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Abstract

According to Noether’s theorem, for every continuous symmetry
of the action, there exists corresponding conserved quantity. If we
assume the stationary condition as a role of symmetry, there is a con-
served quantity. By using the definition of the Komar mass, one can
calculate the mass in a curved spacetime. If we consider the charge as
a conserved quantity, there is one more symmetry, and we can consider
one more axis. In this paper, we consider an extension to 5-dimensions
by using results of ADM formalism. In terms of (4+1) decomposition,
with alternative surface integral, we find the rotating and charged 5D
metric solution and check whether it gives the mass, charge and angu-
lar momentum exactly.



1 Introduction

The Kaluza-Klein theory is a classical unified field theory of gravitation and
electromagnetism in terms of the general relativity extended to 5D [1]. In
this paper, we use a different but basically equivalent metric ansatz based
on ADM formalism, which decomposes spacetime into the time component
and 3 spatial components, and use the concept of extrinsic curvature [2-5].
It plays mathematically important role in the unified field theory to be
discussed in this paper. The main assumption is that as the gravitation can
be described geometrically in 4D, the electromagnetism also can be described
geometrically in 5D [6]. The main goal of this paper is to find the 5D metric
form for the spherical or rotating black hole solutions which have the mass
and charge. In addition, we would like to deal with the Lorentz force as well
which is known as a main shortfall of Kaluza-Klein theory. In 4D, there are
black hole solutions, which have the charge and mass, simultaneously known
as the Reisner-Nordstrom(RN), Kerr-Newman(KN) black holes [7]. To get
5D solution, we assume two symmetries of the metric. One is cylindrical
condition, and the other is the stationary condition.

Under the assumption that the electromagnetism is an effect of the pure
geometry, the expected results will be similar to that of Kaluza-Klein theory
[8-10]. After we obtain the 5D metric, which is exactly the 5D vacuum
solution, we also obtain the mass, charge and angular momentum of the
object.

2 Metric Ansatz

In the following, Greek indices refer to spacetime components (0,123) and
the index 5 refers to the fifth dimension. Roman indices (a,b) span (5,0,123).
Similar to Kaluza’s ansatz, we consider the ansatz,

A
5g;w = 4g,uz/a 595u = ﬁuv 5955 = —N? + 7B (1)
Then the inverse metric is given by
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In other words,

~N*+ 56\ B, o[ X
5gab = . ) 5ga = . wov | (3)
5;1 guu % 49/“/ - BNL;

where °gg, is the 5D metric and 49#1, is the standard 4D metric with the
Lorentzian signature, (—,4-+4). The noticeable point is °gs5 = —N245*B,.
We set the fifth dimension to timelike and there is no problem at this stage,
see the first item in the discussion section.



3 5D Christoffel Symbol and 5D Ricci Tensor

We assumed two symmetries of metric. One is cylindrical condition, and
the other is the stationary condition,

0 5 0 5
- _ = 4
9 Jab 0, 57 Jab 0, (4)

where w is fifth coordinate. Under these conditions, the 5D Christoffel
symbols are given by

K
515 umv
F;w - N’ (5)
1 1
B
T35 = —Waa(—NQ + 8By, (7)

where K, is the extrinsic curvature tensor defined as
Kup = —Ving — npnVeng (8)

with the unit normal vector n [5]. This extrinsic curvature comes from
(441) decomposition, foliates 5-dimension with respect to fifth coordinate
w [4]. Note that the original ADM-formalism is (34+1) decomposition which
foliates spacetime with respect to time ¢. Then the extrinsic curvature tensor
K, is given by

1 0
K/w = ﬁ (4vuﬁu + 4v1//6u - % 4guu) ) 4vuﬁu = auﬁl/ - 4F2yﬁ>\~ (9)

From now on, where the covariant derivative is related with 49”,, and emit
4 index for covariant derivative. In this paper, we assume that the charge
identified with ‘% = <L is not changed along the geodesic curve. The fifth
component of the geodesic equation is as follows

d (dx® 55 dr® dab
s (d> s s =0 (10)

Assuming that the charge does not change along the geodesic curve for any
particle, one can set °I'>, = 0. Then from eqns(4),(5),(6),(7),(9), we obtain

N = constant, f3, = a’go,, (11)

where « is constant. Then with eqn(11), °T'¥, is given by

T4, = T%,, (12)
T, = “g" Fy,, (13)
5P/;5 = _ 4g,ul/ay¢ = V', (14)



where we define

Fu=0.()-2.(%). (15)

1
¢=3 ®gs5. (16)

Now, we have all components of Christoffel symbols. Then Ricci tensor is
given by

5R _ _D¢+F)\pF>\p VpF’up
ab — vaup 4RMV :

4 Lorentz force

The Lorentz force can be derived from variation of the 5D geodesic equa-
tions. In Kaluza’s hypothesis, however, the problem with this is that there
is quadratic term of %. It was known as the main shortfall of the Kaluza
hypothesis.

Although we induce exactly, It is a suggestion for problem solving rather
than assertion. For clarity, we use the relation —c2d7? = °g,,dz®da? rather
than ds? = %ggdz®da®. By adjusting the scale of dz°, we can write ‘ﬁf =1
Considering % = 0 here. Because, there are two reasons for this. One is
that 7 is irrelevant to dz® and the other is that when % is nonzero, this
means that the object disappears from our hypersurface, the world we live

: dz® _ ar __
in. Now, because of <7~ =0, - = 1. Then

dxt d7 dx*  da#

= = 1
dr  dr df 7’ (18)
dz® | didz®  dad
— e i — . 1
dr dr dt dt (19)
With equation
D [(dxt dr D (dx*
- = 20
dT<d’F> de%(d%) (20)
and eqn(19), we obtain
d (dxt dr d (dxt
S (i I (i 21
dT<d7~'>7éde%(d%> (21)
Therefore, we consider eqn(21) carefully and only use eqn(20). From eqn(20),
D (dxt d (dzV sy dz® da®
_ IS - =0. 22
dT(d?) dT(d7~'>+ ab g7 dr (22)



With eqn(18), %2 = 0, the eqn(22) becomes

) dr

d (dx¥ s da daP dz® dzP
) o _— 23
d7<d7>+ Adr dr % dr dr (23)
With eqns(12),(13), the eqn(23) becomes
d (dzV pn dx? dzP g dz?
T~ = L4gw R, . 24
dT(dT>+ A dr dr m P dr (24)

At this stage, by separate several components of eqn(17), 5Rs, contains the
Maxwell’s equations and 4RW denotes the Einstein equations, see the third
item in the discussion section.

5 Correspondence with Classical Dynamics

Unexpectedly, the results of our analysis for the 5D vacuum solution is
4R;w = 0. The expected metric solution, 49,“,, is well-known charged 4D
black hole such as RN or KN black hole, but our results say that those are
not solutions in our formalism. In this paper, we check why the 4D metric
should be vacuum solution as like Schwarzschild or Kerr black hole, although

it is charged black hole. As we identified 3, = oz4goﬂ =24, we can fix a as

a=——9 _ Then for rotating charged black hole, the 5D metric solution
AegGM )
is given by
-N? - (4WE%(&JM)2<1 - 2gi»\gr) 4#5%2]% a- 2gév2lr) 0 0 47-;25%2): asinz(g)
. Treoaar (1= 2847) —(1 - 26Mx 0o 0 —2GMr 45in? (9)
Gab = 0 0 2 0 0
0 0 0 = 0
Tmegem asin®(0) ~2GMrasin?(6) 0 0 (% +a®)sin®(0) + 2EMTa%sint (0)

Where ¥ = 72 + a? cos?  and we used Boyer-Lindquist coordinates. Since
we just used condition R, = 0 of eqn(17), we cannot assure it is vacuum
solution. In fact, condition of R, = 0 is just only condition of (17). So,
this ®ggp is vacuum solution. This point will be discussed later. Now, to see
the dynamics, we assume the spherical vacuum solution and just beginning

J dz'  dx? dx® _ 0

of free falling. Then we are considering a = 2e=0 and iy i

Note that % =c ‘21/—4900 =c 31— QTGC]QV[ From eqn(24), we obtain

mi dfxl B /1_2GM Qq _GMm (25)
dr \ dr ) rc2 Amwegr? r

This describes the known classical dynamics well. Now for the RN black
hole, from eqn(24), we obtain

) — 2
de dr r2 + (26)

d (dz! GMm GQ*m
4regctrs

(%)



rec dmegctr? \dmegr?  (4mepc?)2Mr3

2GM GQ? 3
+\/1_ M| GO <Qq_ Q% >
It is a strange result because there are %3 terms. Furthermore, well-known
charged 4D black hole cannot be solution under 5D vaccum solution. Now,
we would like to explain the reason that the 5D vacuum condition gives 4D

vacuum solution rather than the known charged 4D black hole. Then let us
check what was neglected in the well-known 4D charged black hole,

S— / R\ . (27)

Noting det(A) = adj(Aij)%, where Ai_j1 is a component of i-th row j-th
ij
column of inverse metric of A and adj(A;;) is adjoint of A;;, then we get

from eqn(3), /59 = N+/—%g. Then the action of integrand can be rewritten
as

S = / PR/ —4gd'z NdaP. (28)
Since N is a constant and the integrand is independent of 2%, we can ignore
the overall quantity Ndz®. From eqns(3),(17), we obtain

B\, F*
NZ

"R=('R - )+ %(&b = "R\, BN + 267V Fy,). (29)

From eqns(9),(11), 3, follows killing equation, it’s divergence equals to 0,
that is

VPEy\, = VPVAB, = (V,Vx — VaAV,)B = 1R,\67, (30)

where V,\VpSP is a hypothetical representation of zero terms. Now, the
second parentheses in eqn(29) can be rewritten as

1
7200+ BAVPEY,). (31)
Now we put VPF), = poJ). By neglecting total divergence of equ(31), from
eqn(29) we obtain

F\,F*
N2

Ho
SR="*R—( - WJ,\BA). (32)
Since we are considering a source free region, J,, = 0, one can think that by
excluding current term, eqn(32) will give the well-known charged 4D black
hole solutions. But in fact, we have relation poJ*By = —O¢ + F,\pFAP.
Now, with eqn(32) and by neglecting total divergence, matter Lagrangian



effectively equals to 0. Until now, we just neglected Jy since we are con-
sidering source free region. But this result says that this is not the case.
Resultantly, our action is equivalent to *R. To find out more clearly, we try
to get a solution without using variation principle. In fact, to obtain the
solution, it is more reasonable to solve eqn(17) rather than solving eqn(32)
with the variation principle. From eqns(16),(17), we obtain

"Rss = —(VPB V.08 + BAVPV ,B)) + Fy,F*° (33)

From eqn(15),
VPBAV By = FPAF ). (34)

With eqn(30),
BAVIV By = = "Rpap° . (35)

Then the eqn(17) becomes as follows,

4R>\p/8)\ﬂp 4Rup/8p )

5 —
Rab - 4R/.Lp6p 4R/“/'

(36)

Then we can easily get the condition which satisfy ® Ry, = 0 under the con-
ditions of symmetry and the conservation of charge along the geodesic curve.
It is only *R,, = 0 condition. In this step, we can say that our g, in (*)
is a 5D vacuum solution and we checked this with MATLAB.

In summary, from the 5D perspective RN, KN black hole solutions are in-
compatible with J, = 0 and our dynamic result. In contrast, 4D vacuum
solution is a solution of 5D vacuum solution with relations describing the
classical dynamics for the Lorentz force. The result, 4Ruv = 0, is same
with [14], although assumption is different.

6 5D Energy-Momentum Tensor

In Kaluza’s hypothesis,

2

5 VsC5Ps  VeCdy

= [l 2] -
Yecdy, 4wa

see eqn(84) of [10]. We will induce energy momentum tensor which is con-
sistent with our result, by assuming perfect fluid source. In 4D, energy-
momentum tensor 47}, for the perfect fluid is given by [11]

P daz* dz’ ,

o= 0+ ) G

2 9u 491/,0 + P 4g>\p 49/0\ 491/,0- (38)



From Einstein equations, we have the relation,

P dz*dz’,

1
4 2 4 \p4d 4
Ruw =5 |(p+ )= "o "gwp + 5 (0 = P) 19 g0 Mg | - (39)

Now we try to induce 5 Ry,. With eqn(36):

"Ry = "Ry, (40)
5R,u5 = 4R;L)\/8 ) (41)
"Rss = “R,,8 8", (42)
we obtain
P dx> dzP 1
Rap = k[(p + Cﬁ)? d ®Gar 5gbp + §(P02 P) 1975 gan 59bp]- (43)
Then °T}y, is
P _dz* dxP
T = (p+ sz)ﬁﬁ 59ax " gbp + P 9™ 5 gax ® g (44)

Note that from eqn(37), *T},, is independent of charge. Then by solving
some equation, see the third or fourth item in the discussion section, 49#!/ is
independent of charge. Then it is consistent with our opinion of section 5.

7 No-hair theorem

We would like to get the mass, charge and angular momentum exactly in 5D.
Remind that we assumed the cylindrical condition and stationary condition.
And we consider zero cosmological constant.

There are mass quantity in 4D which called as the Komar mass. Komar
mass is defined as

1
My == ¢ VHCdSu  dSu = (suny — sumy)Vad'y  (45)
St

where vector n is the unit normal to X, vector s is the unit normal to S;,
within ¥; oriented towards the exterior of S; [5,12]. But as we introduced
the concept of gravitational and electromagnetic vector potential, we would
to like define M, Q as like surface integral of gravity field and electric field.
Before applying the surface integral, we want to consider integrating in a
different way from Komar mass [19]. Let us consider the following integral

f E - dS, (46)



where dS is

V'
— /adi(%0:) 1S,
dS - \/m a’dj( gll)dsl) (47)
and dS; = dz?dxz3, dSy = do'dx3, dSs = dx'dx®. Resultantly, It is equiva-
lent with Koma mass expression. But it is more easy to calculate. Notice,
ﬁ\/—adj(‘lgm) = /—4g for all i. Now we are ready to calculate M,
Q and J. First, we would like to caluate Q. As the E-field is related with
FOi ~ E

¢

Q = eoc f FY\/—44dS;. (48)

We want to make sure this is exact Q. Before the calculation, we want to
make sure that it doesn’t matter whatever surface we choose. From eqn(48),

Q= 7{ FO\/Agdatda®da® + FO'/—4gda®da? da® (49)

+F%\/—4gda datda® + FO/—4gdadat da?.
In eqn(49), the quantity F%\/—4gdz'dr?dx? is a hypothetical 0 term, da
is a virtual integration. Then eqn(49) is as follows

/ V,F%\/—4gd3x da®. (50)
Now we obtain

Q= EOC/VVFOV\/ —4gde. (51)

For exterior region, V,F% = 0. This guarantees what we want to know.
Now we calculate eqn(56) with r=constant surface. Under our 5D metric in
(*), we obtain

gocC 7{ FY%\/—4gdsS; (52)

2 s 2 2 2 9 9
Q (r*+a”)(—r*+a°cos®f)]  , s o
N 0) sin 0dod

Eoc/o /0 [4%500 (r2 + a2 cos? )3 (r® 4 a” cos” §) sin &

21 _ (2 2
2500/0 [ Q —(r +a)c080] Tdb = Q.

dmege 12 + a? cos? 6

Now we calculate the mass. Gravitational vector potential is AEM =5 "Jou
and let FNGVM = 0,A, — 0, A, and then we obtain

c .
i § FOu/gas (53)

47



27 2, 2
—2GM(r?* +a?)(—r? +a%cos0)] 5 o o, .
= 0 0dod

47TG/ / [ 2(r? 4+ a?cos? )3 (r*+a”cos” ) sin ¢

c ™ c [2GM(r? + a?) cos
=—— = ode = M.
ArG 2 [ c(r? 4+ a? cos? 0) } l6d¢

Finally, we define the angular momentum. The mass and charge are derived
by surface integral of E-field. However, as far as we know, there is no physical
quantity to obtain the angular momentum through the surface integral. So,
let’s just do the same procedure with the quantities, ¢, = 0493”, Q=
0u®y, —0,9,.

02 01 4
= 759 Vet (54)

2G Masin? 6(—a* cos? 4-3r*4-2a%r2—a?r? sin 6) 2 2 2 .
= 167rG o "o e { P2+ a? cos? )7 (ré+a* cos® 0) sin 0dOd¢

B I T9GMacos@((r? — a?) cos® 0 — 3r? — a?)
167G / ¢ [ 2(r? + a? cos? 0)

It is already known from the Komar integral that mass is related to staionary
symmetry and angular momentum is related to axial symmetry. In this pa-
per, as we start with cylindrical symmetry we can expect there is conserved
quantity. From eqn(52), it can be seen that the conserved quantity corre-
sponding to the cylindrical symmetry is the charge.

} l0d¢ = Mac = J.

8 Discussion

First, we did not care whether the fifth dimension is timelike or spacelike.
We set it to timelike to follow the way of ADM formalism easily, and if it
is spacelike, we can do substitution. But it seems timelike is correct from
eqn(32) [16-18]. In the case of spacelike, in other words, °gss = N2 + 5,7,

eqn(32) becomes as follows: °R = *R —|— (FA’JF — L5 0\8%).

Since these world have two timelike, %gog < 0, °gs5 < 0, someone can’t
imagine that we live in these world. But even if ®¢s5 < 0, we don’t have to
consider about this because of da® = 0 for electrically-neutral body [14].
Second, until now, we hadn’t been mentioned about N. With eqn(32), °R =

‘R— (F*’)Z; ’ — K9 J\B*). It seems like 5 = 5™ where k = M By dividing
eqn(32) by 2k,

2p0
R ‘R RS 1
2% 2k 40
In eqn(55), we used 5, = 2A,,. Now we get Lpp = %, Lepm = ~Tus F)\pF’\”—}—
%J,\AA. And for £gy, it satisfies

82EM _ 8£EM
OAH OVV A+

Py, F — fJAAA) (55)

1
=J,+—V"F,, =0. (56)
Ko
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Also eqn(56) gives VVF),, = noJ,. Noteworthy is that these contents were
naturally induced from the 5-dimensions. Note that Jy = %RP,\AP .
Third, for weakly perturbed system, ®g.s = °1ap + "hap, the linearized
equation is given by

1
° (%ab -5 577ab5h> = —26°Ty, 0 = ™8, 0. (57)
Note that ®n is expressed in Cartesian coordinate. By imposing the cylin-
drical and stationary conditions to ®hgp, we obtain

Shab(X) 1 / ki ( 5Tab(Y) - %5771112 5T<Y))

3
- Y,
> in X_Y| @Y, (58)

where X, Y is spartial components. The details, see [13]. If 5hs, is propor-
tional to electromagnetic vector potential then ®Rs, should be related with
the charge current, jg.J,. In section 3 and 4, we identified °hs, = 24,
then °Rs, should be related with the charge current. In fact, we got
°R5, = VPF,,. Note that °Rg, = k(T — %5%1; 5T for 5D.

Fourth, under the stationary condition, * Ry = —Dqﬁt—l—c%F /\C;M Féﬁ/[, ‘Ro; =

%V”FZ%M , where ¢ = %4900. From Following equation

X)L / AT ) s e T gy (59)
2 4 |IX - Y| ’
we obtain
1 [ VPEGM
AGM — — | %3y, 60
! 4 | |1X =Y ’ (60)
where V”FgM = —4:—2GJ1- and J; is matter current, pU;. In this step, as

we said at third, if 490# is identified as gravitational vector potential, then
4Ry; is identified as matter current. In this way, we can develop a theory of
gravitomagnetism [10, 15].

Under azimuthal symmetry condition, 4Rs3 = —0oy + ﬁQ,\pQ’\p, 1Rss =
inQ(;p, where ¢4 = %4933, 6 span 0,1,2. Then we obtain

1 VPQs
Py =— [ oL d?Y. 1
b 47r/\X—Y]d (61)

Fifth, in eqn(28), since N is constant and the integrand is independent of
x°, we ignored the overall quantity Ndz®. Note that this is one of the results
of the conservation of charge along the geodesic curve.

Sixth, in section 3, we assumed conservation of charge along geodesic curve.

We want to tell if there is a contradiction in this assumtion.

Us = PgssU" = (=N*+ 3*8) - + B,U", (62)

11



where U® = df;. It is reasonable to assume that uncharged particles are not
charged along the geodesic curve. Assume that at this stage, only uncharged
particles are not changed. Then with g* = («,0,0,0), B,U” + B,8"U® =
ago,UY + agosU® = ally = conserved. Then eqn(62) is as follows:

Us = —N2L 4 ol (63)
m

Under the condition that uncharged particle is not charged along geodesic
curve, If N is a constant, % is a conservative, so N 2% is a conservative.
Therefore, it can be assumed without contradiction that charged particles

also are not changed along the geodesic curve.
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