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The time dependence of distribution function for the system composed of material 

points having circular orbits at initial moment of time with and without massive central body is 

obtained. As a result of chaotization of orbits, a part of material points evaporates (acquires 

positive total energy). Dependence of the fraction of evaporated material points on the width of 

the disk, their mass and initial distance to the central body is obtained. Wherein, the maximum 

fraction of evaporated particles for the case with central body is equal to 0.4. Initial stage of 

evaporation of a ring of particles with a central body is a subdiffusion with the dependence of the 

mean square bias on time 


=2R K t , where α = 0.27. For the case without a central 

body, the fraction of evaporated particles is obtained as a function of the number of particles in 

the ring and virial ratios. The dependence of the fraction of particle pairs leaving the system on 

the number of particles in the ring is obtained. The average fraction of pairs for the virial ratio K 

= -U turned out to be 0.2. Power spectra characterizing the evaporation of particles, 

approximated by a power-law dependence on frequency, are obtained.  
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Introduction 

Mutual influence of bodies interacting on the basis of gravitational field leads to the 

chaotization of their orbits (see, for example, [1], [2], [3]). According to the classical results of 

mechanics [4] in the planetary N-body problem, quasi-periodic orbits exist and thus the stability 

is ensured for sufficiently weak interaction. However, in the case when several orbits locate 
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relatively close from each other and the masses of the bodies are big enough, the chaos can cover 

significant areas of the phase space of the system. 

On the other hand, the behavior of large number of bodies can be described in terms of 

distribution functions. For example, for the distribution of the stars in the galaxies the 

asymmetrical by velocity Maxwell distribution is often used [5]. However, the origin of such a 

dependence remains largely unclear. The distributions of comets and other bodies are also 

known. The observations of the motion of stars in several galaxies [6] lead to the conclusion that 

with time their motion becomes more regular. What can we say in this context about an arbitrary 

gravitating system? 

It is well-known, that thermodynamics and statistical physics of the systems with long-

range potentials greatly differs from the systems with short-range potentials (see, for example, 

[7-16]). In particular, it is seen in the fact that in such systems (for which the systems with 

gravitation refer to) the internal energy of the system is not an additive value as the interaction 

between farther areas of the system can’t be neglected. As a consequence such systems can exist 

in long-living quasi-stationary states, and a concept of “local equilibrium” for such systems can’t 

be introduced. 

In a paper [17] the question of the applicability of thermodynamics to systems with 

gravity is considered in a broader context. It is shown that for such systems as material points 

interacting according to the law of gravity, dark matter, black holes, the universe as a whole 

thermodynamics is not applicable due to the lack of equilibrium (global or local). On the other 

hand, in systems in which gravity is not the only force, and along with it there are short-range 

forces, thermodynamics can be applied. Such systems include planets, stars, star clouds. 

In papers [7, 8] quasi-stationary distribution of large number of bodies for the case of 

3D gravity under the assumption of initial spherically symmetric distribution is obtained. As the 

basis of the particles dynamics in this case (in thermodynamical limit of large number of 

particles) the Vlasov equation for the one-particle distribution function performs: 

 
 

 
 

-+p f p,q,t =0
t q q p

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ,                     (1) 

where  presents the gravitational potential produced by all the particles in the 

system. 
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However, for the non-symmetrical initial distributions the analytical solution can’t be 

obtained. Wherein, the transitional evolutionary processes for such quasi-stationary states remain 

unclear. 

The difference of particle distribution in a 3D cluster of particles with gravity and the 

Gauss distribution has also been repeatedly considered. For example in the paper [12] a 

“democratic” Gauss distribution was suggested to consider. 

In paper [18], nonequilibrium fluctuations in the ring of bodies with gravity are 

considered. As a result, the power-law dependences of the mean-square relative fluctuations of 

the number of particles that left the system on the number of particles in it were obtained. It is 

shown that this dependence has a power-law form ~N
α
, where α increases with virial ratio. 

A system with an initial water-bag distribution is discussed in the paper [19]. The 

dependence of the fraction of evaporated particles from the cluster on time for different initial 

conditions is obtained. The fraction of these particles depends on the initial conditions so that for 

higher initial velocities, it is about 0.65, while for the lowest ones it is 0.45. 

However, despite the results obtained, many questions of the temporal behavior of 

systems with gravity remain unresolved. 

 The modeling of mesoscopic system, which, on the one hand, demonstrates statistical 

properties, but on the other hand can be considered as dynamical system, is of interest. In such a 

system the correlations between particles, that can lead to chaotization of their movement 

(chaotization is connected with the concept of dynamical chaos which can be measured by the 

maximum Lyapunov exponent, which will be considered below) and as a consequence to 

evaporation (e.g. the gain of the particle of the positive total energy and as a consequence the 

escape to infinity of the system) of particles, are important.  

The problem is that the evolution of distribution function for the system of bodies with 

gravity significantly depends on the initial conditions. For which initial conditions the material 

points don’t leave a finite area of space at all? What can we say about the kinetics of the 

transitional processes in such a system? What is a relationship between the rate of evaporation of 

the particles and chaotization properties of their movement? 

To answer these and other questions, in this paper the system representing a ring of 

interacting bodies rotating at initial moment of time on circular orbits with and without central 
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body is considered. The aim is to trace the orbits’ evolution of system of bodies taking into 

account mutual gravitation influence of them. 

 

1. The evolution of distribution function of material points in the system of particle 

ring with a central body 

Consider the system consisting of massive central body and the bodies of lesser mass, at 

initial moment of time rotating around it on circular orbits (Fig. 1): 

 

Fig.1. 

All of the bodies are considered as the material points, which move only under the 

influence of gravitational forces in X-Y plane: 

 


2 2
i i i k

22 2
ki i i ki k

d r r r -rmM m
m = -G - G
dt r r r -rr -r ,                (2) 
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where m is the mass of the particle, M – is the mass of the central body, ir
r

  - is the 

radius vector of the material point.
 

The velocities of the particles at initial moment of time are specified from the condition 

of stationary circular orbit with given initial radius and with the interaction of a particle only 

with the central body. The mass of the central body is equal to the mass of the Sun, the masses of 

the particles are measured by the mass of the Earth (6×10
24

 kg), and the distance is measured in 

AU (astronomical units, 1AU=1,5×10
11 

m). 

In series of papers [15, 16] the 3D gravity of particles moving along the ring is 

considered. This case turns out to be easy for theoretical consideration. However, in contrast 

with the case considered in this paper, in this case the particles can’t leave the ring. 

The dynamics of every particle occurs under the influence of classical gravitation force 

taking into account the interaction both with the central body and with the other particles. 

Numerical calculations were held with the step of 0.01 year. As a result (depending on the initial 

distributions of particles) the system partially chaotizates, which leads to the change of 

distribution function of velocities and coordinates. 

To receive the distribution function of particles on velocities and coordinates the 

calculations were made for the ensemble of the following initial conditions: the particles are 

located on the orbits spaced apart from each other with equal distance, but their angular position 

is distributed randomly. The obtained result is averaged by 100 initial realizations. As a result, 

the distribution functions of the material points for velocity and radius-vector are obtained (Fig 

2-5). 
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Fig.2. 

 

 

Fig. 3. 
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Fig. 4. 
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Fig. 5. 

The calculations were made on the basis of the velocity form of Verlet algorithm (see, 

for example, [20, 21]). The peculiarity of the calculations for systems with gravity is the fact that 

the collisions between the particles are absent, though the enough close convergences of them 

are possible. Exactly as a result of such convergences the particle velocities change most 

strongly. For the providing of the correctness of the calculations the step of calculations was 

chosen so that the error induced by close convergences would be small compared with error 

induced by random specification of initial conditions. 

From the Fig. 4 we can see that the distribution function being initially close to δ-

function, changes with time, gradually occupying larger areas of the phase space. We determine 

how much obtained distribution functions differ from Gaussian function. To do this, we 

numerically find the dependence of the dispersion on time.  For the Gaussian distribution such 

dependence should be linear according to the Einstein’s equation, which for the 2-dimension 

case takes the form: 

2R = 4Dt ,                                               (3) 

where D  is the diffusion coefficient of the particles. The obtained dependencies are 

depicted in Fig. 6. 



9 
 

 

Fig. 6. 

As we can see from Fig. 7, both dependencies are not linear, and their average 

inclination decreases with time. Moreover, the dependence of dispersion of the velocity on time 

is stair-step, i.e. the velocity distribution of the particles is not Maxwell at initial stage of the 

evolution. Dependence obtained is characteristic for subdiffusion (see, for example [22]), for 

which the following equality is fulfilled: 





2R =K t
.
 

Approximation by power function (Fig.7) gives index which is equal 0.27. For 

subdiffusion power distributions are characteristic, in contrast with Gaussian distribution for 

ordinary diffusion. Strictly speaking, for such a system we cannot introduce the diffusion 

coefficient because there is no local equilibrium in this system. We can use the term “effective 

diffusion coefficient”, which characterizes the degree of the chaotization of the system.  The 

obtained results can be interpreted as follows: the degree of chaotization of the system decreases 

with time. The reason for this is that as a result of the destruction of the ring the average 

distances between the particles increase. 
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As it is known, the evolution of the isolated system of bodies where the total energy 

conserves is connected with the fulfillment of the Virial theorem: 

2K+U =0  ,                                            (4) 

where K and U are the total kinetic and potential system enegry. 

As it was noted before [8], the fact that the system at the initial moment of time satisfies 

the Virial theorem does not mean that the system will stay further in the stationary state. For this 

it is necessary that the distribution function would be the stationary solution of Vlasov equation. 

The authors considered as an initial exactly that condition, which satisfies the Virial theorem 

since in this case the relaxation to the quasistationary state occurs by the mechanism mixing of 

particle trajectories. At the violation of conditions of the Virial theorem the mechanism will 

include excitation of parametric resonances and a nonlinear Landau damping. 

In the present paper the initial conditions close to virial are chosen (initial orbits of the 

particles are circular, their radius corresponds to the interaction of the particles only with the 

central body). Such a choice is caused by the fact that for the enough rarefied system (in the limit 

of small masses of the material points or large distances between them) such initial state should 

preserve, e.g. it exactly corresponds to the concept of nonequilibrium quasistationary states 

(QSS) [8]. 

 

2. The evaporation of the ring of material points with a central body 

As a result of chaotization of the motion of material points they will gain different 

energy. In particular, the part of the points can gain energy high enough for their escape to 

infinity (i.e. positive total energy). Such a process is largely similar to the evaporation of the 

liquid (solid) body for the systems with short-range potentials. In particular, the intensity of the 

evaporation in such systems increases with the growth of the temperature. However, in the case 

under consideration the systems, where the only force is gravity, we can’t introduce the concept 

“temperature”. Nevertheless, in the system under consideration with gravity a particle should 

also overcome a potential barrier. 

The flow of the particles outside the orbit can be found on the basis of the distribution 

function.  

We note that for the system consisting of more than two bodies the particle gain of the 

positive total energy, strictly speaking, is not enough for making a conclusion of that it will 
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escape to infinity. However, for the system with the ordered initial conditions (the circular orbits 

in our case) the probability of the fact that the particle having gained positive total energy in the 

future (until its distance to the central body will be high enough) will have time to get close with 

another particle and give energy to it (as a result of that the total energy will be negative) is 

small. This conclusion is confirmed by the numerical calculations. 

We consider the dependence of the intensity of evaporation for the ring of interacting 

material points in the presence of the central body on the parameters of the systems. In Fig.7 the 

dependence of the fraction of evaporated particles on the mass of the particles and on the width 

of the ring is depicted. 

 

Fig. 7. 

The points present the results of the numerical experiment. 

The surface is approximated by the second-degree polynomial: 

2 2
1 2 1 2 3z =a+b x+b y+c x +c xy+c y ,                         (5) 

where a = 0.08, b1 = 0.002512, b2 = -0.006061, c1 = -4.145e-006, c2 = -7.164e-006, c3 = 

1.385e-005. 
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Wherein the approximation is characterized by the following values: SSE (sum of 

squares due to error): 0.1494, R-square (coefficient of determination): 0.9237, Adjusted R-

square: 0.9207, RMSE (root mean squared error): 0.0343. 

According to the results of the numerical experiments the following conclusions can be 

made: 

1. The fraction of the evaporated particles with the increase of the masses of the particles 

and with the decrease of the radius of the ring tends to the certain value. In this case 

interaction between particles is the most intensive and can lead to the chaotization of 

their orbits and to evaporation. However, we should note that with the conservation of 

the total energy some particles can evaporate only at the expense of the others. Hence 

this fraction can’t be equal to unit (if the central body is considered to be fixed). Such 

evaporation will lead to the formation of two phases: gas phase (where the particles 

have an infinite motion and weakly interact with each other with time) and “condensed” 

(ordered) phase, where the particles also increasingly weakly interact with each other, 

rotating on the orbits close to circular. The maximum fraction of the evaporated 

particles according to the calculations tends to 0.4.  

2. The intersection of this surface with the XY plane gives the dependence of particles 

mass on the width of the ring which is a boundary of the “condensed” phase. This 

means that with smaller masses (or the larger width of the ring) no particle can leave the 

system. In Fig.7 the dependence of the ring width on the mass of a particle 

corresponding to the border of the condensed phase is depicted. 

 

Fig. 8. 
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It is seen from the figure that with large masses of the particles the width of the ring 

corresponding to such a boundary also increases. With the mass of the particles tendency to zero, 

the width of the ring, corresponding to such a boundary must also tends to zero, however, such a 

property largely depends on limited accuracy of calculations. 

Consider the dependence of the evaporated particles fraction on the average radius of 

the ring. Wherein, the smaller initial radius will correspond to the location of the particles in 

deeper potential well, and vice versa. In the Fig. 10 the dependence of the evaporated particles 

fraction on the initial distance to the central body is depicted. 

 

Fig. 9. 

 

As we can see from the Fig. 9 this fraction increases with small distances, it also tends 

to some relatively constant value in remote distances. The form of the curve is obviously 

determined by the following effects having the opposite trends. On the one hand, with the 

specified width of the ring and with the specified number of the particles the frequency of their 

convergence on the close distance (when the significant change of the orbits occurs) decreases 

with increase of the ring width. On the other hand, with increase of the ring radius, particles are 

located on the edge of the potential well, i.e. the barrier which they must overcome to evaporate, 

is small. 
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3. The relationship between chaotization of particles trajectories and the rate of 

their evaporation 

As correlations between the particles lead to their evaporation, it is important to trace 

the connection between the characteristics of the chaos in the system and systems parameters. 

As a characteristic of the chaos in the system maximum Lyapunov exponent can act 

 

 



d(0) 0
t

d t1
h = lim ln

t d 0 ,                                 (6) 

where d(0) – the initial distance between the points in phase space. The value 

 =1/ h  

represents specific time of the divergence of the trajectories. That is, the evolution of 

the close points is investigated and it is found to what extent their trajectories diverge with time. 

The measure of the divergence of the trajectories is the distance between the points d(t). 

As a result of calculations for the case of 9 material points with masses equal to 1 the 

value τ is obtained approximately equal to 3 years. 

For the planets of the Solar system the value of h is equal to 10
-5

 (e.g., [23]). Chaos has 

also been observed in the dynamics of exoplanets [24]. As the resonances and dynamical chaos, 

associated with them, are the reasons of particles evaporation, average time of particles 

evaporation should be of the order of the average time of the trajectories divergence.  

It was obtained that maximum Lyapunov exponent depends weakly on the ring width 

and its radius. 

 

4. Modeling the evolution of the ring of material points without a central body  

Let us now consider a planar system with gravitation consisting of N material points 

without a central body interacting with each other according to the law of classical gravitation. 

As an initial condition, a random distribution of points on the angle φ in the XY plane 

was chosen, wherein the points were in orbits spaced from each other at the same initial distance. 

The nearest point of the ring was located at a distance of 1 AU from the center, and the latter at a 



15 
 

distance of 30 AU. The velocity modulus was calculated from the corresponding ratio of the 

potential and kinetic energies. The number of particles varied from 20 to 50, respectively, the 

mass from 80 to 200 Earth masses. The total mass of all particles is constant and equal to 4000 

Earth masses. 

Two separate studies on the initial velocities were carried out. In the first case, the 

velocities were chosen to be directed along the tangent to the circular orbit. In the second one - at 

a certain angle to it. 

The initial stages of the evolution of such a particle system (500 years for the case of 

various virial ratios with circular orbits and 1000 years in the study of pairs of material points 

flying out of the cluster) are investigated. The number of attempts for each ratio of masses and 

virial for the first case was 100, for the second case - 20. The fraction of evaporating particles 

was calculated for each case. 

We note that, generally speaking, for systems with long-range interaction, the criterion 

for the fact that particle left the system is not obvious. Only in the limit of an infinitely long time 

interval we can state that a particle having a positive total energy leaves the system. In this case, 

it will be located at infinity. In the case of finite time, there is a finite probability for the particle 

to return back to the system, i.e. to acquire, generally speaking, an arbitrarily large negative 

energy. 

When considering a system without a central body, the particle masses are large enough 

(in comparison with the case of the presence of a central body), accordingly, the probability that 

the particles will leave the system in pairs is high enough (this fact was confirmed by numerical 

experiments). In this case, the presence of positive energy for a particle does not yet mean that it 

has left the system. Therefore, for a case without a central body, a particle that has crossed a 

circular orbit with a radius equal to 3/2 from the maximum initial radius of the orbit of the 

outside particle was considered as evaporated. This criterion is also approximate. 

 

4.1. A study of the total fraction of evaporated particles for circular orbits 

The study of pairs of material points flying out of the cluster was investigated. The 

number of particles in this case varied from 20 to 40. The criteria for the pair were the following: 

the intersection of a circular orbit with a radius equal to 3/2 from the maximum initial radius of 

the particle orbit and the negativity of the total energy for two interconnected particles. 



16 
 

A simulation was carried out for three virial ratios: 

K = -U, K = -0.8U, K = -0.75U, where K is the kinetic energy of the system, and U is the 

potential energy of the system. For each ratio, two configurations of the directions of particle 

motion were investigated: the random direction of motion of the particles along a circular orbit 

and the same direction of motion in "domains" with 5 particles with a change in direction in each 

subsequent domain. 

As a result, distribution functions were obtained for the fraction of evaporated particles 

(ξ). An example of such a function is shown in Fig. 10.  

  

Figure 10. 

 

This function can be approximated by a Gaussian: 

  
  
   

2

1
1

1

x -b
f(x)= a exp - ,

c  
(4.1) 

where 1  0.2968a  , 1  0.6964b   , 1 0.1748c   . 

It can be seen from these graphs that the probability of a fraction of evaporated particles 

almost does not depend on the configuration of the directions of particle motion (in this case 

these are configurations of random directions and directions of movements on domains). 
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Figure 11. 

Let us consider the dependence of the average fraction of evaporated particles on their 

total number, configurations, and virial ratio (Figure 11). As it can be seen from the figure, the 

fraction of evaporated particles remains approximately constant for any of the considered virial 

ratios. Moreover, the greater the kinetic energy, the greater the fraction of evaporated particles, 

and the initial configuration of the directions of particle motion almost does not affect the 

fraction of evaporated particles within the framework of a single virial ratio. With the growth of 

the virial ratio, the fraction of evaporated particles increases, which is natural. 

Let us introduce the value NE - the number of particles evaporated from the system 

during the time τ. We remind that a particle for a case without a central body is considered 

evaporated if it has crossed a circular orbit with a radius equal to 3/2 of the maximum initial 

radius of the particle orbit. The value of τ is random, for which we can introduce an average 

value: 


n

E Ei
i=1

1
N = N

n  

 

(4.2) 

We also introduce the relative mean-square fluctuation of this quantity: 
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  
1/2

2

E

E

N

N  

(4.3) 

and examine its dependence on the number of particles in the system. As a result of the 

processing of numerical data, it was found that there is an inverse polynomial dependence on the 

number of particles N, i.e 

1

N
:

. 

We consider it in logarithmic coordinates and approximate 

by a linear function with the method of least squares (Figure 12). 

 

Fig. 12. 

 

Where K = −U, α = 0.4498; where K = −0.8U, α = 0.446; where K = −0.75U, α = 

0.535.  
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Fig. 13. 

 

As a result of numerical simulation, it was found that the rate of particle evaporation from 

the ring decreases with time. In particular, the dependence of the average fraction of evaporated 

particles on time was obtained (Fig. 13). This is a power law of the following form: 


4.6

1

t  

(4.4) 

Thus, the system relaxes ("cools") in a power law. We did not consider small times (0-

200 years), because at such times the particles still do not have time to overcome a distance 

sufficient to consider them evaporated. We note that the power law was also observed in other 

systems (such as Saturn rings). 

However, a direct comparison with these results cannot be made, because in the case of 

Saturn, Saturn itself and its satellites play an important role in the dynamics of the rings. In our 

case, there is no central body. As is known, power laws are characteristic, for example, for self-

organized criticality (see, for example, [25]). Indeed, the existence of conditions close to critical, 

in this case is possible, because the first evaporating particles have the largest energy, and other 

particles influence them the most. The remaining particles distort each other's movements 

weaker and weaker (see, also, [18]). 
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A study of the average fraction of evaporated particles for the random initial direction of 

the particles and the ordered motion in one direction was also made, and the influence of the 

initial eccentricity was also studied. As a result of the simulation, it turned out that these factors 

have little effect on the average fraction of evaporated particles. 

 

4.2. The investigation of the fraction of pairs of evaporated particles 

In the study of the fraction of evaporating particles, an interesting question is, what the 

fraction of pairs in the total number of evaporating particles is. Calculations were made in the 

framework of previous calculations with virial ratios K = -U, K = -0.4U and configurations of 

the directions of particle motion with a random direction of motion of the particles along the 

circular orbit and counterclockwise. 

Let us consider the dependence of the average fraction of pairs of evaporated particles 

on their total number for the virial ratio K = -U and the configuration of the random direction of 

particle motion (Figure 14). 

 

Fig 14.  

From the calculations it can be concluded that the fraction of evaporated particle pairs 

for the virial ratio K = -U is large enough, but the configuration of the directions of movements 

strictly along circular orbits or in orbits with eccentricity has little effect on this value. 
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4.3. Semi-phenological model of evaporation of ring 

Полуфеноменологическая модель испарения кольца 

The numerical calculations of the evolution of the ring of material points with 

gravity for various initial configurations, as well as in the presence of a central body and 

without it, allow us to construct an analytical model of this process.  

As the basic assumptions of the model, we accept the following: 

- we will consider the balance of particles in the system as a whole,  

- random processes, which are the consequence of chaotization of trajectories, will 

be modeled using Gaussian noise. 

Since the energy barrier that prevents evaporation of particles is created by all other 

particles of the ring, as well as by the central body, we first calculate the gravitational 

potential at the middle of the width of the ring. On the basis of the law of interaction 

between particles, we obtain the potential of an infinitely thin ring of mass m at an arbitrary 

point: 

1/ 2
2

0 0

1

2
1 2cos

d m

R r r

R R







  
      

d = - G

. 

Here r0 is the coordinate of an arbitrary point, R is the radius of the ring (see Figure 15). 

We introduce n - the average number of particles per unit radius of the ring. Then one 

can find the potential of a ring of finite width at its center: 

 
  

1/2
22 1 2 cos

d n
l m

y y





  

 
1+l/2 2

1-l/2 0

= -G dy
.  (4.5) 

Here y = r0/R, l = L / R is the dimensionless width of the ring. 

The potentials difference multiplied by the particle mass, (0 - φ(l))m, will be the average 

potential barrier for particles in the ring E. In the presence of noise, a particle can overcome this 
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barrier with a certain probability. Then we write the equation of balance of particles in the ring in 

the following form: 

2

eff

dn E

dt

 
   

= -An exp
.                      (4.6) 

Here Θeff – is the effective temperature of the noise.  

 

Fig.15. 

The escape of particles from the ring is due to the close approach of two particles, each 

of which receives a large energy. Let us further assume that the noise temperature is proportional 

to the density of the particle orbits. Then we finally get: 

2dn B

dt n

 
 
 

= -An exp
. 

Here, A and B are phenomenological coefficients that cannot be found within the 

framework of this model. 

Let us consider two cases: in the presence and in the absence of a massive central body. 
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In the case of a massive central body, a potential barrier for particles is created mainly 

by this body, i.e. the value of B can be regarded as constant. Then we obtain a solution of (4.6) in 

the form: 

0

B
n

B
t

n


  

  
  

ln AB exp . 

Here n0 – is the initial density of particles. For the evaporation rate we obtain: 

2

0
0

dn B AB

dt BB tt nn

 
                

AB expln AB exp . 

In the absence of a central body, a potential barrier is created only by the ring itself. In 

this case, the barrier value, according to (4.5), is proportional to the average particle 

concentration. In this case we obtain the equation: 

 2dn

dt
= -An exp

. 

Here, α will not depend on the particle concentration. The solution of this equation will 

have the form: 

 
0

0 1

n

n t 
n=

Aexp . 

Evaporation rate will take the form: 

  
 0

02

0 1

n
n

n t





 

dn
= - Aexp

dt Aexp . 
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Thus, in the presence of a massive central body, evaporation will be relatively slow, 

since the particle barrier remains approximately constant during evaporation. In the absence of a 

massive central body, relaxation is faster, since during the evaporation process the barrier for 

particles itself decreases, which in turn leads to acceleration of evaporation. 

The result obtained for the evaporation rate (proportionality 1/t
2
 for sufficiently large t) 

qualitatively coincides with the one found numerically. As a result of numerical calculations, the 

evaporation rate was found to be proportional to 1/t
2.8

 [18] and 1/t
4.6

 in this paper. The 

discrepancy between the theory and the numerical experiment in the degrees of the dependence 

of the rate of evaporation on time can be related both with the approximation of the model and 

with a relatively small number of numerical experiments. In addition, particles at the outer edge 

of the ring, for which the potential barrier is minimal, can contribute to the high rate of 

evaporation. 

The construction of a more rigorous (distributed) model encounters difficulties 

associated with the analytic determination of the noise spectrum and the dependence of the 

intensity of the random process on the coordinates. This issue requires separate consideration. 

 

4.4. Power spectrum and autocorrelation functions 

The autocorrelation function is an important quantitative characteristic of random and 

chaotic processes. Its physical meaning is that it characterizes the relationship between events for 

the same signal, taken with a time shift. The autocorrelation function and the power spectrum are 

determined by the following formulas 

 
 

T

T
0

1
R( )= lim x(t)x(t+ )dt

T
 

i 









1

S(w)= R( )e d
2

 

  In this case, the signal means the dependence of the coordinates of one body on time. 

We introduce for the ring of particles with gravity the flow function f(t) of particles 

leaving the system through the boundary: 

    i
i

f t = t -t
, 

(4.7) 

where ti is the time when the i-th particle crosses the boundary line and evaporates. 
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Then the power spectrum s(ω) in this case can also be defined as follows [26]: 

      

2T

T

-T

1
s w lim f t exp iwt dt

2T  
(4.8) 

The particle flow is understood as the fraction of the departing particles at a fixed time 

interval. The data on the fraction were averaged over a set of experiments for a given initial 

configuration for specific values of N (the number of particles in the system). The model 

considered is in many respects similar to the traffic model for cars with two lanes [26]. 

We construct graphs for the signal, which will be the flow function f (t) written above, 

as well as its autocorrelation function and power spectrum for the initial configuration indicated 

above in experiments with the number of particles in the system N = 40. 

 

Figure 16. 
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Figure 17. 

According to Figure 19, it can be concluded that the signal is randomized since the 

autocorrelation function decays with time (see, for example, [27]). 

 

 

Figure 18. 

From Fig. 18 it can be seen that the power spectrum has many peaks. 

Calculations for the case with the number of particles N = 20 are shown in the figures. 
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Figure 19. 

 

Figure 20. 

 

Figure 21. 
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According to the data from the graphs for the experiments with N = 20, it can be seen 

that the signal, its autocorrelation function and the power spectrum differ significantly from the 

data for the experiments with N = 40. This can indicate how much the initial conditions affect the 

process. In this case, the initial conditions for the coordinates especially strongly influence, since 

they are assigned each time in a random manner with respect to the angle φ for each particle in 

its orbit located in a ring with internal radius 1 AU and external one 30 AU. The number of 

particles in the system is also important. 

Let us compare graphs of signals, ACF and power spectrum for the same virial ratio K 

= -0.4U, but for experiments with initial particle velocity vectors directed in a random direction 

tangentially to the circular orbit at N = 20, 30, 40. 

 

Figure 22. 
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Figure 23. 

 

Figure 24. 
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In the case of N = 20 (Fig. 22), the chaotic behavior of the signal is similar to that of the 

configuration for the directions of the velocity vectors strictly counterclockwise (Figure 19). The 

behavior of their autocorrelation functions is also similar, but there is a striking difference 

between N = 20 and N = 30, 40. 

At N = 40 for both configurations the behavior of the signal is somewhat similar, and 

there are practically no negative values. And there is a noticeable significant difference in the 

nature of the signal between N = 20 and N = 30, 40 and some similarity between N = 30 and N = 

40. It can be said that an increase in the number of particles in the system does not lead to 

chaotization of this signal. 

Let us approximate the power spectrum for the last three signals (Figures 22-24) by the 

power function   N

1
S f

f  .  

Table 1 

                             Number of                       

particles, N 

Configuration  

20 30 40 

All particles are directed tangentially to 

the circular orbit counterclockwise -0.4199 -0.4314 -0.5776 

Random direction tangentially to the 

circular orbit -0.3209 -0.5162 -0.5478 

 

 

The emergence of a 1/ f  - noise is associated with the system's tendency to regulate 

its dynamics - particles bringing together too closely have to fly away from the system, as they 

receive too much momentum (a similar behavior is observed in the traffic model of cars). 

Also in both systems clusters of particles are observed. It can be assumed that this is 

promoted by the choice of a particular configuration of the system with a particle ring size of 1-

30 AU. Wherein the interaction of the particles is not so strong that initially being close to each 

other, small groups of particles can form a cluster, and move in it for a sufficiently long period of 

time until it disintegrates or exchange of its elements with particles from other clusters or single 

particles occurs. 

The results of the numerical simulation can be used both for understanding the origin of 

planets from a protoplanetary cloud, and for understanding the evolution of stellar clusters and 

galaxies. In particular, to model the evolution of galaxies, it is necessary to take into account 
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dark matter, which is a significant part of the mass of the galaxy. If the only interaction in which 

dark matter participates is gravity, then the results obtained by us can be important for 

understanding the evolution of dark matter, and its evaporation in galaxies. In particular, the 

problem of casp-halo for dark matter remains largely unresolved. One of the promising ones is 

also the problem of the formation of galaxies from primodial perturbations in the early stages of 

the evolution of the universe. 

In the future, we plan to construct a distributed analytical model for the evolution of the 

ring of material points, with the help of which it would be possible to calculate the spectrum of 

fluctuations of the departing particles. 

 

Conclusion 

As a result of the numerical simulation of the evolution of the gravitating disk with and 

without the central body, time dependence of the distribution function is obtained. Wherein, the 

effective diffusion coefficient decreases. This corresponds to the reduction of system 

chaotization degree. The dependence of the fraction of the evaporated material points on the 

width of the disk, their mass and initial distance from the central body is obtained. The 

maximum fraction of the evaporated particles tends to 0.4. The dependence of the maximum 

Lyapunov exponent on the width of the ring is obtained. 

For the case of the absence of a central body, the dependence of fraction of particles that 

left the system on the virial number is obtained. The dependence of the fraction of pairs of 

particles leaving the ring on the initial configuration of the system is investigated. The average 

fraction of such particles turned out to be 0.2. 

Semi-phenomenological model for the evaporation of a ring with a central body and 

without it was constructed. 

Power spectra and autocorrelation functions for some system configurations are 

analyzed. The power spectra of the obtained signals were approximated by a power function of 

the form 1/ f .  
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Figure captions 

Fig.1 Initial configuration of bodies. 

Fig.2 The velocity distribution function of the material points (20 material points with 

masses m = 318, width of the ring 29 a.u. after 25000 and 50000 step, respectively). 

Fig. 3 The velocity distribution function of the material points (20 material points with 

masses m = 150, width of the ring 8 a.u. after 25000 and 50000 step, respectively). 

Fig. 4 The distribution function of the material points for the radius-vector (20 material 

points with masses m = 318, ring’s width 29 a.u. after 25000 and 50000 steps, respectively). 

Fig. 5 The distribution function of the material points for the radius-vector (20 material 

points with masses m = 150, ring’s width 8 a.u. after 25000 and 50000 steps, respectively). 

Fig. 6 Dependence of dispersion of the position of particle Dr on time, where 1 step = 

0,01 year. 

Fig. 7 Dependence of dispersion of the velocity of particle Dv on time, where 1 step = 

0.01 year. 

Fig. 8 The dependence of the fraction of the evaporated particles p on the mass of the 

particles m and on the width of the ring L during 500 years.  

Fig. 9 The dependence of the mass of a particle m on the width of the ring L 

corresponding to the boundary of the condensed (ordered) phase. 

Fig. 10 - The distribution function on the fraction of evaporated particles for the case N 

= 20 and the virial ratio K = -0.8U for configurations of random directions and domains 

Fig. 11 - Dependence of the fraction of evaporated particles on the number of particles 

and virial ratios 

Fig. 12 - Dependence of the mean-square fluctuation on the number for various virial 

ratios in logarithmic coordinates, where lnN is plotted horizontally, and lnf is 

  
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2
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E
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is plotted vertically 
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Fig. 13 - Dependence of the average fraction of evaporated particles on time for the 

virial ratio K = -U, N = 20. 

Fig 14 – The dependence of the average fraction of pairs of evaporated particles on their 

total number.  

Fig. 15 – configuration of the system for potentials difference calculation. 

Fig. 16 – Signal representing the dependence of the fraction of departing particles at 

fixed time intervals (N = 40). 

Fig. 17 - Autocorrelation function for the signal shown in Figure 16. 

Fig. 18- Power spectrum module for the signal shown in Figure 16. 

Fig. 19- Signal representing the dependence of the fraction of departing particles at 

fixed time intervals (N = 20). 

Fig. 20 - Autocorrelation function for the signal shown in Figure 19. 

Fig. 21 - Power spectrum module for the signal shown in Figure 19. 

Fig. 22 – The signal, its autocorrelation function and power spectrum (from top to 

bottom) for N = 20. 

Fig. 23 – The signal, its autocorrelation function and power spectrum (from top to 

bottom) for N = 30. 

Fig. 24 – The signal, its autocorrelation function and power spectrum (from top to 

bottom) for N = 40. 

 


