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Abstract

In this article, we proceed to study and apply the properties of the Gamma function to obtain a
formula that allows us to calculate the sum of the first n factorial numbers.
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1. Introduction

The Gamma function is a function that extends the concept of factorial to complex numbers. If the real
part of the complex number z satisfies Re (z)> 0, then the Gamma function is defined as:
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The integral converges absolutely and can extend to the entire positive complex plane. If n is a
positive integer, then.

'n) = (n—1)!

With what is shown the relationship of the Gamma function with the factorial function.

2. Sum of the first n factorial numbers.

We have the following sum:

Z(ni)!=1!+2!+3!+---+(n—2)!+(n—1)!+n!
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Then, by defining the Gamma function, we have:
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For integration properties.
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Performing the sum of the geometric progression.
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This is the expression that allows to obtain the sum of the first n factorial numbers.

3. Conclusions.

In this article we obtained an expression that allows us to obtain the sum of the first n factorial
numbers. The expression obtained is expressed as an indefinite integral and emerges as a variation of the
Gamma function.
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