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Abstract

The two-parameter quantum calculus used in the construction of Fibonacci os-
cillators is briefly reviewed before presenting the (p, q)-deformed Lorentz transfor-
mations which leave invariant the Minkowski spacetime interval t2 − x2 − y2 − z2.
Such transformations require the introduction of three different types of exponen-
tial functions leading to the (p, q)-analogs of hyperbolic and trigonometric functions.
The composition law of two successive Lorentz boosts (rotations) is no longer addi-
tive ξ3 6= ξ1 + ξ2 ( θ3 6= θ1 + θ2). We finalize with a discussion on quantum groups,
noncommutative spacetimes, κ-deformed Poincare algebra and quasi-crystals.

Keywords : Fibonacci Oscillators; Quantum Groups; Golden Mean, Noncommutative
Geometry.

1 The Fibonacci and (p, q) Oscillators

Before embarking into a discussion of the Fibonacci and (p, q) oscillators we shall follow
closely the definitions and results in [8] where many references can be found. The (p, q)
number is defined for any number n as

[n]p,q = [n]q,p ≡
pn − qn

p− q
= pn−1 + pn−2q + . . . + pqn−2 + qn−1 (1.1)

which is a natural generalization of the q-number

[n]q ≡
1− qn

1− q
= 1 + q + . . . + qn−2 + qn−1 (1.2)
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The (p, q)-derivative of a function f(x) is

Dp,qf(x) ≡ f(px)− f(qx)

(p− q)x
, x 6= 0 (1.3)

A very important function is the (p, q)-Gauss Binomial defined by

(x⊕y)np,q = (x+y) (px+qy) (p2x+q2y) . . . (pn−2x+qn−2y) (pn−1x+qn−1y), n ≥ 1 (1.4)

(x⊕ y)np,q =
n∑
k=0

[
n
k

]
p,q

pk(k−1)/2 q(n−k)(n−k−1)/2 xk yn−k (1.5)

(x⊕ y)n = 1, for n = 0, and the (p, q)-Gauss Binomial coefficient is given by[
n
k

]
p,q

≡ [n]p,q!

[n− k]p,q! [k]p,q!
, n ≥ k (1.6)

[n]p,q! = [n]p,q [n− 1]p,q [n− 2]p,q . . . [2]p,q [1]p,q, n ∈ N (1.7)

There are three types of (p, q)-exponential functions

ep,q(x) ≡
∞∑
n=0

pn(n−1)/2
xn

[n]p,q!
(1.8)

Ep,q(x) ≡
∞∑
n=0

qn(n−1)/2
xn

[n]p,q!
(1.9)

ẽp,q(x) ≡
∞∑
n=0

xn

[n]p,q!
(1.10)

which satisfy the basic identities

ep,q(x) Ep,q(y) = ẽp,q(x⊕ y) =
∞∑
n=0

(x⊕ y)np,q
[n]p,q!

, ep,q(x) Ep,q(−x) = 1 (1.11)

e 1
p
, 1
q
(x) = Ep,q(x), E 1

p
, 1
q
(x) = ep,q(x), (1.12)

The (p, q) hyperbolic functions are defined by

sinhp,q(x) =
ep,q(x)− ep,q(−x)

2
, SINHp,q(x) =

Ep,q(x)− Ep,q(−x)

2
,

˜sinhp,q(x) =
ẽp,q(x)− ẽp,q(−x)

2
(1.13)

coshp,q(x) =
ep,q(x) + ep,q(−x)

2
, COSHp,q(x) =

Ep,q(x) + Ep,q(−x)

2
,
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˜coshp,q(x) =
ẽp,q(x) + ẽp,q(−x)

2
(1.14)

In particular, they obey the key identity

coshp,q(x) COSHp,q(x) − sinhp,q(x) SINHp,q(x) = 1 (1.15)

Similar definitions hold for the trigonometric functions which obey

cosp,q(x) COSp,q(x) + sinp,q(x) SINp,q(x) = 1 (1.16)

For further details we refer to [8].
When p, q are given by the Golden Mean, and its Galois conjugate, respectively

p = τ =
1 +
√

5

2
, q = − 1/τ =

1−
√

5

2
(1.17)

the p, q numbers [n]p,q coincide precisely with the Fibonacci numbers as a result of Binet’s
formula

[n]p,q = [n]q,p ≡
τn − (−1)nτ−n√

5
= Fn (1.18)

Furthermore, the powers of τn and τ−n can be expressed themselves in terms of τ and
the Fibonacci numbers as follows

τn = Fn+1 +
Fn
τ
, τ−n = (−1)n Fn−1 + (−1)n+1 Fn

τ
(1.19)

consequently, the powers of τ are just Dirichlet integers which have the form m + n
√

5,
with m,n integers, and the (p, q)-factorial

[n]p,q! = Fn Fn−1 Fn−2 . . . .... (1.20)

becomes a product of descending Fibonacci numbers. Therefore, all the numerical factors
which define the hyperbolic and trigonometric (p, q)-functions will simplify enormously in
this special case (1.17).

It has been emphasized by [7] that the Fibonacci oscillators offer a unification of
quantum oscillators related to quantum groups [2]. They are the most general oscillators
having the property of spectrum degeneracy and invariance under the quantum group.
One of the main problems in the theory of quantum groups and algebras is to interpret
the physical meaning of the deformation parameters [7]. In this respect, one possible
explanation for the deformation parameters was accomplished by a relativistic quantum
mechanical model [2]. In such a model, the multi-dimensional Fibonacci oscillator can be
interpreted as a relativistic oscillator corresponding to the bound state of two particles
with masses m1,m2. Therefore, the additional parameter has a physical significance so
that it can be related to the mass of the second bosonic particle in a two particle relativistic
quantum harmonic oscillator bound state. Although, any quantum algebra with one or
more deformation parameters may be mapped onto the standard single-parameter case
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[3], it has been argued that the physical results obtained from a two-parameter deformed
oscillator system are not the same [4].

An early (p, q) oscillator realization (a la Jordan-Schwinger) of two parameter quan-
tum algebras, sup,q(2); sup,q(1, 1); ospp,q(2|1), and the centerless Virasoro algebra was con-
structed by [5]. Given the creation A† and annihilation A operators, the spectrum was
found to obey

AA† = [N + 1]p,q, A†A = [N ]p,q, [N, A] = − A, [N, A†] = A† (1.21)

AA† − q A†A = pN , AA† − p A†A = qN (1.22)

Furthermore, [n]p,q is the unique solution of the generalized Fibonacci recursion relation
[5]

[n+ 1]p,q = (p+ q) [n]p,q − pq [n]p,q, [1]p,q = 1, [0]p,q = 0, n ≥ 1 (1.23)

when p = τ, q = −τ−1, the above equation (1.23) reduces to the standard recursion
relation of the Fibonacci numbers 1 Fn+1 = Fn + Fn−1. When q = p(−p) the relations
(1.22) reduce to the (anti) commutation relations of bosonic (fermionic) q-oscillators. The
special case (q = 0, p 6= 0), or (q 6= 0, p = 0) gives a deformation of a single mode of the
oscillators exhibiting “infinite statistics” [6]. These hypothetical particles of “infinite-
statistics” were coined quons. The (p, q) analogs of the fermionic, parafermionic and
parabosonic oscillators were also identified [5].

A generating function for the (p, q)-numbers [n]p,q is [5]

∞∑
n=0

[n]p,q z
n =

z

(1− qz) (1− pz)
(1.24)

The ẽp,q(z) exponential allows to construct the (p, q)-coherent states, for z complex :

|z >p.q = N(z) ẽp,q(zA
†) |0 >, N(z) =

1√
ẽp,q(|z|2)

, (1.24)

The inner product is [5]

< z1|z2 > = N(z1) N(z2) ẽp,q(z̄1z2) (1.25)

The non-extensive Tsallis entropy of bosonic Fibonacci oscillators was studied in [7]
where connections between the thermo-statistical properties of a gas of the two-parameter
deformed bosonic particles called Fibonacci oscillators and the properties of the Tsallis
thermostatistics was found. It was shown that the thermo-statistics of the two-parameter
deformed bosons can be studied by the formalism of Fibonacci calculus.

1The Sanskrit poets Virahanka, Hemachandra, Gopala many centuries before Fibonacci were aware
of these numbers. See the Fields Institute Lectures on “Patterns of Numbers in Nature” by Manjul
Bhargava
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Having presented this brief tour of the (p, q)-oscillator and its connection to the gen-
eralized Fibonacci recursion relations we shall proceed with the explicit construction of
(p, q)-Lorentz transformations and its role in deformations of Special Relativity.

2 (p, q)-Lorentz transformations

The (p, q)-Lorentz boost transformations along the x-direction in 4D that we propose are
given by

t′ = t
√
coshp,q(ξ) COSHp,q(ξ) − x

√
sinhp,q(ξ) SINHp,q(ξ) (2.1)

x′ = x
√
coshp,q(ξ) COSHp,q(ξ) − t

√
sinhp,q(ξ) SINHp,q(ξ) (2.2)

y′ = y, z′ = z (2.3)

due to the identity

coshp,q(ξ) COSHp,q(ξ) − sinhp,q(ξ) SINHp,q(ξ) = 1 (2.4)

it follows that under (p, q)-Lorentz transformations the Minkowski spacetime interval
remains invariant

(t′)2 − (x′)2 − (y′)2 − (z′)2 = (t)2 − (x)2 − (y)2 − (z)2 (2.5)

Because
( ˜coshp,q(A))2 − ( ˜sinhp,q(A))2 6= 1 (2.6)

the (p, q)-Lorentz transformations do not have the form

t′ = t ˜coshp,q(ξ) − x ˜sinhp,q(ξ) (2.7a)

x′ = x ˜coshp,q(ξ) − t ˜sinhp,q(ξ) (2.7b)

but must have the form indicated by eqs-(2.1-2.2). Therefore,

t′ 6= t ˜coshp,q(ξ) − x ˜sinhp,q(ξ) (2.8a)

x′ 6= x ˜coshp,q(ξ) − t ˜sinhp,q(ξ) (2.8b)

The composition law of two successive (p, q)-Lorentz transformations with boost pa-
rameters ξ1, ξ2 is given by an ordinary matrix product leading to

t′′ = t
√
coshp,q(ξ2) COSHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) +

t
√
sinhp,q(ξ2) SINHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) −

x
√
coshp,q(ξ2) COSHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) −
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x
√
sinhp,q(ξ2) SINHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) (2.9)

x′′ = x
√
coshp,q(ξ2) COSHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) +

x
√
sinhp,q(ξ2) SINHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) −

t
√
sinhp,q(ξ2) SINHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) −

t
√
coshp,q(ξ2) COSHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) (2.10)

y′′ = y, z′′ = z (2.11)

If the above composition is consistent with a group composition law, one should have

t′′ = t
√
coshp,q(ξ3) COSHp,q(ξ3) − x

√
sinhp,q(ξ3) SINHp,q(ξ3) (2.12)

x′′ = x
√
coshp,q(ξ3) COSHp,q(ξ3) − t

√
sinhp,q(ξ3) SINHp,q(ξ3) (2.13)

y′′ = y, z′′ = z (2.14)

where the resulting boost parameter ξ3 is now a complicated function ξ3(ξ1, ξ2) of ξ1 and
ξ2 as shown below. It will no longer be given by the naive addition law ξ1+ξ2. Once again,
from eqs-(2.12-2.14) one can show the invariance of the Minkwoski spacetime interval

(t′′)2 − (x′′)2 − (y′′)2 − (z′′)2 = (t)2 − (x)2 − (y)2 − (z)2 (2.15)

Equating eqs-(2.9, 2.10) with eqs-(2.12, 2.13) yields

√
sinhp,q(ξ3) SINHp,q(ξ3) =

√
coshp,q(ξ2) COSHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) +

√
sinhp,q(ξ2) SINHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) (2.16)

√
coshp,q(ξ3) COSHp,q(ξ3) =

√
coshp,q(ξ2) COSHp,q(ξ2) coshp,q(ξ1) COSHp,q(ξ1) +

√
sinhp,q(ξ2) SINHp,q(ξ2) sinhp,q(ξ1) SINHp,q(ξ1) (2.17)

Dividing eq-(2.16) by eq-(2.17 ) gives in the left hand side :
√
tanhp,q(ξ3) TANHp,q(ξ3).

As a result of the identities [8]

tanhp,q(A) = TANHp,q(A) ⇔ sinhp,q(A) COSHp,q(A) = coshp,q(A) SINHp,q(A)
(2.18)

this left-hand side becomes√
tanhp,q(ξ3) TANHp,q(ξ3) = tanhp,q(ξ3) = TANHp,q(ξ3) (2.19)
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The right-handside is of the form

A + B

C + D
=

(A/C) + (B/C)

1 + (D/C)
(2.20)

where A,B,C,D are the square roots of products of four hyperbolic functions. Due to
the identities (2.18) it allows to eliminate the square roots in eq-(2.20), and finally one
arrives at

tanhp,q(ξ3) =
tanhp,q(ξ1) + tanhp,q(ξ2)

1 + tanhp,q(ξ1) tanhp,q(ξ2)
= TANHp,q(ξ3) =

TANHp,q(ξ1) + TANHp,q(ξ2)

1 + TANHp,q(ξ1) TANHp,q(ξ2)
, ξ3 6= ξ1 + ξ2 (2.21)

It remains to explain that when (p, q) 6= (1, 1)⇒ ξ3 6= ξ1 + ξ2. Therefore, the composition
rule for the boost parameters is no longer additive. The reason behind this is because
now the actual addition laws for the (p, q)-hyperbolic functions are of the form

˜coshp,q(ξ1 ⊕ ξ2) = coshp,q(ξ1) COSHp,q(ξ2) + sinhp,q(ξ1) SINHp,q(ξ2) (2.22)

˜sinhp,q(ξ1 ⊕ ξ2)) = sinhp,q(ξ1) COSHp,q(ξ2) + coshp,q(ξ1) SINHp,q(ξ2) ⇒ (2.23)

˜tanhp,q(ξ1 ⊕ ξ2) =
sinhp,q(ξ1) COSHp,q(ξ2) + coshp,q(ξ1) SINHp,q(ξ2)

coshp,q(ξ1) COSHp,q(ξ2) + sinhp,q(ξ1) SINHp,q(ξ2)
=

tanhp,q(ξ1) + TANHp,q(ξ2)

1 + tanhp,q(ξ1) TANHp,q(ξ2)
(2.24)

The functions ˜coshp,q(ξ1 ⊕ ξ2), ˜sinhp,q(ξ1 ⊕ ξ2), ˜tanhp,q(ξ1 ⊕ ξ2) admit a power series ex-
pansion in terms of the (p, q)-Gauss binomial (ξ1 ⊕ ξ2)np,q, and defined by eqs-(1.4,1.5).

Due to the identity tanhp,q(A) = TANHp,q(A), one can see that the expressions in
eqs-(2.21, 2.24) are both the same and one ends up with

˜tanhp,q(ξ1 ⊕ ξ2) = tanhp,q(ξ3) = TANHp,q(ξ3) =

tanhp,q(ξ1) + tanhp,q(ξ2)

1 + tanhp,q(ξ1) tanhp,q(ξ2)
=

TANHp,q(ξ1) + TANHp,q(ξ2)

1 + TANHp,q(ξ1) TANHp,q(ξ2)
(2.25a)

Because of the following inequalities

˜tanhp,q(A) 6= tanhp,q(A) = TANHp,q(A) (2.25b)

one learns that
ξ3 6= ξ1 ⊕ ξ2 = ξ1 + ξ2 (2.25c)
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this last inequality in (2.26b) can be deduced by a simple inspection of the equalities in

eq-(2.25). Since the function ˜tanhp,q appearing in the first term of eq-(2.25a) is not the
same as tanhp,q, and TANHp,q, the argument ξ3 cannot be the same as the argument
ξ1⊕ξ2 = ξ1 +ξ2. Therefore, when (p, q) 6= (1, 1)⇒ ξ3 6= ξ1 +ξ2. It is only when p = q = 1
that the boost parameters are additive ξ3 = ξ1 + ξ2.

Concluding, the complicated expression for ξ3 = ξ3(ξ1, ξ2) is explicitly given by eval-
uating the arctanhp,q, ARCTANHp,q of the right hand side of eqs-(2.25), respectively.
Both results lead to the same ξ3

ξ3 = arctanhp,q

(
tanhp,q(ξ1) + tanhp,q(ξ2)

1 + tanhp,q(ξ1) tanhp,q(ξ2)

)
(2.26a)

ξ3 = ARCTANHp,q

(
TANHp,q(ξ1) + TANHp,q(ξ2)

1 + TANHp,q(ξ1) TANHp,q(ξ2)

)
(2.26b)

Furthermore, because

( ˜coshp,q(A))2 − ( ˜sinhp,q(A))2 6= 1 (2.26c)

a careful inspection of eqs-(2.8) reveals that

˜sinhp,q(ξ1 ⊕ ξ2)) 6= √
sinhp,q(ξ3) SINHp,q(ξ3) (2.27a)

˜coshp,q(ξ1 ⊕ ξ2) 6= √
coshp,q(ξ3) COSHp,q(ξ3) (2.27b)

bur their ratio is equal : ˜tanhp,q(ξ1 ⊕ ξ2) = tanhp,q(ξ3) = TANHp,q(ξ3).
From eqs-(2.25) one can derive the addition law of velocities as in ordinary Special

Relativity. Given

β1 ≡
v1
c
≡ tanhp,q(ξ1) = TANHp,q(ξ1) (2.28a)

β2 ≡
v2
c
≡ tanhp,q(ξ2) = TANHp,q(ξ2) (2.28b)

β3 ≡
v3
c
≡ tanhp,q(ξ3) = TANHp,q(ξ3), ξ3 6= ξ1 + ξ2 (2.28c)

the addition law is

β3 =
β1 + β2

1 + β1 β2
(2.29)

similarly one can obtain the subtraction law

β3 =
β1 − β2

1 − β1 β2
(2.30)

such that β3 never exceeds 1 when β1, β2 ≤ 1.
So far we have studied the (p, q)-Lorentz boosts transformations. A (p, q)-rotation

transformation along the z-direction gives
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x′ = x
√
cosp,q(θ) COSp,q(θ) − y

√
sinp,q(θ) SINp,q(θ) (2.31a)

y′ = y
√
cosp,q(θ) COSp,q(θ) + x

√
sinp,q(θ) SINp,q(θ) (2.31b)

t′ = t, z′ = z (2.31c)

and leaves invariant the Minkowski spacetime line interval (2.5) due to the identity

cosp,q(θ) COSp,q(θ) + sinp,q(θ) SINp,q(θ) = 1 (2.32)

The following relations among hyperbolic and trigonometric (p, q) functions [8]

sinhp,q(x) = −i sinp,q(ix), SINHp,q(x) = −i SINp,q(ix), ˜sinhp,q(x) = −i ˜sinp,q(ix),
(2.33)

coshp,q(x) = cosp,q(ix), COSHp,q(x) = COSp,q(ix), ˜coshp,q(x) = ˜cosp,q(ix), (2.34)

will allow to evaluate the composition rule for two successive rotations with angles θ1, θ2
about the z-axis. The composition rule for the angles is

˜tanp,q(θ1 ⊕ θ2) = tanp,q(θ3) = TANp,q(θ3) =

tanp,q(θ1) + tanp,q(θ2)

1 − tanp,q(θ1) tanp,q(θ2)
=

TANp,q(θ1) + TANp,q(θ2)

1 − TANp,q(θ1) TANp,q(θ2)
(2.35)

where θ3 6= θ1 ⊕ θ2 = θ1 + θ2.
The composition law of two succesive (p, q)-Lorentz boosts transformations along two

different axis directions are more complicated. The same occurs with a (p, q)-Lorentz
boost transformation along any arbitrary direction. In general, the ordinary Lorentz
transformations can be written in terms of the Pauli spin 2 × 2 matrices σ1, σ2, σ3, and
the unit matrix 1 as follows. Let us firstly define the 2× 2 matrix

X ≡ xµ σµ = t 1 + x σ1 + y σ2 + z σ3 =

(
t+ z x− iy
x+ iy t− z

)
(2.36)

One can show that an ordinary Lorentz boost with parameter ξ along any direction can
be realized in terms of three parameters defined as

~ξ = (ξ1, ξ2, ξ3); ξ ≡ ||~ξ|| =
√

(ξ1)2 + (ξ2)2 + (ξ3)2 (2.37)

and associated with the three directions x, y, z, respectively. The Lorentz boost in this
general case is

X′ = exp(
ξ1
2
σ1 +

ξ2
2
σ2 +

ξ3
2
σ3 ) X exp( − ξ1

2
σ1 −

ξ2
2
σ2 −

ξ3
2
σ3 ) (2.38)
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Due to exp(A) exp(−A) = 1, and because the determinant of a product of matrices is
equal to the product of the determinants of the matrices, one then has

det(X′) = det[exp(A)] det(X) det[exp(−A)] = det(X) =

t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2 (2.39)

so that the transformations (2.38) leave the Minkowski spacetime interval invariant as
expected. Given the unit vector

ξ̂ ≡ (
ξ1
ξ
,
ξ2
ξ
,
ξ3
ξ

), ξ̂i ξ̂i = 1 ⇒ (ξ̂iσi) (ξ̂jσj) = ξ̂i ξ̂j (δij1 +i εijkσk) = ξ̂i ξ̂jδij 1 = 1,

(ξ̂iσi) (ξ̂jσj) (ξ̂kσk) = (ξ̂kσk), (ξ̂iσi)
2n = 1, (ξ̂iσi)

2n+1 = ξ̂iσi (2.40)

upon performing a Taylor series expansion one arrives at

exp(
ξ1
2
σ1 +

ξ2
2
σ2 +

ξ3
2
σ3 ) = cosh(

ξ

2
) 1 + ξ̂iσi sinh(

ξ

2
) (2.41a)

exp( − ξ1
2
σ1 −

ξ2
2
σ2 −

ξ3
2
σ3 ) = cosh(

ξ

2
) 1 − ξ̂iσi sinh(

ξ

2
) (2.41b)

and after evaluating the matrix product (2.38) one can read-off the expressions for
t′, x′, y′, z′ in terms of t, x, y, z and the boost parameters.

Guided by the above construction, a (p, q)-Lorentz boost along any direction can be

realized in terms of the (p, q) deformed Pauli spin algebra generators σ
(p,q)
i , and the (p, q)

exponentials (1.8-1.10) as follows 2

X′ = ep,q( ξ1σ
(p,q)
1 + ξ2σ

(p,q)
2 + ξ3σ

(p,q)
3 ) X Ep,q( − ξ1σ(p,q)

1 − ξ2σ(p,q)
2 − ξ3σ(p,q)

3 ) (2.42)

Due to the key relations

ep,q(A) Ep,q(−A) = 1 ⇒ ep,q(A) = M, Ep,q(−A) = M−1 (2.43a)

one will have
det(X′) = det(M) det(X) det(M−1) = det(X) =

t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2 (2.43b)

and such that the Minkowski spacetime interval remains invariant under the transforma-
tions (2.42).

One may notice that in the (p, q)-deformed case the relations in eq-(2.40) are no longer

obeyed, (ξ̂iσ
(p,q)
i ) (ξ̂jσ

(p,q)
j ) 6= 1, consequently the exponentials of the deformed generators

ep,q(
ξi

2
σ
(p,q)
i ) 6= coshp,q(

ξ

2
) 1 + ξ̂iσ

(p,q)
i sinhp,q(

ξ

2
) (2.44a)

2Alternatively, one could flip the location of the ep,q, Ep,q exponentials in eq-(2.42)
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Ep,q(
ξi

2
σ
(p,q)
i ) 6= COSHp,q(

ξ

2
) 1 + ξ̂iσ

(p,q)
i SINHp,q(

ξ

2
) (2.44b)

ẽp,q(
ξi

2
σ
(p,q)
i ) 6= ˜coshp,q(ξ

2
) 1 + ξ̂iσ

(p,q)
i

˜sinhp,q(ξ
2

) (2.44c)

cannot be written in the Euler form, and this is one of the reasons behind the inequalities
in eq-(2.8).

We finalize with a brief discussion on quantum groups, noncommutative spacetimes,
κ-deformed Poincare algebra and quasi-crystals. In the case of κ-deformed quantum
Poincare algebra it is not the deformation of the algebra that really matters, but the co-
algebra (coproduct) and the associated non-commutative spacetime structure [10]. The
phase space as a whole does not have the Hopf algebra structure. In order to deform the
phase space, one presumably has to make use of more general structures, like the one of
Hopf algebroid. The momentum space associated with κ-deformation is curved [10]. It
remains to extend this work to the case of noncommutative spacetimes and to find the
corresponding co-algebraic structures; i.e. the coproduct, antipode, counit.

It is known that with quantum groups one can introduce a form of coordinate quanti-
zation while preserving, continuously, all group symmetries [1]. One can introduce coordi-
nate quantization using discrete lattices, but prior to quantum groups no one could achieve
quantization without breaking the continuous spacetime symmetries [1]. We saw earlier
that for the special values p = τ, q = −τ−1, the p, q integers [n]p,q reduce to the Fibonacci
numbers. The Golden mean τ is ubiquitous in the construction of quasi-crystals, and
their associated non-crystallographic groups. Quasi-crystals (like the Penrose tiling with
five-fold symmetry) can be constructed via the cut-and-projection mechanism of higher
dimensional regular lattices; i.e. the projection onto lower dimensions is performed along
directions with irrational slopes. It is warranted to explore further the results of this work
within the context of coordinate quantization and Noncommutative geometry that will
help us cast some light into Quantum Gravity.
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