
 

THE MAJORITY RULE AND COMBINATORIAL GEOMETRY 

(VIA THE SYMMETRIC GROUP) 

THINH NGUYEN 

Abstract. The Marquis du Condorcet recognized 200 years ago that majority rule can 

produce intransitive group preferences if the domain of possible (transitive) 

individual preference orders is unrestricted. We present results on the cardinality 

and structure of those maximal sets of permutations for which majority rule 

produces transitive results (consistent sets). Consistent sets that contain a maximal 

chain in the Weak Bruhat Order inherit from it an upper semimodular sublattice 

structure. They are intrinsically related to a special class of hamiltonian graphs called 

persistent graphs. These graphs in turn have a clean geometric interpretation: they 

are precisely visibility graphs of staircase polygons. We highlight the main tools used 

to prove these connections and indicate possible social choice and computational 

research directions. 

1. Introduction 

Arrow’s impossibility theorem [5], says that if a domain of voter preference 
profiles is sufficiently diverse and if each profile in the domain is mapped into a social 

order on the alternatives that satisfies a few appealing conditions, then a specific 
voter is a dictator in the sense that all of his or her strict preferences are preserved 
by the mapping. One interesting question is how to determine restrictions on sets of 

voters preference orders which guarantee that every non-empty finite subset of 
candidates S contains at least one who beats or ties all others under pairwise majority 

comparisons [14, 15, 17]. When voters express their preferences via linear 
preference orders over {1, ..., n } (i.e. permutations in Sn) a necessary and sufficient 
condition is provided by the following proposition. It identifies embedded 3x3 latin 

squares as the main reason for intransitivity of the majority rule. 

Definition 1.1. A three subset {α,β,γ} ⊂ Sn contains an embedded 3x3 latin square if 

there exist {i,j,k} ⊂ {1,...,n} such that αi = βj = γk, αj = βk = γi and αk = βi = γj. C ⊂ Sn is called 
consistent if no three subset of C contains an embedded 3x3 latin square. 

Proposition 1.2. [15] For a finite set of voters P with preference orders in a subset 

C of Sn , denote by |aPb| the number of voters that prefer a to b. For every subset 

S of at least three candidates, 

{a ∈ S : ∀b ∈ S − a,|aPb| ≥ |bPa|} 6= ∅ 

if and only if C does not contain an embedded 3 by 3 latin square ( i.e. Consistent 

sets produce transitive results under majority rule). 

It has been conjectured that for every n the maximum cardinality of such 
consistent sets is not more than 3n−1 [1]. Maximal consistent sets that contain a 
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Figure 1. A maximal consistent subset of S6. It is conjectured to be 

maximum in [15] 

maximal chain in the Weak Bruhat order of Sn are upper semimodular sublattices of 
cardinality bounded by the n-th Catalan number [4](Theorem 2.2). This result is the 
basis of an output sensitive algorithm to compute these sublattices ( see Remark 2.3 

and Corollary 2.4 ). With such sublattices we associate a class of graphs (called 
persistent) that offers a bridge from the combinatorics of consistent sets of 

permutations to non degenerate point configurations (see Section 2.3 and Theorem 
2.8). Every graph in this apparently ”new” class can be realized as the visibility graph 
of a staircase polygon(see Section 3). A colorful way to view these abstract 

connections is that if the aggregate collection of voters is realizable as a non-
degenerate collection of points then majority rule produces transitive results. Under 

this interpretation point configurations represent the candidates aggregate view 
provided by the voters rankings (one point per candidate). 

2. The Weak Bruhat Order, Balanced Tableaux and Persistent Graphs 

2.1. The Weak Bruhat Order of Sn. For n ≥ 2, let Sn denote the symmetric group of all 

permutations of the set {1, ..., n }. As a Coxeter group Sn is endowed with a natural 
partial order called the weak Bruhat order ( [2, 4, 12]. This order is generated by 

considering a permutation γ an immediate successor of a permutation α if and only if 
γ can be obtained from α by interchanging a consecutive pair of non inverted 
elements of α. The partial order ≤ WB is the transitive closure of this relation. The 

unique minimum and maximum elements are the identity and the identity reverse 
respectively, ( Figure 2 ). 

(Sn,≤ WB) is a ranked poset where the rank of a permutation α is its inversion 
number i(α) = |{(αi,αj) : i < j and αi > αj}| . From now on, consider all permutations in 
Sn written in one line notation and let si denote the adjacent transposition of the letters 

in positions i and i + 1 . With this convention αsi is the permutation obtained by 
switching the symbols αi and αi+1 in α. Every permutation is then representable as a 

word over the alphabet { s1, ..., sn−1 } where the juxtaposition express α as a left to right 
product of the si’s. Among these representations, those words that involve exactly i(α) 
transpositions are called the 
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Figure 2. The weak Bruhat order for S4. A maximal chain is 

{1234,1324,1342,3142,3412,4312,4321}.The identity is at the 
bottom and the identity reverse is at the top. By suitable relabeling 
we can in fact have any permutation at the top and its reverse at the 

bottom. 

reduced words for α. Those reduced words that represent the maximum element 

have length 2 and they are the maximal chains in 

(Sn,≤ WB) from the identity permutation to its reverse. They constitute the central 
combinatorial object in this work. In particular, the majority rule produces transitive 

results when applied to them. We define now a closure operator that allow us to 
characterize those maximal consistent sets of permutations that contain maximal 
chains. 

Definition 2.1. For αS∈ Sn, let Triples(α) = {(αi,αj,αk) : i < j < k} and for C ⊂ Sn, Triples(C) 

= {Triples(α) : α ∈ C}. The Triples closure of a set C ⊂ Sn is Closure(C) = {α ∈ Sn : 

Triples(α) ⊂ Triples(C)}. 



4 JAMES ABELLO 

It is natural to ask how to obtain Closure(C) for a given set C ⊂ Sn. In particular, 
what is the cardinality and structure of maximal consistent sets? We provide next an 

answer to these questions for the case that Ch is a maximal chain in (Sn,≤ WB). 

2.1.1. Maximal Connected Consistent Sets. It is not difficult to see that any three 
permutations that contain an embedded 3x3 latin square can not be totally ordered 

in (Sn,≤ WB). This means that a maximal chain Ch is a consistent set. Moreover, 

. Therefore Closure(Ch) is a maximal consistent set. The size 

of Closure(Ch) varies widely depending on Ch. In some cases, it is of O(n2) and in many 

others is of size > 2n−1 +2n−2 −4 for n ≥ 5 ([1]). It has been conjectured (since 1985) in 
[2] that the maximum cardinality of a consistent set in Sn is ≤3n−1. The next result 
provides information about the structure and maximum cardinality of those 

consistent sets containing a maximal chain in the weak Bruhat order. It is a useful 
result because it furnishes an algorithm to generate the Closure of a maximal chain 
Ch. This allow us to have at our disposal all the possible rankings that are compatible 

with Ch. They represent in this case the maximum allowable set of ranking choices 
for the voters if we want to obtain transitivite results from the majority rule. 

Transitivity conditions like Inada’s single peakedness [16] correspond to the choice 
of a particular maximal chain in (Sn,≤ WB). 

Theorem 2.2. [4]The closure of any maximal chain in (Sn,≤ WB) is an upper 

semimodular sublattice of (Sn,≤ WB) that is maximally consistent. Its cardinality is ≤ the 

nth Catalan number. 

Remark 2.3. The question that comes to mind next is where a permutation α ∈ 

Closure(Ch) lives in the Hasse diagram of (Sn,≤ WB) ?. The answer is that it lies close 
to Ch. Namely, Closure(Ch) is a connected subgraph (the undirected version) in the 
Hasse diagram of the weak Bruhat order. To see this let Path(Ch) be the labeled 

ordered path from the identity to the identity reverse, defined by Ch, in the Hasse 
diagram of (Sn,≤ WB), ie. Path(Ch) = (t1,...,tN) where tl = (i,j) if the symbols i and j were 

interchanged by the lth transposition in Ch. Notice that this is an alternate notation 
referring to the actual symbols in a permutation rather than their positions but it is 
better suited for this portion of the paper. Let Pathk(Ch) denote the set of 

permutations appearing in the first k steps of Path(Ch), for k = 1,...,N. It follows from 
the proof of the previous theorem that Closure(Pathk(Ch)) has a unique maximum 

element which is precisely the maximum element in Pathk(Ch). Call this element the 
kth bottom element. Moreover, Closure(Pathk+1(Ch)) − Closure(Pathk(Ch)) = a 
projection of certain connected subset of Closure(Pathk(Ch)) that is determined by 

the adjacent transposition tk+1. This is stated more precisely in the following 
corollary. 

Corollary 2.4. For a maximal chain Ch in the weak Bruhat order of Sn, let 

Projectablek+1(Ch) be the set of γ ∈ Closure(Pathk(Ch)) for which there exists a 

downward path from γ to the bottom element of Closure(Pathk(Ch)) such that all the 

adjacent transpositions used in the path are disjoint from tk+1. Closure(Ch) can be 

computed by an iterated application of the following property. 

Closure(Pathk+1(Ch)) − Closure(Pathk(Ch)) = {α ∈ Sn : ∃γ ∈ 

Projectablek+1(Ch) for which tk+1(γ) = α} 
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Figure 3. The maximal consistent subset of S6 of Figure 1 viewed as a 

sublattice of the Weak Bruhat Order.The subsets enclosed in 

rectangles are the ones obtained by a projection. The maximal chain 
is the one defined by the sequence of transpositions Path(Ch) = 

{45,46,23,25,26,24,13,15,16,14,12,35,36,34,56}. Incoming arrows 
to a rectangle correspond to a single transposition used to project a 
previous subset. These transpositions are 
{23,25,13,15,16,35,36,34,56}. 

Remark 2.5. The previous corollary can be turned into an algorithm that computes 
Closure(Ch) in time proportional to |Closure(Ch)|, i.e. is an output sensitive algorithm. 

To our knowledge, no consistent set has been found of cardinality larger than the 
ones produced by this algorithm. The reason could be that maximal consistent sets 
that are not connected are not larger than connected ones. Figure 1 is an example of 

a maximal consistent subset of S6 with 45 permutations which is conjectured in [15] 
to be the overall maximum in this case. It was constructed by ad hoc methods but 

since it contains a maximal chain it can be described succintly as Closure(Ch) where 
Path(Ch) = {45,46,23,25,26,24,13,15,16,14,12,35,36,34,56}. Its overall structure is 
illustrated by a coarse drawing of the corresponding sublattice of (S6,≤ WB) in Figure 

3. Each subset obtained by a projection is isomorphic to its pre-image. Incoming 
arrows into a rectangle depict the pieces that form the preimage of a projection by an 
adjacent transposition. 

Next we present an alternative encoding of these maximal chains by special 
tableux of staircase shape called balanced tableaux. These tableaux provide the 
bridge between the weak Bruhat order and special combinatorial graphs called 

persistent. 
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2.2. Balanced Tableaux. A Ferrer’s diagram of staircase shape is the figure obtained 
from n − 1 left justified columns of squares of lengths n − 1, n − 2, ... , 

1. A tableau T of staircase shape is a filling of the cells of the Ferrer’s diagram of 

staircase shape with the distinct integers in the set { 1, ..., N } where . We 

denote by SS(n) the set of tableux of staircase shape and assume for the indexes i,j 
and k that i < j < k. A tableau T ∈ SS(n) is said to be balanced if for any three entries 

T(j,i), T(k,i), T(k,j) we have either T(j,i) < T(k,i) < T(k,j) or T(j,i) > T(k,i) > T(k,j). The 
key property that we exploit is a beautiful bijection due to Edelman and Greene [12]. 

Namely, given a maximal chain in (Sn,≤ WB), set T(j,i) = l if and only if i and j are the 
symbols interchanged in going from the (l − 1)th permutation to the lth permutation 
in the chain. It is proved in [12] that this mapping defines a one to one 

correspondence between balanced tableux in SS(n) and maximal chains in (Sn,≤ WB) 
(The balanced tableau associated with the maximal chain used in Figure 3 is depicted 

below. In this case n = 6 and N = 15). 

1 

6 

With each balanced tableau T we associate a graph 
skeleton(T) with vertex set {1, ..., n} and edge set = { (k,i) : 

T(k,i) > T(k0,i) ∀k0, i < k0 < k }. In other words, the edges in skeleton(T) record those 
entries in T whose values are larger than all the entries above in its column (i.e. they 

are restricted local maximum in their columns). By the balanced property this is 
equivalent to { (k,i) : T(k,i) < T(k,i0), ∀i0, i < i0 < k } (i.e. they are restricted local 
minimum in their rows). The skeleton corresponding to the above balanced 

tableau(i.e. the maximal chain used in Figure 3) is 

1 

6 

The reader may be pondering about the properties of these 

graphs that arise as skeletons of the balanced tableaux associated 
with maximal chains in the weak Bruhat order.The next section offers a graph 

theoretical characterization. 

2.3. Persistent Graphs. Chordal graphs are a well studied class with a variety of 

applications. We introduce now an ordered version of chordality that together with 
an additional property called inversion completeness define what we call persistent 
graphs ([8]). 

Definition 2.6. A connected graph G = (V,E) with an specified linear ordering H = 
(1,...,n) on V is called chordal with respect to H if every H-ordered cycle of length ≥ 4 

has a chord. G is called inversion complete with respect to H if for every 4-tuple i < j 
< k < l, it is the case that {(Hi,Hk),(Hj,Hl)} ⊂E(G) implies that (Hi,Hl) ∈E(G). In other 
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words, pairs of edges that interlace in the order provided by H force the existence of 
a third edge joining the minimum and maximum(in the order) of the involved 

vertices. 

Definition 2.7. A graph G = (V,E) with a Hamiltonian path H is called Hpersistent if it 
is ordered chordal and inversion complete with respect to H. 

The following theorem provides a graph theoretical characterization of the 
skeletons of balanced tableaux. Namely, they are precisely persistent graphs. 

Theorem 2.8. A graph G = (V,E) is H-persistent if and only if is the skeleton of a 

balanced tableau T ∈ SS(n) where |V | = n and H = (1,2,...,n). 

Proof Sketch: That the skeleton of a balanced tableau T ∈ SS(n) is hamiltonian with 

hamiltonian path H = (1,...,n) follows from the definition of the skeleton. That the 
obtained graph is H-persistent is a consequence of the balanced property. The 
interesting direction is how to associate with a given H-persistent graph a balanced 

tableau. The core of the proof relies on the following facts. 

(1) Any H persistent graph with at least n edges has at least an edge e such that 
G − e is H-persistent. Call such an edge a reversible edge. 

(2) The complete graph is H-persistent for H = (1,2,...,n) and it is the skeleton of 
the balanced tableau T where for j > i, T(j,i) = (((j − 1) ∗ (j − 2)/2) + i) for i ∈ 

{1,...,j − 1} . Each row and column is sorted in increasing order. 

(3) Given an H-persistent graph G, [3] presents and O(n5) algorithm that 
provides a sequence of persistent graphs that starts with the complete graph 

Kn and ends with G. The algorithm deletes successively a set {e1,...,ek} of 
reversible edges and constructs for each i = 1,...,k a maximal chain Chi in (Sn,≤ 

WB) such that skeleton(Chi) is isomorphic to the persistent graph Gi = G − 
{e1,...,ei}. 

(4) Gk is isomorphic to a persistent graph G given as input. 

Items 1,2,3,4 above allow us to conclude that any persistent graph G is the skeleton 
of a balanced tableau T ∈ SS(n) where T is the encoding of the maximal chain Chk 

produced by the algorithm where k is the number of edges that have to be deleted 

from Kn to obtain G • 

Since balanced tableaux and maximal chains in the weak Bruhat order of Sn are just 

different encodings of the same objects we will abuse notation by using Skeleton(Ch) 
to refer to the graph associated with the balanced tableau corresponding to Ch. It 
makes sense them to define an equivalence relation on maximal chains based on the 

skeletons of their corresponding balanced tableaux. Namely, two maximal chains are 
related if their corresponding balanced tableaux have the same graph skeleton. The 
reader may be wandering what this has to do with the majority rule. The answer is 

that if Ch0 is a maximal chain ⊂ Closure(Ch) then Skeleton(Ch0) is identical to 
Skeleton(Ch), i.e. each maximal connected consistent set C in the weak Bruhat of Sn 

has a unique persistent graph associated with it. This graph encodes the local column 
maximums (and local row minimums)of the tableaux associated with any of the 
maximal chains appearing in C. The corresponding graph represents a global 

characteristic of the set of rankings which offers a ”novel” approach to understanding 
voters profiles. As an example, the well known single peakedness condition for 

transitivity corresponds to a very special persistent graph. This line of thinking brings 
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immediately the characterization question, i.e. do persistent graphs characterize 
maximal connected consistent sets? In other words, is the Closure of a maximal chain 

Ch equal to the union of all maximal chains Ch0 which have the same skeleton as Ch?. 
The answer is not always. For sure we know that Closure(Ch) is contained in the set 
of all chains that have the same skeleton as Ch but the reverse is not true. However, 

we can provide a geometric characterization and this is the purpose of the next 
section. 

3. Maximal Chains in the Weak Bruhat Order with the same Skeleton and Non-
degenerate Point Configurations 

Let Conf be a non-degenerate configuration of n points on the plane. Without loss 
of generality, assume that not two points have the same x-coordinate and label the 
points from 1 through n in increasing order of their x-coordinates. The points in the 

configuration determine  straight lines. We can construct a tableau T of shape 

SS(n) that encodes the linear order on the slopes of these lines by setting T(i,j) = l if 
and only if the rank of the slope of the line through i and j in this linear order is l. As 
the reader may suspect the obtained tableau is a balanced tableau and therefore it 

encodes a maximal chain in the weak Bruhat Order. This chain is precisely the first 
half of the Goodman and Pollack circular sequence associated with the configuration 

([13]). The question is what is a geometric interpretation of the skeleton of the 
corresponding tableau?. In other words, what geometric property is encoded by the 
corresponding persistent graph?. The answer lies in the notion of visibility graphs of 

staircase polygons ( Definition 3.2 ). This is the subject of the remaining part of this 
paper. It contains a proof sketch of one of the main results of this work (Theorem 3.4) 

Definition 3.1. Consider a configuration Conf of n points {p1,...,pn} with coordinates 
(xi,yi) for point pi. Conf is called a staircase configuration if for every i < j, xi < xj and yi 

> yj. A staircase path consists of a staircase configuration plus the n−1 straight line 

segments joining pi and pi+1, for i = 1,...,i = n−1. A staircase polygon P is a staircase path 
together with the segments from the origin to p1 and from the origin to pn, (Figure 4 

illustrates a staircase polygon). 

Definition 3.2. Two vertices p and q of a simple polygon P are said to be visible if the 

open line segment (p,q) joining them is completely contained in the interior of P or if 
the closed segment [p,q] joining them is a segment of P’s boundary. The visibility 

graph of a simple polygon P is denoted by V is(P) = (V,E) where V is the set of vertices 
of P and E is the set of polygon vertex pairs that are visible. 

Proposition 3.3. The visibility graph of a staircase polygon P with ordered vertex set 

(p1,...,pn) is a persistent graph with respect to the hamiltonian path H = 

(p1,...,pn). 

Proof Sketch:The first half period of the Goodman and Pollack circular sequence 
([13]) associated with the point configuration, defined by the vertexes of a staircase 

polygon P, is a maximal chain in the weak Bruhat order. Therefore its associated 
tableau T which completely encodes the ordering of the slopes is balanced and its 
associated skeleton is persistent by Theorem 2.8. To see that this graph is identical 

to the visibility graph of P let mik denote the magnitude of the slope between points pi 

and pk where k > i + 1. pi is visible from pk if and only if the open line segment joining 
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them lies in the interior of P. For the case of staircase polygons this implies that there 
is no j,k < j < i such that mik ≤ mij. Therefore mik > mjk for j = i − 1,i − 2,...,k + 1. Since T 

encodes this ordering this means that vi is 

 

Figure 4. A staircase polygon. Since vertex 0, that is the origin, sees 

everybody it is removed from consideration. 

visible from vk iff T(i,k) is larger than all entries that lie above it, i.e. T(i,k) is a 
restricted local maximum. • 

From the majority rule view point the previous proposition says that when the 
voters rankings have a corresponding staircase point configuration the candidates 

can be placed on a staircase path and each voter’s ranking correspond to his/her 
view, of the candidates in the configuration, when the voter is located outside the 
convex hull of the point set. The local maximum statistics obtained from the slopes 

ranking are encoded by geometric visibility among the candidates within the 
corresponding staircase polygon. What about a converse, i.e. Is it clear when is it that 

the voters rankings have a corresponding staircase configuration?. The next result 
states that if the set of voters rankings is the Closure(Ch) for some Ch ∈(Sn,≤ WB) then 
there exists a staircase polygon P on n points so that its V isibility graph is isomorphic 

to Skeleton(Ch). 
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Theorem 3.4. Let Mn denote a maximal consistent set and let Ch be a maximal chain 

in (Sn,≤ WB). Mn = Closure(Ch) iff Skeleton(Ch) is the visibility graph of a staircase 

polygon P on n points. 

Proof Sketch:[3] (←) The visibility graph of a staircase polygon P is identical to 

skeleton(T) where T encodes the ranking of the  slopes determined by the n 

polygon vertices as in the previous proposition. By letting Ch denote the 

corresponding maximal chain in (Sn,≤ WB) and using Theorem 2.2 the result follows 
• 

Proof Sketch: (→) Mn = Closure(Ch) implies that Skeleton(Ch) is H-persistent where 
H = (1,2,...,n) by Theorem 2.8 . The difficult part is to prove that there exists a staircase 
polygon P such that V is(P) is identical to Skeleton(Ch). The tricky aspect is that Ch 

may not be realizable at all as a non-degenerate configuration of points. In fact, 
deciding if a given Ch is realizable in the sense described in this paper is NP-hard. 

However, what we are able to prove constructively is that there exists a maximal 
chain Ch0 in (Sn,≤ WB) such that Skeleton(Ch0) is identical to Skeleton(Ch) even though 
Ch may not be realizable. This means that there is a geometric staircase ordering of 

the candidates whose corresponding set of local maximum is the same as those of any 
chain in Closure(Ch). In other words by lifting the hard question of direct realizability 
of maximal chains to persistent graphs we get out of a difficult mathematical 

stumbling block. The essential tool is an inductive geometric simulation of the main 
steps followed in the proof of Theorem 2.8. Namely, take Skeleton(Ch) and create 

corresponding geometric steps that produce from a convex staircase configuration, 
realizing the complete graph Kn, staircase configurations whose visibility graphs are 
precisely the intermediate persistent graphs 

are reversible edges. In this way a staircase 
realization of Gk = Skeleton(Ch) is eventually produced. Full details are deferred to the 
full paper version• 

4. Conclusions 

Maximal chains in the weak Bruhat order of the symmetric group are consistent 

sets that determine structurally maximally connected consistent sets. With each such 
maximal consistent set we associate a persistent graph that turns out to be a visibility 

graph of a simple polygon. An interpretation of these results is that these classes of 
voters profiles can be represented by non-degenerate staircase configuration of 
points(one point per candidate) where each ranking in the set corresponds to a 

voter’s view of the point configuration. This offers a wide generalization of conditions 
for transitivity of the majority rule. Among the many interesting questions remaining 

to be answered we mention the following. 

(1) Are there any maximal consistent subsets of Sn of larger cardinality than 
those which are characterized as Closure(Ch) with Ch a maximal chain in (Sn,≤ 

WB) ? 

(2) Given C ⊂Sn what is the complexity of determining if C ⊂ Closure(Ch) for some 

Ch a maximal chain in (Sn,≤ WB) ? 

(3) How to generalize the results obtained here to weak orders instead of linear 
orders? 
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