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Abstract

According to Noether’s theorem, for every differentiable symmetry
of action, there exists a corresponding conserved quantity. If we assume
the stationary condition as a role of symmetry, there is a conserved
quantity. By using the definition of the Komar mass, one can calculate
the mass in a curved spacetime. If we consider charge as a conserved
quantity, it means existence of symmetry, and we can consider one
more axis. In this paper, we consider an extension to five dimensions by
using results of the ADM formalism. In terms of (4+1) decomposition,
with an alternative surface integral, we find the rotating and charged
five-dimensional metric solution and check whether it gives the mass,
charge, and angular momentum exactly.



1 Introduction

The Kaluza-Klein theory is a classical unified field theory of gravitation
and electromagnetism in terms of general relativity extended to five dimen-
sions [1]. In this paper, we use a different but basically equivalent metric
ansatz based on ADM formalism, which decomposes spacetime into the time
component and three spatial components, and use the concept of extrinsic
curvature [2-5]. It plays mathematically important role in the unified field
theory, which will be discussed in this paper. The main assumption is that
as gravitation can be described geometrically in four dimensions, electro-
magnetism can also be described geometrically in five dimensions [6]. The
main goal of this paper is to find the five-dimensional metric form for the
spherical or rotating black hole solutions, which have mass and charge. In
addition, we would like to deal with the Lorentz force as well, which is known
as the main shortfall of Kaluza-Klein theory. In four dimensions, there are
black hole solutions, which have charge and mass, simultaneously known as
the Reisner-Nordstrom (RN), Kerr-Newman (KN) black holes [7]. To obtain
a 5D solution, we assume two symmetries of the metric. One is cylindrical
condition, and the other is the stationary condition.

Under the assumption that electromagnetism is an effect of pure geome-
try, the expected results will be similar to that of Kaluza-Klein theory [8-10].
After we obtain the 5D metric, which is exactly the 5D vacuum solution, we
also obtain the mass, charge and angular momentum of the object.

2 Metric Ansatz

In the following equations, Greek indices refer to spacetime components
(0,123) and the index 5 refers to the fifth dimension. Roman indices (a,b)
span (5,0,123). Similar to Kaluza’s ansatz, we consider the ansatz

A
5g;w = 4g,uz/a 595u = ﬁuv 5955 = —N? + 7B (1)
Then the inverse metric is given by

pHB” B 1
59#1/: 49#1/7 N7 5g5p:m’ 5955:7@‘ (2)

In other words,

~N*+ 56\ B, o[ X
5gab = . ) 5ga = . wov | (3)
5;1 guu % 49/“/ - BNL;

where g, is the 5D metric and “g,,, is the standard four-dimensional (4D)
metric with the Lorentzian signature, (—,+ + +). The noticeable point is
Sgs5 = —N2 + B*By. We set the fifth dimension to timelike and there is no
problem at this stage (see the first item in the discussion section).



3 5D Christoffel Symbol and 5D Ricci Tensor

We assumed the two symmetries of the metric.

95 ds5
aiw gabfoa & gabfoa (4)

where w is fifth coordinate. Under these conditions, the 5D Christoffel
symbols are given by

K,
5F;51,u = Z\I;V’ (5)
F#5:—NK5N+N 'uN, (6)
BO’
"T85 = — 5 0a (=N + 55y), (7)

where K, is the extrinsic curvature tensor defined as
K = —Vyng — npn®Veng (8)

with the unit normal vector n [5]. This extrinsic curvature comes from
(441) decomposition, and foliates five dimensions with respect to the fifth
coordinate w [4]. Note that the original ADM formalism is (3+1) decompo-
sition, which foliates spacetime with respect to time ¢. Then the extrinsic
curvature tensor K, is given by

1
K

0
w= o <4W3y + 4V, 8, - &04@”) VB = 0By — T, Br. (9)

Henceforth, the covariant derivative is related to 49uv and emit 4 index for

the covariant derivative. In this paper, we assume that the charge identified
dab q

as ‘7~ = ;L is not changed along the geodesic curve. The fifth component
of the geodesic equation is as follows:
d (dxb s s dz®dxb
— = r —— =0. 10
ds<d3>+ ®ds ds (10)

Assuming that the charge does not change along the geodesic curve for any
particle, one can set °I'>, = 0. Then from eqns(4), (5), (6), (7) and (9), we
obtain

N = constant, f3, = a’go,, (11)

where « is a constant. Then with eqns(4), (11), °T'*, is given by

T4, = T%,, (12)
T, = “g" Fy,, (13)
5P/;5 = _ 4g,ul/ay¢ = V', (14)



where we define

Fu=0. () -2 (@) , (15)
¢ = = gss. (16)

Now, we have all components of Christoffel symbols. Then Ricci tensor is
given by

SR, — |00 F Fy,F VPF,p]
¢ VPE,, ‘R,

4  Lorentz force

In the Lorentz force can be derived from the variation of the 5D geodesic
equations. In Kaluza’s hypothesis however, the problem with this is that
there is the quadratic term d% It was known as the main shortfall of the
Kaluza hypothesis.

Although we induce Lorentz force exactly, it is a suggestion for problem-
solving rather than assertion. For clarity, we use the relation —c?d7? =
5gpdxtdxb rather than ds? gabdwadmb. By adjusting the scale of dx®, we

. 5
can writ CZ‘; =< We c0n51der di = 0 here because of two reasons. One

is that 7 is irrelevant to dz® and the other is that when % is nonzero, this
means that the object disappears from our hypersurface, the world we live

in. Now, because of ‘S” =0, g: = 1. Then

dzt dr dx* dz*

o T (18)
dr dad dx5
oL 1
# dr dt dr (19)
With equation
D [(dxt d7 D (dxt
ar <dT> dr &7 <d> (20)
and eqn(19), we obtain
d (dxt dr d (dxt
— | — . 21
dT<d7~'>7édeT<d7~'> (21)
Therefore, we consider eqn(21) carefully and only use eqn(20). From eqn(20),
D (dxt d (dzV sy dz® da®
=) = = r# — =0. 22
dT(d?) dT(d7~'>+ ab g7 dr (22)



With eqn(18), 22 = 0, eqn(22) becomes

’ d‘r

d (dxt daz? daP da® dz”

— (== )+ °1% = -1t : 2
dr < dr > odr dr %47 dr (23)

With eqns(12) and (13), eqn(23) becomes

d (dzV dz* dx? q 4 dz?

- RN = g"'F, 24
dT(dT>+ Mdr dr T m Pdr (24)

At this stage, by separate several components of eqn(17), °Rs, contains
Maxwell’s equations and 4R/w denotes the Einstein equations (see the third
item in the discussion section).

5 Correspondence with Classical Dynamics

Unexpectedly, the result of our analysis for the 5D vacuum solution is 4RW =

0. The expected metric solution, 49#1,, is the well-known charged 4D black
hole, such as the RN or KN black holes, but our results indicate that those
are not solutions in our formalism. In this paper, we check why the 4D
metric should be a vacuum solution as the Schwarzschild or Kerr black hole,

although it is a Charged black hole. As we identified 3, = at gou = 24A,, we
can fix o as a = m Then for a rotating charged black hole, the 5D

metric solution is given by

2GM Qc 2GMr 20r . 2
-N? (é"EUGM) éé;{ 262, ) 47.—EUGM(12;MECQ7 ) 0 0 422)1:42 asin 2(9)
m“* =) *(1*727”) 0 0 772C2Ta51n (0)
59 0 -
ab = 0 o s .
A
0 0 0 P 0
4:5%22 asin®(0) — 28N asin® () 0 0 (r2+a?)sin®(0) + 28Mra2sin

where ¥ = 72 4 a? cos? 0 and we used Boyer-Lindquist coordinates. Since
we just used condition *R,,, = 0 of eqn(17), we cannot assure it is a vacuum
solution. In fact, condition of 4RW = 0 is only condition. Thus, this ®gg
is vacuum solution. This point will be discussed later. Now, to observe
dynamics, we assume the spherical vacuum solution and the initiation of
free falling. Then we consider a = =~ = 0 and drl dr? dit _ ) Note that

dr 0 dr 0 dr

—T =c "%/— goo = ﬁ/ 1-— QGM From eqn(24), we obtain

mi dfxl B /1 2GM  Qq GMm (25)
dr \ dr ) rc2 Admegr2 12

This describes the known classical dynamics well. Now for the RN black
hole, from eqn(24), we obtain

d (A _ GMm  GQm 26)
dr \ dr | r2 4regctrs

4(0)

()



+\/1_2GM+ GQ? < Q. Q% >

rc2 dmegctr? \dmegr?  (dmweoc?)2Mr3 )
It is a strange result because there are %3 terms. Furthermore, the well-
known charged 4D black hole cannot be a solution under 5D vacuum solu-
tion. Now, we would like to explain the reason why the 5D vacuum condition
gives a 4D vacuum solution rather than the known charged 4D black hole.
Accordingly, let us check what was neglected in the well-known 4D charged
black hole,

S = / SR\5gdx. (27)

Noting det(A) = adj(Aij)ﬁ,
ij
column of inverse matrix of A and adj(A;;) is adjoint of A;j, then from

eqn(3), v/°g = Ny/—*g. Then the action of the integrand can be rewritten
as

where A;jl is a component of i-th row j-th

S = / SRy/—4gd*z Nda®. (28)

Since N is a constant and the integrand is independent of 2°, we can ignore
the overall quantity Ndz®. From eqns (3) and (17), we obtain

B\, F*

Sp _ (4
R=("R— =0

)+ 2(06— Ry B+ 28VOE). (29

From eqns (9) and (11), 3, follows the Killing equation, its divergence equals
0, that is

VPEy\, = VPVB, = (V,Vr — VaAV,)B = ‘R, 57, (30)

where V)\VpS*? is a hypothetical representation of zero terms. Now, the

second parentheses in eqn(29) can be rewritten as
1
7200+ BV E,). (31)

Now we put VPF), = uoJ). By neglecting total divergence of eqn(31), from
eqn(29) we obtain

By, F
N2

Ho
R="*R—( - meA). (32)
Since we are considering a source-free region, J, = 0, one can think that
by excluding current term, eqn(32) will give the well-known charged 4D
black hole solutions. However, we have the relation poJ*By = —O¢ +



F\,F A Now, with eqn(32) and by neglecting total divergence, the matter
Lagrangian effectively equals 0. Until now, we just neglected Jy since we
are considering a source-free region. However this result says that this is not
the case. Consequently, our action is equivalent to *R. To find out solution
more clearly, we try to obtain a solution without using variation principle.
In fact, to obtain the solution, it is more reasonable to solve eqn(17) rather
than solving eqn(32) with the variation principle. From eqns(16), (17), we
obtain

"Rss = —(VPBAV,B) + BAVPV,62) + Fa Y (33)

From eqn(15),
VPBAV 8y = FPAF,. (34)

With eqn(30),
BIVPV By = = R38N (35)

Then eqn(17) becomes

1Ry, B267 ARupB0] (36)

5 —
Rab - 4Rup6p 4R,u1/'

Then we can easily obtain the condition that satisfies ®? Ry, = 0 under the
conditions of symmetry and the conservation of charge along the geodesic
curve. It is only the 4R,“, = 0 condition. In this step, we can say that our
Pgap in (*) is a 5D vacuum solution.

In summary, from the 5D perspective RN and KN black hole solutions are
incompatible with J, = 0 and our dynamic result. In contrast, the 4D
vacuum solution is a solution under the 5D vacuum condition with relations
describing the classical dynamics for the Lorentz force. The result 4R;w =0
is the same as in [14], although the assumption is different.

6 5D Energy-Momentum Tensor

In Kaluza’s hypothesis,

2
5 VsCsPs /YECJIJ
T = . 37

ab |:r}/eCJ,u, 4T;1,I/ :| ( )

See eqn(84) of [10]. We will induce energy momentum tensor which is consis-
tent with our result, by assuming a perfect fluid source. In 4D, the energy-
momentum tensor 47}, for the perfect fluid is given by [11]

P dx* dz” ,

4 4 4 \p4 4
TMV: <p+g>ﬁﬁ Ju ng+P g p Gux Gup- (38)



From Einstein’s equations, we have the relation,

P dz*dz’,

1
4 2 4 \p4d 4
Ruw =5 |(p+ )= "o "gwp + 5 (0 = P) 19 g0 Mg | - (39)

Now we try to induce 5 Ry,. With eqn(36):

"R = ‘R, (40)
5R,u5 = 4R;L)\/8 ) (41)
"Rss = “R,,8 8", (42)

we obtain

SRap = K[(p + 2 9"+ ~(pc® — P)*¢*5gu) ). (43)

Then °T}y, is

P dz* dzf
5 5 5 4 Ap5,. 5
Top = (p+ Cﬁ)ﬁﬁ 9ax"Gop + P 797" " Gax° gop- (44)
Note that from eqn(37), *T},, is independent of charge. Then by solving
eqn(59), g, is independent of charge. Then it is consistent with our opinion
in section 5.

7 No-hair theorem

We would like to obtain the mass, charge, and angular momentum exactly
in 5D. Recall that we assumed the cylindrical condition and stationary con-
dition. We do not consider cosmological constant.

There is a mass quantity in 4D, which is called the Komar mass. Komar
mass is defined as

1
My == ¢ VHCdSu  dSu = (suny — sumy)Vad'y  (45)
St

where vector n is the unit normal to X;, vector s is the unit normal to
Sy, within ¥; oriented toward the exterior of S; [5,12]. However, as we
introduced the concept of gravitational and electromagnetic vector potential,
we would like to define M and Q as the surface integrals of the gravity field
and electric field. Before applying the surface integral, we want to consider
integrating in a different way from the Komar mass [16]. Let us consider
the following integral:

7! E - dS, (46)



where dS is

V'
— /o di(2a:)dS:
dS - \/m a’dj( gll)dsl) (47)
and dS; = dx’dx®, dSy = da'dx?, dS3 = dx'dx?. Thus, it is equivalent
to the Komar mass expression. However, it is easier to calculate. Notice,
ﬁ\/—adj(‘lgm) = /—4g for all i. Now we are ready to calculate M,
Q and J. First, we would like to calculate Q. As the electric field is related
to F0i ~ E

¢

Q = eoc f FY\/—44dS;. (48)

We want to make sure this is the exact Q. Before the calculation, we want
to make sure that it does not matter what surface we choose. From eqn(48),

Q= 7{ FO\/Agdatda®da® + FO'/—4gda®da? da® (49)

+F%\/—4gda datda® + FO/—4gdadat da?.
In eqn(49), the quantity F%\/—4gdz'dr?dx? is a hypothetical 0 term, da
is a virtual integration. Then eqn(49) reduces to

/ V,F%\/—4gd3x da®. (50)
Now we obtain

Q= EOC/VVFOV\/ —4gde. (51)

For the exterior region, V,, F% = 0. This guarantees what we want to know.
Now we calculate eqn(56) with r=constant surface. Under our 5D metric in
(*), we obtain

goc 7{ FY%\/—4gdsS; (52)

2 s 2 2 2 9 9
Q (r*+a”)(—r*+a°cos®f)]  , s o
N 0) sin 0dod

Eoc/o /0 [4%500 (r2 + a2 cos? )3 (r® 4 a” cos” §) sin &

21 _ (2 2
2500/0 [ Q —(r +a)c080] Tdb = Q.

dmege 12 + a? cos? 6

Now we calculate the mass. The gravitational vector potential is
%490# and let FEVM = 0,A, — 0, A,; then we obtain

c .
i § FOu/gas (53)

GM _
A

47



i —2GM(r* 4+ a*)(—r* +a*cos0)] 5 o o, .
- 47TG/ / [ 2(r2 + a2 cos? 0)3 ](T +a* cos® 0) sin 0dOd¢

_ “E 2GM (r* + a*) cos 6
- 4nG 2 | A(r?+a?cos?0)

Finally, we define the angular momentum. The mass and charge are de-
rived from surface integral of E-field. However, as far as we know, there
is no physical quantity to obtain the angular momentum through the sur-
face integral. Therefore, let us just carry out the same procedure with the
quantities, ¢, = c4g3u, O = 0,2, —0,9,.

C2 0i / 4
167TG %Q — gdSZ- (54)

2GMasin? 0(—a* cos? 0+3r*+2a2r% —a2r? sin 6 2, 2 2 .
- 167rG o fo { = (2 a2 cos? 0)7 ) (r°+a® cos® #) sin 0dfd¢

} lod¢ = M.

/27r . [2GMacos O((r? — a?) cos? 0 — 3r% — a?)

n =M = J.
2(r? + a? cos? 0) } 0d¢ ac=J

- 167G
It is already known from the Komar integral that mass is related to sta-
tionary symmetry and angular momentum is related to axial symmetry. In
this paper, as we start with cylindrical symmetry, we can expect a con-
served quantity. From eqn(52), it can be seen that the conserved quantity
corresponding to the cylindrical symmetry is charge.

8 Discussion

1. We did not care whether the fifth dimension is timelike or spacelike. We
set it to timelike to follow the approach of ADM formalism easily, and if it
is spacelike, we can do substitution. However apparently timelike is correct
from eqn(32). In the case of spacelike, in other words, °gs5 = N2 4 )7,
eqn(32) becomes as follows: °R = 4R + (FA”F — K \BY).

Since these world have two timelike dimensions, ®ggg < 0, °gs5 < 0, someone
cannot imagine that we live in these worlds. However even if 5gs5 < 0, we

do not have to consider this because of dz® = 0 for electrically neutral
body [14].

A
2. Until now, we had not discussed N. With eqn(32), °R = 4R — (% -

Lo J\BY). Tt seems like
2K,

N2 = 2u . where k = SZTG. By dividing eqn(32) by

R ‘R 1

[ F Ap = A)\

10



In eqn(55), we used 5, = 2A,,. Now we get Ly = %>£EM = LF)\pl*”\p—l—

T dpg

%J,\A)‘. For £/, it satisfies
8£EM o 8£EM
0A+ OVV A+

Moreover eqn(56) gives V¥ F,,, = noJ,. It is noteworthy that these contents
were naturally induced from the five dimensions. Note that Jy = %RPAA” .

1
=J,+—V"F,, =0. (56)
Ho

3. For a weakly perturbed system, 5g,; = ®nap+ ®hap, the linearized equation
is given by

1
°0 (%ab -5 577ab5h> = —2Kk°T, 0 = *n™9,0. (57)

Note that °n is expressed in Cartesian coordinate. By imposing the cylin-
drical and stationary conditions on ®hgp, we obtain

Shap(X) _ 1 / KT (Y) = 3 %14, P T(Y))
2 A X — Y]

a3y, (58)

where X, Y are spatial components. For details, see [13]. If 5hs, is pro-
portional to electromagnetic vector potential then ®Rs, should be related to
the charge current, pgJ,. In section 3 and 4, we identified Shs, = 24, then
®Rs,, should be related to the charge current. In fact, we got °Rj5, = VPE,p.
Note that ®Ryy = k(5T — %57]@ 5T for 5D.

4. Under the stationary condition, *Rog = —O¢y + C%F/\GPM Fc)\:é)w? ‘Roi =

4 .
%V”FZ%M , where ¢y = % goo- From the equation

) L [T A T
2 4m X —Y]| ’
we obtain
1 [ VPEEM
AGM — — / P d3Y, 60
’ Ar | X -Y| (60)
where V’)FSM = —4Z—2GJi and J; is matter current, pU;. In this step, as we

mentioned in section 3, if 490u is identified as gravitational vector potential,
then “Ry; is identified as matter current. In this way, we can develop a
theory of gravitomagnetism [10, 15].

Under the azimuthal symmetry condition, *Rs3 = —0oy + ﬁQ,\pQ’\p,
4R35 = ivm(;p, where ¢4 = %4g33, 6 span 0,1,2. Then we obtain
1 VPQs
b5 =— [ —L Y. 61
° T 4 / X - Y] (61)

5. In eqn(28), since N is constant and the integrand is independent of x°,
we ignored the overall quantity Ndz®. Note that this is one of the results
of the conservation of charge along the geodesic curve.
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