ty2 − Tx3 + aTx2 + Tx − aT1

folium of Descartes x3 + y3 −
√

2axy Tx3 + Ty3 −
√

2aTxy

nodal cubic y2 − x2 (x − a) : a < 0 Ty2 − Tx3 + aTx2

serpentine x2y + a2y − abx Tx2y + a2Ty − abTx

right strophoid y2 (x + a) + x2 (x − a) Txy2 + aTy2 + Tx3 − aTx2

trident of Newton xy − x3 − ax2 − bx − c Txy − Tx3 − aTx2 − bTx − cT1

witch of Agnesi x2y + 4a2y − 8a3 Tx2y + 4a2Ty − 8a3T1

Figure 1 (A) shows the inversion of the quadric hyperbola � in the circle C as the cubic right strophoid � = C �C∼
 for

a = −4. The hyperbola entity � = T
(

Tx2 − Ty2 − r2T1
)

T ∼
 has radius r = 2 and is translated by displacement d = −re1 using

the TCGA translator T . The TCGA IPNS 3-blade circle C has radius r = 4 and center eo (the origin). The right strophoid �
is an entity that can also be represented in Double Conformal Geometric Algebra (DCGA) [5].
Figure 1 (B) shows the inversion of the nodal cubic � for a = −4 in the circle C (of radius r = 4 centered on eo) as the

quartic “defective hyperbola”
 for a = −4 (see quartics Table 8).
Figure 1 (C) shows a right strophoid � and nodal cubic �, both for a = −1, which are both dilated by factor d = 4 and

rotated by angle � = 225◦ using the TCGA dilatorD and rotor R as �′ = RD �D∼
 R

∼
 and �′ = RD �D∼

 R
∼
 . The right

12 R. B. Easter and E. Hitzer

strophoid �′ and nodal cubic �′ both look similar to a folium of Descartes. However, the true folium of Descartes � for a = 4 is
also shown, and the shape differences are apparent.
By using TCGA entities and versor operations, it is easy to use TCGA as a tool to study the plane curves of Figure 1, and

many others, and to learn how plane curves are related to each other through inversions in circles and by rotations, dilations,
and translations.

3.7.2 Various quartic plane curves
TCGA IPNS 3-vector entities can represent only the specific forms of quartic (degree 4) plane curves that can be written in terms
of the general cubic extraction operators (all of Tables 1 and 2) plus the available quartic extraction operators of Table 3, which
can represent only the quartic terms t4 , x

2t2 , xyt
2
 , and y

2t2 , where t
2
 = x2+y2. TCGA cannot represent the individual general

quartic terms x4, x2y2, and y4 with independent coefficients, because there are no extraction trivector operators to individually
extract these coefficients from a general test point. Even with this limitation, there is a large variety of quartics in the algebraic
geometry literature (e.g., in [24]) that can be written with this restricted choice of TCGA quartic terms. Some of the possible
TCGA quartic plane curve entities are shown in Table 8.

Table 8. Examples of TCGA IPNS 3-vector quartic plane curve entities.

Name TCGA IPNS 3-vector quartic entity

cardioid Tt4 − 4aTxt2 + 4a2Tx2 − 4a2Tt2
Cartesian oval b2

(

Tt4 + 2a2Tt2 + a
4T1

)

− 4abc
(

Txt2 + a
2Tx

)

+

4a2c2Tx2 − 2c
(

Tt2 + a
2T1

)

+ 4abTx + T1

Cassini oval Tt4 − 2a2
(

Tx2 − Ty2
)

+
(

a4 − b4
)

T1

conchoid of Durer 2Ty2t2 − 2b
(

Txy2 + Ty3
)

+
(

b2 − 3a2
)

Ty2 − a2Tx2+

2a2b
(

Tx + Ty
)

+ a2
(

a2 − b2
)

T1

conchoid of Nicomedes Tx2t2 − 2bTxt2 + b
2Tt2 − a

2Tx2

defective hyperbola aTx2t2 + Ty2t2 − a
2Tx3 : a < 0

deltoid (tricuspid) Tt4 − 8a
(

Tx3 − 3Txy2
)

+ 18a2Tt2 − 27a4T1

hippopede Tt4 + 4b (b − a) Tt2 − 4b2Tx2

kappa Ty2t2 − a
2Tx2

limacon Tt4 − 4aTxt2 + 4a2Tx2 − b2Tt2
ovoid aTx2t2 + Ty2t2 − a

2Tx3 : a > 0

A type of hippopede H can be formed as the inversion H = C EC∼
 of an ellipse E = Tx2∕a2 + Ty2∕b2 − T1, a>b, in the

circle C of radius r = b centered on eo. H has y-intercepts ±b and x-intercepts ±c = b2∕a (the inversion of ±a). For fixed
b, then a = b2∕c gives H with x,y-intercepts ±c,±b. As a → ∞ for fixed b, E = Ty2∕b2 − T1 and H becomes a particular
lemniscate of Booth (figure eight) that is the union of tangential spheres of radius b through the origin. The implicit curve
function F (x, y) = T ⋅ H has a factor t2 = x2 + y2 (making it appear sextic) representing the inversion eo = C e∞C∼

 since
all entities, such as E, not having the term Tt6 = 8eo include e∞ as a singular outlier handle point (exterior point). F (x, y) ∕t2 is
the quartic hippopede function.
Many of the quartics of Table 8, including H and hippopede, can also be formed in DCGA [5].
Figure 2 shows the hippopede H that has been discussed above and also a cardioid, Cartesian oval, and deltoid. The larger

cardioid, call it A, with a=1, was rotated � = −90◦, then dilated by d = 1∕2, and then translated by d = 2e1 into the smaller
cardioid A′ = TD R AR∼

D
∼
 T

∼
 . The Cartesian oval and the deltoid were both reflected in the circle (inversion in circle).

R. B. Easter and E. Hitzer 13

cardioid

hippopede

CT

E

H

Cartesian oval and deltoid

Figure 2. Examples of quartics: the hippopede, cardioid, Cartesian oval, and deltoid.

The reflected deltoid makes a shape that looks similar to an axe head, which is then rotated 180◦ and then reflected again in the
circle to make the larger B-like shape. The larger B-like shape is then dilated by d = 1∕4 (centered on 3e1) and translated by
d = 4e1 to make the smaller B-like shape.

3.7.3 Various quintic plane curves
In Table 3, we find that TCGA offers only two quintic (degree 5) extraction operators that can represent only the quintic terms
xt4 and yt4 , where t

2
 = x2 + y2. This may seem limited, but in combination with all of the quartic and lesser degree terms

available in TCGA, there is still a large variety of possible TCGA IPNS 3-vector quintic plane curve entities. The literature on
quintic plane curves appears sparse, so we have only a couple of ad-hoc examples in Table 9.

Table 9. Examples of TCGA IPNS 3-vector quintic plane curve entities.

Description TCGA IPNS 3-vector quintic entity

modified Burnside curve Ty2 − Txt4 + Tx

serpentine-like Txt4 − Tx3 − Ty3∕125 −
(

Tx2 + Ty2
)

∕144 +
(

Tx + Ty
)

∕100

3.7.4 Cranioid sextic plane curves
A sextic (degree 6) cranioid (head-like shape) plane curve can be formed by inversion in a circle of a cubic curve that is basically
a straight line except for being curved as it passes through the origin (see Figure 3). Such a cubic curve is

y − b + b
x2 + 1

= 0. (49)

As x → ∞, it becomes the line y = b. As x → 0, then y → 0. The function is of even degree 2 in x and symmetrical for ±x.
After multiplying by x2 + 1, the TCGA IPNS 3-vector entity B0 for this cubic plane curve can be directly expressed in terms of
the TCGA IPNS extraction operators as

B0 = Tx2y + Ty − bTx2 . (50)

We will use b = −1, such that the curvature is upwards the y-axis. Instead of using x2, we can use t4 =
(

xe1 + ye2
)4 =

(

x2 + y2
)2 for a sharper curvature. The TCGA IPNS 3-vector entity B1 for this quintic plane curve is

B1 = Tyt4 + Ty − bTt4 . (51)

14 R. B. Easter and E. Hitzer

C1=CTB1CT�

C0.5=CTB0.5CT�

C0=CTB0CT�

CT

B0;B0.5;B1

TTRTC0.5RT�TT�

C0;C0.5;C1

�= 35�; dE1=6e1+3e2

x

y

Figure 3. Cranioids ℭ0, ℭ0.5, and ℭ1.

The TCGA IPNS 3-vector entity Bt, 0 ≤ t ≤ 1, that interpolates between B0 and B1 is

Bt = (1 − t)B0 + tB1. (52)

Using the TCGA IPNS 3-blade circle C = C1C2C3 with center 2e2 and radius r = 3, and Bt with parameters 0 ≤ t ≤ 1 and
b = −1, the TCGA IPNS 3-vector cranioid entity ℭt is the inversion

ℭt = C BtC∼
 . (53)

For t < 0 and t > 1, the entity ℭt is generally no longer a cranioid but forms other interesting curves. Choosing a different b for
the curve Bt and different circles C for the inversion could be the subject of further experimentation. Further research could
also lead to various ways to parametrize the cranioid entity for certain shapes.
Figure 3 shows three cranioids ℭ0, ℭ0.5, and ℭ1, and it also shows a cranioid ℭ′

0.5 = T R ℭ0.5R∼
 T

∼
 that has been rotated

35◦ using a TCGA rotor R and then translated by d1 = 6e1 + 3e2 using a TCGA translator T .
Cayley’s sextic, with equation 4

(

x2 + y2 − ax
)3 = 27a2

(

x2 + y2
)2, can also be represented as a TCGA entity.

3.8 The anisotropic dilation operation
A TCGA 3-vector general cubic entity X (a linear combination of extraction operators from Tables 1 and 2) can represent any
cubic plane curve, including those that have been anisotropically dilated by a factor d > 0 in an arbitrary direction d̂ (directed
scaling). The TCGA 6-versor dilator D is only for isotropic dilation (uniform scaling), and we have not been able to give an
anisotropic dilation versor in 9,3 TCGA. However, the following describes a successful extension of TCGA in which we can
obtain an anisotropic dilation versor B that is valid on any general TCGA cubic entity X .
TCGA can be generalized further by adding16 three new unit vector elements [ei ⋅ ej] = [mij] = diag(−1,−1,−1) : i, j ∈

{13, 14, 15} as time-like dimensions, forming a triple of Minkowski space-times i : i ∈ {1, 2, 3} of signatures (2, 1), each
having two space dimensions and a time-like dimension. In this new space-time, vectors are written17 as t1 = xe1+ye2+we13,
and similarly for t2 and t3 using e14 and e15, respectively. We still have Euclidean spatial vectors t1 = xe1 + ye2, and
similarly for t2 and t3 , as previously defined. The new time-like coordinate w can be written w = ct, with light speed c = 1

16Please note, that this increase in dimension may lead to a substantial increase in computation time, when compared to TCGA for the Euclidean plane in 9,3.
17Note, that the indexes 13, 14, and 15 do not indicate bivectors, but rather enumerate vectors.

R. B. Easter and E. Hitzer 15

and time t. In this larger 3(2+1),3(1+1) 15-D algebra, which is less practicable18, it becomes now possible to define the unimodular
hyperbolic rotor (boost19 versor)B1 = exp

(

'd d̂1e13∕2
)

for anisotropic dilation in direction d̂1 by dilation factor d > 0, with

hyperbolic angle (rapidity) 'd = atanh
(

−�d
)

and natural speed �d =
√

1 − d2, in accordance with the length L0 contraction
L = dL0 =
−1d L0 =

√

1 − �2dL0 that is well-known in physics as part of the theory of special relativity. Note that, �d
and 'd are imaginary numbers for dilation factor d>1, and then (just for this anisotropic dilation operation) we must use the
triple conformal Clifford algebra l(3 (2 + 1) , 3 (1 + 1)) for the complex vector space ℂ2,1. Also note that, the rotation would
be by the negative angle −'d in the other Minkowski spacetimes with signatures (1, 2). The boost versor B1 corresponds
to a space-time boost from the stationary observer space-time velocity vector o1 = ce13 into the space-time velocity vector

dd1 =
d(�dcd̂1 + ce13), where

d1 = �dcd̂1 + ce13, o1 = ce13, o−11 = −e13∕c, (54)

H = d1∕o1 = 1 − �d d̂1e13, |H| =
√

12 − �2d =
−1d , 'd = atanh(−�d), (55)

Ĥ = cosh('d) + sinh('d)d̂1e13 = exp('d d̂1e13) = |H|

−1H =
dH, (56)

B1 =
√

Ĥ =
√

dH =
√

dd1o−11 = exp('d d̂1e13∕2), B2
1 =
dH, (57)

dd1 = B2
1o1 = B1o1B∼

1 . (58)

Similarly, we have the hyperbolic rotors in2 and3 as

B2 = exp('d d̂2e14∕2), B3 = exp('d d̂3e15∕2). (59)

The triple hyperbolic rotor is B = B1B2B3 . If we hold w = 0, then the 15-D 9,6 algebra, denoted  , reduces to the
12-D 9,3 TCGA  . In effect, we can set w = 0 in any entity X  in   by the projection

X′
 = (X  ⋅ I)I−1 = I (X ). (60)

The anisotropic dilation, centered on (relative to) the origin eo and in the direction d̂ by dilation factor d > 0, of any TCGA
IPNS 3-vector cubic entity X is defined as

X′
 = I (B X B

∼
) = I (X ). (61)

A translated boost versor Bp = T B T ∼
 , with translator T for displacement p , creates a boost versor Bp for anisotropic

dilation centered on p . The boost X  = Bp X (B
p
)

∼ of a cubic entity X that is centered on p is set into the constant
velocity v = �dcd̂ of the boost, where X  is centered at p + v t at time t, and the shape of X  and X′

 is contracted

(or dilated) in direction d̂ by the factor d =
√

1 − �2d . The projection back to a general TCGA IPNS 3-vector cubic entity
X′

 = I (X ) is at w = ct = 0 and centered at its original center p (or whatever it was before the boost), but its shape
retains the d̂ -directional dilation by dilation factor d away from the chosen center p .
Only the general cubic entities support a form, in terms of the TCGA extraction elements, that can be anisotropically dilated,

and any attempt to anisotropically dilate other TCGA entities of degrees 4, 5, or 6 (quartic, quintic, sextic) will result in a different
kind of transformation of the shape of the entity.
The anisotropic dilation operation only requires the inclusion of the vector units e13, e14, and e15, the ability of the algebra to

use complex number scalars, and the versor Bp and projection I (X ). No other changes or additions are required to TCGA,
including no changes are required to the TCGA point entity or other TCGA entities and versors.
Finally, Figure 4 shows an example for directed (anisotropic) scaling of the folium of Descartes, with a = 1, dilated by d = 5

in the diagonal direction e1 + e2.

18The notion of less practicable only refers to the higher computational cost due to the increase in dimensions of the Clifford algebra thus generated.
19The term boost is taken over from special relativity, but the hyperbolic rotor we use currently only serves as anisotropic dilation operator for the purpose of shape

manipulation.

16 R. B. Easter and E. Hitzer

Figure 4. Directed (anisotropic) scaling of the folium of Descartes a = 1, dilated by d = 5 in the diagonal direction e1 + e2.

4 IMPLEMENTATION OF TCGA

In symbolic calculations using a computer algebra software (e.g., SymPy [27] with the module  lgebra [1]), all implicit
plane curve functions20 F (x, y) = 0 can be produced by the inner product F (x, y) = T ⋅
 = 0, where T is the symbolic
TCGA test point T = 

(

xe1 + ye2
)

with x and y as symbols, and
 is any of the TCGA IPNS 3-vector entities of Section
3.7. An implicit plane curve equation F (x, y) = 0 can be graphed or plotted using commonly available graphing, plotting, or
scientific visualization software (e.g., MayaVi [26] using x,y,z = mgrid[-10:10:2000j, -10:10:2000j, 0:1] for nearly
2-D graphing around the origin; MayaVi is primarily a 3-D visualization software).

20Note, that for an implicit plane curve equation F (x, y) = 0, a point (x, y) is on the plane curve when F (x, y) = 0. In the neighborhood of (x, y), the function
F (x, y) = T ⋅
 is positive on one side of the plane curve and negative on the other side of the plane curve. This can also be used to judge if a point is inside or outside a
closed curve, like in Figure 2.

R. B. Easter and E. Hitzer 17

For example, with SymPy [27] using the lgebra [1] module, the sextic implicit plane curve equation for the cranioid ℭt of
Section 3.7.4 is generated as

F (x, y) = T ⋅ ℭt = 0, (62)

where the symbolic test point T is the TCGA point embedding 
(

t
)

of t1 = xe1 + ye2 as

T = 
(

t
)

= 1(t1

)

2(t2

)

3(t3

)

. (63)

Figure 3 was produced by graphing F (x, y) = 0 using the scientific visualization software MayaVi [26], and it was annotated
with mathematical text using TEXMACS [28].
Versors of high grade, operating on entities of high grade, incur high computational costs in terms of the total number of

arithmetic operations involved. In general, a k-versor Vk can be factored into a product of k vectors as Vk = v1v2 … vk, and then
the versor operation can be implemented as a succession of vector reflection operations in the vi, which may lower the compu-
tational costs. Intelligent usage of the associativity of the geometric product can reduce the dimensions and grades of products
more quickly than naïve usage, and does generally improve the efficiency of computations with the geometric product, including
versor operations. In our experience it has proved optimal to compute k-CGA {k, 2k}-versor operations A′

 = VAV −1
 as k

successions of the CGA1…k {1, 2}-versor operations A′
 = V1

(

V2 …
(

VkAV −1
k

)

…V −1
2

)

V −1
1 using the associativity of

the geometric product (see Appendix A).
For example, the TCGA 6-versor operations (combinations of translations, dilations and rotations) were tested as successions

of the three CGAi 2-versor operations for each operation, otherwise the symbolic test computations were very slow in SymPy
with the lgebra module (compare e.g., Fig. 2). When implementing and testing TCGA in SymPy [27] using the lgebra [1]
module, it is easy to create functions that return entities and versors according to parameters and to implement the successions
of versor operations on the entities to transform them.
Furthermore, the anisotropic dilation operation of Section 3.8 has been successfully tested using SymPy [27] with the

lgebra [1] module, and it is indeed practicable for some calculations if the three 2-versors Bpi = TiBi

(

Ti
)∼ operate on

a general cubic entity X in succession instead of directly using the 6-versor operation Bp X
(

Bp
)∼ (see Appendix A).

5 CONCLUSION

The Triple Conformal Geometric Algebra (TCGA or 3-CGA) 3(2+1),3 for the Euclidean plane ℝ2 has IPNS 3-blade entities
representing points, point pairs, lines, and circles and IPNS 3-vector entities representing general cubic plane curves and their
inversions in circles (and generalizing to reflections in lines). TCGA also has IPNS 3-vector entities for representing certain
types of cyclidic (or roulette) quartic, quintic, and sextic plane curves. The circle and line entities are also the operators for
inversion and reflection in them, which are implemented as vector reflections. Conformal operations (as versor operations with
exponential forms) for dilation, translation, and rotation of any TCGA entity can be defined in terms of inversions in circles,
reflections in parallel lines, and reflections in non-parallel lines, respectively. As explained at the end of Section 3.4, for any
TCGA plane curve entity representing a general cubic or certain types of quartic, quintic, or sextic curve, it is possible to form
an entity representing its intersection with a line or circle. TCGA includes commutator-based differential operators applicable
to any TCGA IPNS 3-blade or 3-vector entity and that provide a standard method of differentiation (or differential calculus).
As already indicated in the introduction, further extensions generalizing TCGA to k-CGAs, will allow for the definition of

IPNS k-vector entities representing geometric surfaces of general degree k (and also Darboux k-cyclidic entities for surfaces
of degrees (k + 1)…2k) and their intersections with k-blade entities (k-CGA hyperplanes and hyperspheres), and algebraic
differential operators of the formDx = kTxk−1T −1

xk (as products of certain extraction operators Ts) using the commutator product
)x
 = Dx ×
 on any k-vector entity
 [4]. However, as the dimension n = p + q of the geometric vector space ℝp,q and
the multiplicity k of the k-CGA increase, the dimension k (n + 2) of the k-CGA increases rapidly and the number of canonical
algebraic basis blades 2k(n+2) [25] increases exponentially, which may lead to impracticable computational costs unless the
implementation is very efficient [11] and optimized [15][17]. Computational costs can also be reduced in the computations of
versor operations by intelligent usage of the associativity of the geometric product and of the Cartan-Dieudonné theorem on
orthogonal transformations to compute slow {k, 2k}-versor operations as k successions of much faster {1, 2}-versor operations
(see Appendix A).

18 R. B. Easter and E. Hitzer

ACKNOWLEDGMENTS

E. Hitzer wishes to thank God: Soli Deo Gloria, to thank his family and H. Suzuki for their kind support, R.B. Easter for
excellent collaboration, and the ENGAGE 2017 related special issue of MMA guest editors A. Aristidou, D. Hildenbrand, and
G.S. Staples. In applications of this research, please respect the Creative Peace License [22]. The authors wish to thank the
anonymous reviewers for their careful reading and many excellent helpful suggestions.

References

[1] Alan Bromborsky. Geometric Algebra Module for SymPy. (2016). Software: https://github.com/brombo/galgebra.

[2] Fred Brackx, Richard Delanghe, and Frank Sommen. Clifford Analysis. Research Notes in Mathematics, Volume 76.
London: Pitman Advanced Publishing Program, (1982).

[3] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science (Revised Edition): An
Object-Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics. Elsevier, (2009). DOI:
10.1016/B978-0-12-374942-0.X0000-0

[4] Robert Benjamin Easter. Differential Operators in the 8,2 Geometric Algebra, DCGA. Original research working paper.
(2015). Vixra.org preprint: 1512.0303.

[5] Robert Benjamin Easter. 8,2 Geometric Algebra, DCGA. Original research working paper. (2015). Vixra.org preprint:
1508.0086.

[6] Robert Benjamin Easter.Double Conformal Space-Time Algebra. Original research workingmonograph. (2016). Vixra.org
preprint: 1602.0114.

[7] Robert Benjamin Easter and Eckhard Hitzer. Conic and Cyclidic Sections in Double Conformal Geometric Algebra 8,2.
In proceedings of SSI 2016, Session SS11, 6-8 December 2016, Ohtsu, Shiga, Japan, pages 866–871. http://www.sice.or.
jp/org/SSI2016/program.php#SS11. Vixra.org preprint: 1612.0221.

[8] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Geometric Algebra for Quadrics and Darboux Cyclides.
In Proceedings of the 33rd Computer Graphics International, CGI 2016, pages 93–96. New York: ACM, (2016). DOI:
10.1145/2949035.2949059.

[9] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Space-Time Algebra. In proceedings: AIP Conference
Proceedings, 1798(1):20066, (2017). DOI: 10.1063/1.4972658.

[10] Robert Benjamin Easter and Eckhard Hitzer. Double Conformal Geometric Algebra. Advances in Applied Clifford Alge-
bras, Volume 27, Issue 3, pages 2175–2199, (2017). DOI: 10.1007/s00006-017-0784-0. Vixra.org preprint: 1705.0019.

[11] Daniel Fontijne. Efficient Implementation of Geometric Algebra. PhD thesis , Universiteit van Amsterdam, (2007).

[12] Gerd Fischer. Plane Algebraic Curves. Student Mathematical Library, Volume 15. Providence, Rhode Island, USA:
American Mathematical Society, (2009).

[13] David Hestenes.New Foundations for Classical Mechanics. Fundamental Theories of Physics, Volume 99. Second edition.
Dordrecht: Kluwer Academic Publishers, (1999).

[14] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus, A Unified Language for Mathematics and
Physics. Fundamental Theories of Physics, Volume 5. Dordrecht: Kluwer Academic Publishers, (1984).

[15] Dietmar Hildenbrand, Justin Albert, Patrick Charrier, and Christian Steinmetz. Geometric Algebra Computing for
Heterogeneous Systems. Advances in Applied Clifford Algebras, Volume 27, Issue 1, pages 599–620, (2017). DOI:
10.1007/s00006-016-0694-6.

https://github.com/brombo/galgebra
http://dx.doi.org/10.1016/B978-0-12-374942-0.X0000-0
http://vixra.org/abs/1512.0303
http://vixra.org/abs/1508.0086
http://vixra.org/abs/1602.0114
http://www.sice.or.jp/org/SSI2016/program.php#SS11
http://www.sice.or.jp/org/SSI2016/program.php#SS11
http://vixra.org/abs/1612.0221
https://doi.org/10.1145/2949035.2949059
https://doi.org/10.1063/1.4972658
https://doi.org/10.1007/s00006-017-0784-0
http://vixra.org/abs/1705.0019
https://doi.org/10.1007/s00006-016-0694-6

R. B. Easter and E. Hitzer 19

[16] Dietmar Hildenbrand and Reinhard Oldenburg. Geometric Algebra: A Foundation of Elementary Geometry with possible
Applications in Computer Algebra based Dynamic Geometry Systems. The Electronic Journal of Mathematics and Tech-
nology, Volume 9, Number 3, Special Issue (June), 19 pages, (2015). Note: Special Issue (June) contains papers from the
Computer Algebra and Dynamic Geometry in Mathematics Education conference (CADGME 2014) held in September in
Halle (Saale), Germany.

[17] Dietmar Hildenbrand. Foundations of Geometric Algebra Computing. Geometry and Computing, Volume 8. Berlin:
Springer-Verlag, (2013). DOI: 10.1007/978-3-642-31794-1.

[18] Eckhard Hitzer. Conic Sections and Meet Intersections in Geometric Algebra. In Hongbo Li, Peter J. Olver, and Ger-
ald Sommer (Editors), Computer Algebra and Geometric Algebra with Applications, 6th International Workshop, IWMM
2004 Shanghai, China, May 19–21, 2004 and International Workshop, GIAE 2004 Xian, China, May 24–28, 2004, Re-
vised Selected Papers. Lecture Notes in Computer Science, Volume 3519, pages 350–362. Berlin, Heidelberg, New York:
Springer, (2005). DOI: 10.1007/11499251_25. Arxiv.org preprint: 1306.1017.

[19] Eckhard Hitzer and Ginanjar Utama. The GeometricAlgebra Java Package – Novel Structure Implementation of 5D Geo-
metric Algebraℝ4,1 for Object Oriented Euclidean Geometry, Space-Time Physics and Object Oriented Computer Algebra.
Mem. Fac. Eng. Univ. Fukui 53(1), pp. 47–59 (2005). Vixra.org preprint: 1306.0120.

[20] Eckhard Hitzer, Kanta Tachibana, Sven Buchholz, and Isseki Yu. Carrier Method for the General Evaluation and Control
of Pose, Molecular Conformation, Tracking, and the Like. Advances in Applied Clifford Algebras, Volume 19, Issue 2,
pages 339–364, (2009). DOI: 10.1007/s00006-009-0160-9.

[21] Eckhard Hitzer. Introduction to Clifford’s Geometric Algebra. SICE Journal of Control, Measurement, and System
Integration, Volume 51, Number 4, pages 338–350, (April 2012). Arxiv.org preprint: 1306.1660.

[22] Eckhard Hitzer. Creative Peace License. (2011). https://gaupdate.wordpress.com/2011/12/14/
the-creative-peace-license-14-dec-2011/ [Online; accessed 13 Feb. 2017].

[23] Hongbo Li, David Hestenes, and Alyn Rockwood. Generalized Homogeneous Coordinates for Computational Geometry.
In Gerald Sommer (Editor), Geometric Computing with Clifford Algebras. Theoretical Foundations and Applications in
Computer Vision and Robotics, chapter 2, pages 27–59. Berlin: Springer, (2001). DOI: 10.1007/978-3-662-04621-0.

[24] J. Dennis Lawrence. A Catalog of Special Plane Curves. New York: Dover Publications, (1972).

[25] Christian Perwass. Geometric Algebra with Applications in Engineering. Geometry and Computing, Volume 4. Berlin:
Springer, (2009). DOI: 10.1007/978-3-540-89068-3.

[26] Prabhu Ramachandran and Gaël Varoquaux. Mayavi: 3D Visualization of Scientific Data. Computing in Science &
Engineering, Volume 13, Issue 2, pages 40–51, (2011). DOI: 10.1109/MCSE.2011.35.

[27] SymPy Development Team. SymPy: Python library for symbolic mathematics. (2016). Software: http://sympy.org.

[28] Joris van der Hoeven, Andrey Grozin, Massimiliano Gubinelli, Grégoire Lecerf, François Poulain, and Denis Raux. GNU
TEXmacs: a scientific editing platform. ACM SIGSAM Communications in Computer Algebra, Volume 47, Issue 1/2,
pages 59–61, (March/June 2013). DOI: 10.1145/2503697.2503708.

APPENDIX A: ON EFFICIENT USAGE OF ASSOCIATIVITY IN VERSOR OPERATION
COMPUTATIONS

An intelligent (efficient) usage of the associativity of the geometric product is to associate groups of factors in a chain of geometric
products into parentheses, changing the order of multiplications, to reduce or minimize the total number of algebra operations or
computational costs (in runtime) that are required as compared to the naïve (inefficient) usage of the associativity of the geometric
product, which is the default (usually left to right) order ofmultiplication of the factors. Different choices of associative groupings
in parentheses to order the products may be more or less efficient (or expensive) than each other according to computational costs

https://doi.org/10.1007/978-3-642-31794-1
https://doi.org/10.1007/11499251_25
http://arxiv.org/abs/1306.1017
http://vixra.org/abs/1306.0120
https://doi.org/10.1007/s00006-009-0160-9
http://arxiv.org/abs/1306.1660
https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/
https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/
https://doi.org/10.1007/978-3-662-04621-0
https://doi.org/10.1007/978-3-540-89068-3
https://doi.org/10.1109/MCSE.2011.35
http://sympy.org
https://doi.org/10.1145/2503697.2503708

20 R. B. Easter and E. Hitzer

(usually measured by runtime). To determine the most intelligent (efficient) usage requires gathering intelligence in the form of
estimates of computational costs for alternative usages and then intelligently choosing the usage that minimizes computational
costs.
As an example of a naïve usage of the associativity of the geometric product, consider the versor “sandwich” operation
′ =

C
C∼
 = C1C2C3
C3C2C1 for the inversion of a TCGA IPNS 3-vector entity
 in a TCGA IPNS 3-blade standard

circle (3-versor inversor) C = C1C2C3 . The TCGA circle C is factored into the product of the three corresponding CGAi
circles Ci . Each CGAi IPNS 1-blade circle (1-versor inversor) Ci is a vector with up to four component terms. Without any
parentheses to perform the three vector reflections in succession, the six geometric products in
′ are evaluated in the default
(left to right) order. Assuming that like terms are added during each of the six multiplications, this naïve usage requires up to

42+43+43×64+4×
∑

i=0,2,4,6

(

12
i

)

+4×
∑

i=1,3,5,7

(

12
i

)

+4×
∑

i=0,2,4,6,8

(

12
i

)

= 16+64+4096+4×1486+4×1816+4×1981 =

25308 basis blade multiplications to compute
′.
A more intelligent usage of the associativity of the geometric product is
′ = C1

(

C2

(

C3
C3

)

C2

)

C1 , with parenthe-
ses to associate each successive vector reflection as three nested vector reflections. This requires up to 3 × 64 × (4 + 42) = 3840
basis blade multiplications if each successive vector reflection in parentheses transforms up to 64 terms in
 into another 64
transformed terms (this depends on adding like terms during each successive vector reflection).
Another choice (usage) of associativity is
′ =

(

C1C2C3

)

(

C3C2C1

)

= C
C∼
 . With this choice,
′ requires up

to 2 × 43 + 43 × 64 + 43 ×
∑

i=0,2,4,6

(

12
i

)

= 128 + 4096 + 95104 = 99328 basis blade multiplications, which is more naïve (less

efficient or intelligent) than the default (left to right) associativity. After the multiplications, like terms could be added, resulting
in up to 64 transformed 3-blade terms. It is possible that this choice would be the first choice used by a novice, but it is, perhaps
surprisingly, the most naïve (inefficient). There are still other possible choices (usages) of the associativity in computing
′,
which may each have different computational costs.
For the example choices discussed above, the successive (nested) vector reflections appear to be most efficient, requiring

the least basis blade multiplications. In a parallel computing environment, a nested expression may not be the most efficient
or intelligent choice for minimizing runtime. In applications that use precomputed results, the final results are the same for all
choices of associativity after all like terms are added; however, the computational costs to precompute the results may depend
on the choice of associativity during the precomputing, leading to faster or slower precomputation.

AUTHOR BIOGRAPHY

Robert Benjamin Easter. First author. R.B. Easter is an American, born April 4, 1972 in Sarasota, Florida
U.S.A., that has been living in Bangkok, Thailand while performing mathematical research and authoring
mathematical papers. DCGA (2-CGA), TCGA (3-CGA), and generalizing to k-CGA were conceived by
R.B. Easter as extensions of CGA (1-CGA) with k-vector geometric entities that represent general degree
k polynomial implicit hypersurfaces and their inversions as special hypersurfaces of up to degree 2k. R.B.
Easter is the author of the original papers and manuscripts on DCGA, TCGA, and k-CGA. The works of R.B.
Easter can be found at http://orcid.org/0000-0002-8725-1835 and at http://vixra.org/author/robert_b_easter.

R.B. Easter prepared this revised TCGA preprint paper with corrections and improvements to the published version.

Eckhard Hitzer. Second author. E. Hitzer jointly prepared the revisions for publication with R.B. Easter,
including corresponding with the publishing editors and responding to the peer reviewers. E. Hitzer also
presented the TCGA paper (by preparing and presenting a 38-slide PDF presentation based on the original
pre-submission TCGAmanuscript and other referencedworks) at the Empowering Novel Geometric Algebra
in Graphics and Engineering (ENGAGE) Workshop (Session: ENGAGE III, June 27 14:00–15:30) at the
Computer Graphics International 2017 (CGI2017) conference (June 27-30, 2017 / Yokohama, Japan).

How to cite this article: Robert Benjamin Easter and Eckhard Hitzer, (2018), Triple Conformal Geometric Algebra for Cubic
Plane Curves,Mathematical Methods in the Applied Sciences, 2018;41(11):4088–4105.

http://www.icca7.ups-tlse.fr/cairos.htm
https://doi.org/10.1007/978-3-662-04621-0_2
http://orcid.org/0000-0002-8725-1835
http://vixra.org/author/robert_b_easter

	Triple Conformal Geometric Algebra for Cubic Plane Curves
	Abstract
	Introduction
	CGA G2+1,1 of the Euclidean plane R2
	2-D CGA null point entity
	2-D CGA OPNS entities
	2-D CGA IPNS entities
	2-D CGA versor operations

	Triple 2-D CGA G3(2+1),3 of the Euclidean plane R2
	TCGA IPNS 3-blade standard entities
	TCGA IPNS 3-vector extraction operators Ts
	TCGA IPNS 3-vector entities
	TCGA IPNS intersection entities
	TCGA versor operations
	TCGA differential operators
	Examples of plane curve TCGA 3-vector entities
	General cubic plane curves
	Various quartic plane curves
	Various quintic plane curves
	Cranioid sextic plane curves

	The anisotropic dilation operation

	Implementation of TCGA
	Conclusion
	Acknowledgments
	References
	Appendix A: On efficient usage of associativity in versor operation computations
	Author Biography

