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Abstract

According to Noether’s theorem, for every continuous symmetry of
the action, there exists corresponding conserved quantity. If we assume
the stationary condition as a role of symmetry, there is a conserved
quantity. By using the definition of the Komar mass, one can calculate
the mass in a curved spacetime. However, it fails to give the mass
for the well-known charged 4D black hole such as Kerr-Newman black
hole. In this paper, to solve this problem, we consider an extension to
5-dimensions by using results of ADM formalism. In terms of (4+1)
decomposition, with alternative surface integral, we find the rotating
and charged 5D metric solution and check whether it gives the mass,
charge and angular momentum exactly.
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1 Introduction

The Kaluza-Klein theory is a classical unified field theory of gravitation and
electromagnetism in terms of the general relativity extended to 5D [1]. In
this paper, we use a different but basically equivalent metric ansatz based
on ADM formalism, which decomposes spacetime into the time component
and 3 spatial components, and use the concept of extrinsic curvature [2–5].
It plays mathematically an important role in the unified field theory to be
discussed in this paper. The main assumption is that as the gravitation can
be described geometrically in 4D, the electromagnetism also can be described
geometrically in 5D [6]. The main goal of this paper is to find the 5D metric
form for the spherical or rotating black hole solutions which have the mass
and charge. In addition, we would like to deal with the Lorentz force as well
which is known as a main shortfall of Kaluza-Klein theory. In 4D, there are
black hole solutions, which have the charge and mass, simultaneously known
as the Reisner-Nordstrom(RN), Kerr-Newman(KN) black holes [7]. To get
5D solution, we assume two symmetries of the metric. One is cylindrical
condition, and the other is the stationary condition.

Under the assumption that the electromagnetism is an effect of the pure
geometry in 5D, the expected results will be similar to that of Kaluza-Klein
theory [8–10]. After we obtain the 5D metric, which is exactly the 5D
vacuum solution, we also obtain the mass, charge and angular momentum
of the object.

2 Metric Ansatz

ln the following, Greek indices refer to spacetime components (0,123) and
the index 5 refers to the fifth dimension. Roman indices (a,b) span (5,0,123).
Similar to Kaluza’s ansatz, we consider the ansatz,

5gµν = 4gµν ,
5g5µ = βµ,

5g55 = −N2 + βλβλ. (1)

Then the inverse metric is given by

5gµν = 4gµν − βµβν

N2
, 5g5µ =

βµ

N2
, 5g55 = − 1

N2
. (2)

In other words,

5gab =

−N2 + βλβλ βν

βµ
4gµν

 , 5gab =

− 1
N2

βν

N2

βµ

N2
4gµν − βµβν

N2

 , (3)

where 5gab is the 5D metric and 4gµν is the standard 4D metric with the
Lorentzian signature, (−,+++). The noticeable point is 5g55 = −N2+βλβλ.
We set the fifth dimension to timelike and there is no problem at this stage,
see the first item in the discussion section.
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3 5D Christoffel Symbol and 5D Ricci Tensor

We assumed two symmetries of metric. One is cylindrical condition, and
the other is the stationary condition,

∂

∂ω
5gab = 0,

∂

∂t
5gab = 0, (4)

where ω is fifth coordinate. Under these conditions, the 5D Christoffel
symbols are given by

5Γ5
µν = −Kµν

N
, (5)

5Γ5
µ5 = − 1

N
K5µ +

1

N
∂µN, (6)

5Γ5
55 = − βσ

2N2
∂σ(−N2 + βλβλ), (7)

where Kµν is the extrinsic curvature tensor defined as

Kab = −∇bna − nbnc∇cna (8)

with the unit normal vector n [5]. This extrinsic curvature comes from
(4+1) decomposition, foliates 5-dimension with respect to fifth coordinate
ω [4]. Note that the original ADM-formalism is (3+1) decomposition which
foliates spacetime with respect to time t. Then the extrinsic curvature tensor
Kµν is given by

Kµν =
1

2N

(
4∇µβν + 4∇νβµ −

∂

∂ω
4gµν

)
, 4∇µβν ≡ ∂µβν − 4Γλµνβλ. (9)

From now on, where the covariant derivative is related with 4gµν and emit
4 index for covariant derivative. In this paper, we assume that the charge
identified with dx5

ds = q
m is not changed along the geodesic curve. The fifth

component of the geodesic equation is as follows

d

ds

(
dx5

ds

)
+ 5Γ5

ab

dxa

ds

dxb

ds
= 0. (10)

Assuming that the charge does not change along the geodesic curve for any
particle, one can set 5Γ5

ab = 0. Then from eqns(4),(5),(6),(7),(9), we obtain

N = constant, βµ = α 4g0µ, (11)

where α is constant. Then with eqn(11), 5Γµab is given by

5Γµλρ = 4Γµλρ, (12)

5Γµλ5 = 4gµνFλν , (13)
5Γµ55 = − 4gµν∂νφ = −∇µφ, (14)
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where we define

Fµν = ∂µ

(
βν
2

)
− ∂ν

(
βµ
2

)
, (15)

φ =
1

2
5g55. (16)

Now, we have all components of Christoffel symbols. Then Ricci tensor is
given by

5Rab =

[
−�φ+ FλρF

λρ ∇ρFνρ
∇ρFµρ 4Rµν

]
. (17)

4 Lorentz force

The Lorentz force can be derived from variation of the 5D geodesic equa-
tions. In Kaluza’s hypothesis, however, the problem with this is that there
is quadratic term of dx5

ds [11]. For clarity, we use the relation −c2dτ̃2 =
5gabdx

adxb rather than ds2 = 5gabdx
adxb, where τ̃ is supertime [19] and

may be null even though test particle has a mass [18]. Now, because of

−c2dτ2 = 4gµνdx
µdxν , dx5

dτ equal to 0 then dτ̃
dτ = 1. From now on, dx5

dτ̃ ≡
q
m .

The relations are

dxµ

dτ
=
dτ̃

dτ

dxµ

dτ̃
=
dxµ

dτ̃
, (18)

dx5

dτ
6= dτ̃

dτ

dx5

dτ̃
=
dx5

dτ̃
. (19)

With equation

D

dτ

(
dxµ

dτ̃

)
=
dτ̃

dτ

D

dτ̃

(
dxµ

dτ̃

)
(20)

and eqn(19), we obtain

d

dτ

(
dxµ

dτ̃

)
6= dτ̃

dτ

d

dτ̃

(
dxµ

dτ̃

)
. (21)

Therefore, we consider eqn(21) carefully and only use eqn(20). From eqn(20),

D

dτ

(
dxµ

dτ̃

)
=

d

dτ

(
dxµ

dτ̃

)
+ 5Γµab

dxa

dτ̃

dxb

dτ
= 0. (22)

With eqn(18), dx5

dτ = 0, the eqn(22) becomes

d

dτ

(
dxµ

dτ

)
+ 5Γµλρ

dxλ

dτ

dxρ

dτ
= −5Γµ5ρ

dx5

dτ̃

dxρ

dτ
(23)

4



with eqns(12),(13), the eqn(23) becomes

d

dτ

(
dxµ

dτ

)
+ 4Γµλρ

dxλ

dτ

dxρ

dτ
=

q

m
4gµνFνρ

dxρ

dτ
. (24)

It is an important point that eqns(12),(13) just comes from the conservation
of charge along the geodesic curve and the symmetric condition. At this
stage, we have identified Fµν of eqn(17) as the field strength tensor. Then
by separate several components of eqn(17), 5R5ν describe the Maxwell’s
equations and 4Rµν denote the Einstein equations [10], see the third item in
the discussion section.

5 Correspondence with Classical Dynamics

Unexpectedly, the results of our analysis for the Ricci tensor in 5D say,
4Rµν = 0. The expected metric, 4gµν , is well-known charged 4D black
hole such as RN or KN black hole, but our results say that those are not
solutions in our formalism. In this paper, we check why the 4D metric should
be vacuum solution as like Schwarzschild or Kerr black hole, although it is
charged black hole. As we identified βµ = α4g0µ = 2Aµ, we can fix α as

α = − Qc
4πε0GM

. Then for rotating charged black hole, the 5D metric solution
is given by

5
gab =



−N2 − ( Qc
4πε0GM

)2(1 − 2GMr
Σc2

) Qc
4πε0GM

(1 − 2GMr
Σc2

) 0 0 2Qr
4πε0cΣ

asin2(θ)
Qc

4πε0GM
(1 − 2GMr

Σc2
) −(1 − 2GMr

Σc2
) 0 0 − 2GMr

Σc2
asin2(θ)

0 0 Σ
∆

0 0
0 0 0 Σ 0

2Qr
4πε0cΣ

asin2(θ) − 2GMr
Σc2

asin2(θ) 0 0 (r2 + a2)sin2(θ) + 2GMr
Σc2

a2sin4(θ)

 .(∗)

Where Σ = r2 + a2 cos2 θ and we used Boyer-Lindquist coordinates. Since
we just used condition 4Rµν = 0 of eqn(17), we cannot assure it is vacuum
solution. In fact, condition of 4Rµν = 0 is just only condition of (17). So,
this 5gab is vacuum solution. This point will be discussed later. Now, to see
the dynamics, we assume the spherical vacuum solution and just beginning
of free falling. Then we are considering a ≡ J

mc = 0 and dx1

dτ ,
dx2

dτ ,
dx3

dτ = 0.

Note that dx0

dτ = c − 1
2

√
−4g00 = c − 1

2

√
1− 2GM

rc2
. From eqn(24), we obtain

m
d

dτ

(
dx1

dτ

)
=

√
1− 2GM

rc2
Qq

4πε0r2
− GMm

r2
. (25)

This describes the known classical dynamics well. Now for the RN black
hole, from eqn(24), we obtain

m
d

dτ

(
dx1

dτ

)
= −GMm

r2
+

GQ2m

4πε0c4r3
(26)

+

√
1− 2GM

rc2
+

GQ2

4πε0c4r2

(
Qq

4πε0r2
− Q3q

(4πε0c2)2Mr3

)
.
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It is a strange result because there are 1
r3 terms. Furthermore, well-known

charged 4D black hole cannot be solution under 5D vaccum solution. Now,
we would like to explain the reason that the 5D vacuum condition gives 4D
vacuum solution rather than the known charged 4D black hole. Then let us
check what was neglected in the well-known 4D charged black hole,

S =

∫
5R
√

5g d5x. (27)

Noting det(A) = adj(Aij)
1

A−1
ij

, where A−1ij is a component of i-th row j-th

column of inverse metric of A and adj(Aij) is adjoint of Aij , then we get

from eqn(3),
√

5g = N
√
−4g. Then the action of integrand can be rewritten

as

S =

∫
5R
√
−4g d4xNdx5. (28)

Since N is a constant and the integrand is independent of x5, we can ignore
the overall quantity Ndx5. From eqns(3),(17), we obtain

5R = (4R−
FλρF

λρ

N2
) +

1

N2
(�φ− 4Rλρβ

λβρ + 2βλ∇ρFλρ). (29)

From eqns(9),(11), βµ follows killing equation, it’s divergence equals to 0,
that is

∇ρFλρ = ∇ρ∇λβρ = (∇ρ∇λ −∇λ∇ρ)βρ = 4Rρλβ
ρ. (30)

Here we notice that ∇λ∇ρβρ is a hypothetical representation of zero terms.
With eqns(29),(30), The second parentheses in eqn(29) can be rewritten as

1

N2
(�φ+ βλ∇ρFλρ). (31)

Now we put ∇ρFλρ = µ0Jλ. By neglecting total divergence of eqn(31), from
eqn(29) we obtain

5R = 4R− (
FλρF

λρ

N2
− µ0
N2

Jλβ
λ). (32)

Since we are considering a source free region, Jµ = 0, one can think that by
excluding current term, eqn(32) will give the well-known charged 4D black
hole solutions. But in fact, we have relation µ0J

λβλ = −�φ + FλρF
λρ.

Now, with eqn(32) and by neglecting total divergence, matter Lagrangian
effectively equals to 0. Until now, we just neglected Jλ since we are con-
sidering source free region. But this result says that this is not the case.
Resultantly, our action is equivalent to 4R. Now we try to get a real solution
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without using variation principle. In fact, to obtain the solution, it is more
reasonable to solve eqn(17) rather than solving eqn(32) with the variation
principle. From eqns(16),(17), we obtain

5R55 = −(∇ρβλ∇ρβλ + βλ∇ρ∇ρβλ) + FλρF
λρ (33)

From eqn(15),

∇ρβλ∇ρβλ = F ρλFρλ. (34)

With eqn(30),

βλ∇ρ∇ρβλ = − 4Rρλβ
ρβλ. (35)

Then the eqn(17) becomes as follows,

5Rab =

[
4Rλρβ

λβρ 4Rνρβ
ρ

4Rµρβ
ρ 4Rµν .

]
. (36)

Then we can easily get the condition which satisfy 5Rab = 0 under the con-
ditions of symmetry and the conservation of charge along the geodesic curve.
It is only 4Rµν = 0 condition. In this step, we can say that our 5gab in (*)
is a 5D vacuum solution and we checked this with MATLAB.
ln summary, from the 5D perspective RN, KN black hole solutions are in-
compatible with Jµ = 0 and our dynamic result. In contrast, 4D vacuum
solution is a solution of 5D vacuum solution with relations describing the
classical dynamics for the Lorentz force. The result, 4Rµν = 0, is same
with [15], although assumption is different.

6 5D Energy-Momentum Tensor

In Kaluza’s hypothesis,

5Tab =

[
γsc

2
5ρs γecJν

γecJµ
4Tµν

]
, (37)

see eqn(84) of [10]. We will induce energy momentum tensor which is con-
sistent with our result, by assuming perfect fluid source. In 4D, energy-
momentum tensor 4Tµν for the perfect fluid is given by [12]

4Tµν = (ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
4gµλ

4gνρ + P 4gλρ 4gµλ
4gνρ. (38)

From Einstein equations, we have the relation,

4Rµν = κ

[
(ρ+

P

c2
)
dxλ

dτ

dxρ

dτ
4gµλ

4gνρ +
1

2
(ρc2 − P ) 4gλρ 4gµλ

4gνρ

]
. (39)
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Now we try to induce 5Rab. With eqn(36):

5Rµν = 4Rµν , (40)
5Rµ5 = 4Rµλβ

λ, (41)
5R55 = 4Rλρβ

λβρ, (42)

we obtain

5Rab = κ[(ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
5gaλ

5gbρ +
1

2
(ρc2 − P ) 4gλρ 5gaλ

5gbρ]. (43)

Then 5Tab is

5Tab = (ρ+
P

c2
)
dxλ

dτ

dxρ

dτ
5gaλ

5gbρ + P 4gλρ 5gaλ
5gbρ. (44)

Note that from eqn(37), 4Tµν is independent of charge. Then by solving
some equation, see the third or fourth item in the discussion section, 4gµν is
independent of charge. Then it is consistent with our opinion of section 5.

7 No-hair theorem

We would like to get the mass, charge and angular momentum exactly in 5D.
Remind that we assumed the cylindrical condition and stationary condition.
And we consider zero cosmological constant.

There are mass quantity in 4D which called as the Komar mass. Komar
mass is defined as

MK ≡ −
1

8π

∮
St

∇µζνdSµν dSµν = (sµnν − sνnµ)
√
qd2y (45)

where vector n is the unit normal to Σt, vector s is the unit normal to St,
within Σt oriented towards the exterior of St [5, 13]. But as we introduced
the concept of gravitational and electromagnetic vector potential, we would
to like define M, Q as like surface integral of gravity field and electric field.
Before applying the surface integral, we want to consider integrating in a
different way from Komar mass [14]. Let us consider the following integral∮

E · dS, (46)

where dS is

dS =
∇xi√
∇xi · ∇xi

√
−adj(4gii)dSi, (47)

and dS1 = dx2dx3, dS2 = dx1dx3, dS3 = dx1dx2. Resultantly, It is equiva-
lent with Koma mass expression. But it is more easy to calculate. Notice,
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1√
∇xi·∇xi

√
−adj(4gii) =

√
−4g for all i. Now we are ready to calculate M,

Q and J. First, we would like to caluate Q. As the E-field is related with
F 0i ' E

c ,

Q ≡ ε0c
∮
F 0i
√
−4gdSi. (48)

We want to make sure this is exact Q. Before the calculation, we want to
make sure that it doesn’t matter whatever surface we choose. From eqn(48),

Q⇒
∮
F 00

√
−4gdx1dx2dx3 + F 01

√
−4gdx0dx2dx3 (49)

+F 02
√
−4gdx0dx1dx3 + F 03

√
−4gdx0dx1dx2.

In eqn(49), the quantity F 00
√
−4gdx1dx2dx3 is a hypothetical 0 term, dx0

is a virtual integration. Then eqn(49) is as follows∫
∇νF 0ν

√
−4g d3x dx0. (50)

Now we obtain

Q ≡ ε0c
∫
∇νF 0ν

√
−4g d3x. (51)

For exterior region, ∇νF 0ν = 0. This guarantees what we want to know.
Now we calculate eqn(56) with r=constant surface. Under our 5D metric in
(*), we obtain

ε0c

∮
F 0i
√
−4g dSi (52)

= ε0c

∫ 2π

0

∫ π

0

[
Q

4πε0c

(r2 + a2)(−r2 + a2 cos2 θ)

(r2 + a2 cos2 θ)3

]
(r2 + a2 cos2 θ) sin θdθdφ

= ε0c

∫ 2π

0

[
Q

4πε0c

−(r2 + a2) cos θ

r2 + a2 cos2 θ

]
|π0dφ = Q.

Now we calculate the mass. Gravitational vector potential is AGMµ = c
2
4g0µ

and let FGMµν = ∂µAν − ∂νAµ, and then we obtain

− c

4πG

∮
F 0i
GM

√
−4g dSi (53)

= − c

4πG

∫ 2π

0

∫ π

0

c

2

[
−2GM(r2 + a2)(−r2 + a2 cos θ)

c2(r2 + a2 cos2 θ)3

]
(r2+a2 cos2 θ) sin θdθdφ

= − c

4πG

∫ 2π

0

c

2

[
2GM(r2 + a2) cos θ

c2(r2 + a2 cos2 θ)

]
|π0dφ = M.
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Finally, we define the angular momentum. The mass and charge are derived
by surface integral of E-field. However, as far as we know, there is no physical
quantity to obtain the angular momentum through the surface integral. So,
let’s just do the same procedure with the quantities, Φµ = c 4g3µ, Ωµν =
∂µΦν − ∂νΦµ.

c2

16πG

∮
Ω0i
√
−4g dSi (54)

= c2

16πG

∫ 2π
0

∫ π
0 c
[
2GMa sin2 θ(−a4 cos2 θ+3r4+2a2r2−a2r2 sin θ)

c2(r2+a2 cos2 θ)3

]
(r2+a2 cos2 θ) sin θdθdφ

=
c2

16πG

∫ 2π

0
c

[
2GMa cos θ((r2 − a2) cos2 θ − 3r2 − a2)

c2(r2 + a2 cos2 θ)

]
|π0dφ = Mac = J.

It is already known from the Komar integral that mass is related to staionary
symmetry and angular momentum is related to axial symmetry. In this pa-
per, as we start with cylindrical symmetry we can expect there is conserved
quantity. From eqn(52), it can be seen that the conserved quantity corre-
sponding to the cylindrical symmetry is the charge.

8 Discussion

First, we did not care whether the fifth dimension is timelike or spacelike.
We set it to timelike to follow the way of ADM formalism easily, and if
it is spacelike, we can do substitution. But it seems timelike is correct
from eqn(32) [17, 19–21]. In the case of spacelike, in other words, 5g55 =

N2 + βλβ
λ, eqn(32) becomes as follows: 5R = 4R+ (

FλρF
λρ

N2 − µ0

N2Jλβ
λ).

Since these world have two timelike, 5g00 < 0, 5g55 < 0, someone can’t
imagine that we live in these world. But even if 5g55 < 0, we don’t have to
consider about this because of dx5 = 0 for electrically-neutral body [15].
Second, until now, we hadn’t been mentioned about N. With eqn(32), 5R =
4R−(

FλρF
λρ

N2 − µ0

N2Jλβ
λ). It seems like 1

N2 = κ
2µ0

. where κ = 8πG
c4

. By dividing
eqn(32) by 2κ,

5R

2κ
=

4R

2κ
− (

1

4µ0
FλρF

λρ − 1

2
JλA

λ). (55)

In eqn(55), we used βµ = 2Aµ. Now we get LEH =
4R
2κ ,LEM = − 1

4µ0
FλρF

λρ+
1
2JλA

λ. And for LEM , it satisfies

∂LEM
∂Aµ

−∇ν ∂LEM
∂∇νAµ

= Jµ +
1

µ0
∇νFνµ = 0. (56)

Also eqn(56) gives ∇νFµν = µ0Jµ. Noteworthy is that these contents were
naturally induced from the 5-dimensions. Note that Jλ = 2

µ0
RρλA

ρ.
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Third, for weakly perturbed system, 5gab = 5ηab + 5hab, the linearized
equation is given by

5�

(
5hab −

1

2
5ηab

5h

)
= −2κ 5Tab,

5� ≡ 5ηab∂a∂b. (57)

Note that 5η is expressed in Cartesian coordinate. By imposing the cylin-
drical and stationary conditions to 5hab, we obtain

5hab(X)

2
=

1

4π

∫
κ( 5Tab(Y)− 1

3
5ηab

5T (Y))

|X−Y|
d3Y, (58)

where X,Y is spartial components. The details, see [16]. If 5h5ν is propor-
tional to electromagnetic vector potential then 5R5ν should be related with
the charge current, µ0Jν . In section 3 and 4, we identified 5h5ν = 2Aν
then 5R5ν should be related with the charge current. In fact, we got
5R5ν = ∇ρFνρ. Note that 5Rab = κ(5Tab − 1

3
5ηab

5T ) for 5D.

Fourth, under the stationary condition, 4R00 = −�φt+ 1
c2
FGMλρ F λρGM , 4R0i =

1
c∇

ρFGMiρ , where φt ≡ 1
2

4
g00. From Following equation

4hµν(X)

2
=

1

4π

∫
κ( 4Tµν(Y)− 1

2
4ηµν

4T (Y))

|X−Y|
d3Y, (59)

we obtain

AGMi =
1

4π

∫ ∇ρFGMiρ
|X−Y|

d3Y, (60)

where ∇ρFGMiρ = −4πG
c2
Ji and Ji is matter current, ρUi. In this step, as

we said at third, if 4g0µ is identified as gravitational vector potential, then
4R0i is identified as matter current. In this way, we can develop a theory of
gravitomagnetism [10,18].
Under azimuthal symmetry condition, 4R33 = −�φφ + 1

4c2
ΩλρΩ

λρ, 4R3δ =
1
2c∇

ρΩδρ, where φφ ≡ 1
2
4g33, δ span 0,1,2. Then we obtain

Φδ =
1

4π

∫ ∇ρΩδρ

|X−Y|
d3Y. (61)

Fifth, in eqn(28), since N is constant and the integrand is independent of
x5, we ignored the overall quantity Ndx5. Note that this is one of the results
of the conservation of charge along the geodesic curve.
Sixth, in section 3, we assumed conservation of charge along geodesic curve.
We want to tell if there is a contradiction in this assumtion.

U5 = 5g5bU
b = (−N2 + βλβλ)

q

m
+ βνU

ν , (62)
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where Ua = dxa

dτ̃ . It is reasonable to assume that uncharged particles are not
charged along the geodesic curve. Assume that at this stage, only uncharged
particles are not changed. Then with βµ = (α, 0, 0, 0), βνU

ν + βνβ
νU5 =

αg0νU
ν + αg05U

5 = αU0 = conserved. Then eqn(62) is as follows:

U5 = −N2 q

m
+ αU0. (63)

Under the condition that uncharged particle is not charged along geodesic
curve, If N is a constant, q

m is a conservative, so N2 q
m is a conservative.

Therefore, it can be assumed without contradiction that charged particles
also are not changed along the geodesic curve.

References

[1] T. Kaluza, “On The Unification Problem In Physics,”

[2] R. L. Arnowitt, S. Deser and C. W. Misner, “The Dynamics of general
relativity,” Gen. Rel. Grav. 40, 1997 (2008) [gr-qc/0405109].

[3] A. Golovnev, “ADM analysis and massive gravity,” arXiv:1302.0687
[gr-qc].

[4] L. X. Li, “A New Unified Theory of Electromagnetic and Gravita-
tional Interactions,” Front. Phys. (Beijing) 11, no. 6, 110402 (2016)
[arXiv:1511.01260 [gr-qc]].

[5] E. Gourgoulhon, “3+1 formalism and bases of numerical relativity,”
gr-qc/0703035 [GR-QC].

[6] J. M. Overduin and P. S. Wesson, “Kaluza-Klein gravity,” Phys. Rept.
283, 303 (1997) [gr-qc/9805018].

[7] T. Adamo and E. T. Newman, Scholarpedia 9, 31791 (2014)
[arXiv:1410.6626 [gr-qc]].

[8] L. L. Williams, “Field equations and Lagrangian for the Kaluza Met-
ric Evaluated with Tensor Algebra Software,” J. Grav. 2015, 901870
(2015).

[9] Y. Thiry, “The equations of Kaluza’s unified theory,” Compt. Rend.
Hebd. Seances Acad. Sci. 226, no. 3, 216 (1948) [Front. Phys. 65, 108
(1987)] [Front. Phys. 65, 110 (1987)].

[10] T. V. Sewards, “A Sectorial approach to Kaluza-Klein theory,”
arXiv:0809.1600 [hep-th].

[11] http://vixra.org/pdf/1501.0183v2.pdf

12



[12] P. P. Avelino and R. P. L. Azevedo, “Perfect fluid Lagrangian and
its cosmological implications in theories of gravity with nonmini-
mally coupled matter fields,” Phys. Rev. D 97, no. 6, 064018 (2018)
[arXiv:1802.04760 [gr-qc]].

[13] J. L. Jaramillo and E. Gourgoulhon, “Mass and Angular Momen-
tum in General Relativity,” Fundam. Theor. Phys. 162, 87 (2011)
[arXiv:1001.5429 [gr-qc]].

[14] http://web.mit.edu/edbert/GR/gr1.pdf

[15] https://jayryablon.files.wordpress.com/2008/02/kaluza-klein-and-
lorentz-force-complete-paper.pdf

[16] http://web.phys.ntnu.no/ mika/week10.pdf

[17] P. S. Wesson, “On higher dimensional dynamics,” J. Math. Phys. 43,
2423 (2002) doi:10.1063/1.1462418 [gr-qc/0105059].

[18] B. Mashhoon, “Gravitoelectromagnetism: A Brief review,” gr-
qc/0311030.

[19] http://cds.cern.ch/record/554937/files/0205117.pdf

[20] https://news.softpedia.com/news/The-Fifth-and-Sixth-Dimensions-
Are-Time-Like-Mathematician-Suggests-52318.shtml

[21] http://thescipub.com/pdf/10.3844/pisp.2014.5.7

13


