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Abstract 

In this article, we proceed to study and apply the properties of the Gamma function to obtain a 
formula that allows us to calculate the sum of the first n factorial numbers.  
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1.  Introduction 

The Gamma function is a function that extends the concept of factorial to complex numbers. If the real 

part of the complex number z satisfies Re (z)> 0, then the Gamma function is defined as: 
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The integral converges absolutely and can extend to the entire positive complex plane. If n is a 

positive integer, then. 
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With what is shown the relationship of the Gamma function with the factorial function. 

2.  Sum of the first n factorial numbers. 

We have the following sum: 
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Then, by defining the Gamma function, we have: 
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For integration properties. 
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Performing the sum of the geometric progression. 
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This is the expression that allows to obtain the sum of the first n factorial numbers. 

3.  Conclusions. 

In this article we obtained an expression that allows us to obtain the sum of the first n factorial 

numbers. The expression obtained is expressed as an indefinite integral and emerges as a variation of the 

Gamma function. 
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