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Abstract. In this paper we investigate the reconstruction conditions of nuclear nor-
m minimization for low-rank matrix recovery from a given linear system of equality
constraints. Sufficient conditions are derived to guarantee the robust reconstruction in
bounded l2 and Dantzig selector noise settings (ϵ ̸= 0) or exactly reconstruction in the
noiseless context (ϵ = 0) of all rank r matrices X ∈ Rm×n from b = A(X) + z via
nuclear norm minimization. Furthermore, we not only show that when t = 1, the upper
bound of δr is the same as the result of Cai and Zhang [9], but also demonstrate that
the gained upper bounds concerning the recovery error are better. Finally, we prove
that the restricted isometry property condition is sharp.
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1 Introduction

Suppose that X ∈ Rm×n is an unknown low rank matrix, A : Rm×n → Rq is a known linear
map, b ∈ Rq is a given observation and z ∈ Rq is measurement error. The rank minimization
problem is defined as follows:

min
X

rank(X) s.t. ∥A(X)− b∥2 ≤ ϵ, (1.1)

where b = A(X)+z and ϵ stands for the noise level. Since the problem (1.1) is NP-hard in general,
Recht et al. [1] introduced a convex relaxation, which minimizes nuclear norm (also known as the
Schatten 1-norm or trace norm)

min
X

∥X∥∗ s.t. ∥A(X)− b∥2 ≤ ϵ, (1.2)

where ∥X∥∗ =
∑min{m,n}

i σi(X) and σi(X) are the singular values. The problem (1.2) is convex,
thus there are a large number of approaches which can be used for solving it. For efficient algorithms
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solving broad-scale instants, a great deal of researchers have developed them, such as Tanner and
Wei [2], Zhang and Li [3], Lu et al [4] and Lin et al. [5].

When m = n and the matrix X = diag(x) (x ∈ Rm) is diagonal matrix, the problems (1.1)
and (1.2) degenerate to the l0-minimization and l1-minimization, respectively, which belong to the
main optimization problems in the compressed sensing (CS).

In order to study the relationship between l1-minimization and the nuclear norm minimization
problems, Recht et al. [1] extended the notion of restricted isometry constant proposed by Candès
[6] to low-rank matrix recovery case. The concept is as follows:

Definition 1.1. Let A : Rm×n → Rq be a linear map. For any integer r (1 ≤ r ≤ min{m,n}),
the restricted isometry constant (RIC) of order r is defined as the smallest positive number δr that
satisfies

(1− δr)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δr)∥X∥2F (1.3)

for all r-rank matrices X (i.e., the rank of X is at most r), where ∥X∥2F = ⟨X,X⟩ = Tr(X⊤X) is
the Frobenius norm of X, which is also equal to the sum of the square of singular values and the
inner product in Rm×n as ⟨X,Y ⟩ = Tr(X⊤Y ) =

∑m
i=1

∑n
j=1XijYij for matrices X and Y of the

same dimensions.

By the aforementioned definition, it is easy to see that if r1 ≤ r2, then δr1 ≤ δr2.

Although it is not easy to examine the restricted isometry property for a given linear map, it is
one of the central notions in low-rank matrix recovery. In fact, it has been showed [1] that Gaussian
or sub-Gaussian random measurement map A fulfills the restricted isometry property with high
probability.

Recht et al. [1] showed that for the noiseless case (i.e., ϵ = 0), if δ5r < 1/10, then the minimum-
rank solution to (1.2) can be recovered by solving a convex optimization problem. Candès and
Plan [7] proved that when δ4r <

√
2 − 1, a low-rank matrix can be robustly recovered by nuclear

norm minimization (1.2). Mohan and Fazel [8] improved the upper bound of RIC to δ4r < 0.558.
Cai and Zhang [9] presented the sharp condition δr < 1/3 (δk < 1/3) for low-rank matrix (sparse
signal) recovery. Wang and Li [10] showed that the upper bounds δr < 1/3 and δ2r <

√
2/2 are

optimal. Kong and Xiu [11] obtained a uniform bound on RIC δ4r <
√
2 − 1 for any p ∈ (0, 1]

for low-rank matrix recovery via Schatten p-minimization. Chen and Li [12] showed that for any
given δ4r ∈ [

√
3/2, 1), p ∈ (0, 2(1 − δ4r)] suffices for the robust recovery of all r-rank matrices via

Schatten p-minimization.

Cai and Zhang [13] showed that for any given t ≥ 4/3, δtr <
√
(t− 1)/t ensures the exact

reconstruction for all matrices with rank no more than r in the noise-free case via the constrained
nuclear norm minimization (1.2). Furthermore, for any ε > 0, δtr <

√
(t− 1)/t+ε doesn’t suffice to

make sure the exact recovery of all r-rank matrices for large r. Besides, they showed that condition
δtr <

√
(t− 1)/t suffices for robust reconstruction of nearly low-rank matrices in the noisy case.

Motivated by the aforementioned papers, we further discuss the upper bounds of δtr associated
with some linear map A as 0 < t < 4/3. Sufficient conditions regarding δtr with 0 < t < 4/3
are established to guarantee the robust reconstruction (ϵ ̸= 0) or (ϵ = 0) of all r-rank matrices
X ∈ Rm×n satisfying b = A(X) + z with ∥z∥2 ≤ ϵ and ∥A∗(z)∥ ≤ ϵ, respectively. Thereby,
combined with [13], a complete description for sharp restricted isometry property (RIP) constants
for all t > 0 is established to ensure the exact reconstruction of all matrices with rank no more
than r via nuclear norm minimization.
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2 Preliminaries

We begin by introducing basic notations. We also gather a few lemmas needed for the proofs
of main results.

For any matrix X ∈ Rm×n (m ≤ n), the singular value decomposition (SVD) of X is represented
by

X = Udiag(σ(X))V ⊤,

where U ∈ Rm×m and V ∈ Rn×m are orthogonal matrices, and σ(X) = (σ1(X), · · · , σm(X))⊤

indicates the vector of the singular values of X. Assume that σ1(X) ≥ σ2(X) ≥ · · · ≥ σm(X).
Consequently, the best r-rank approximation to the matrix X is

X(r) = U

[
diag(σr(X)) 0

0 0

]
V ⊤,

where σr(X) = (σ1(X), · · · , σr(X))⊤.

For a linear map A : Rm×n → Rq, denote by its adjoint operator A∗ : Rq → Rm×n. Then, for
all X ∈ Rm×n and b ∈ Rq, ⟨X,A∗(b)⟩ = ⟨A(X), b⟩.

Without loss of generality, let X be the original matrix that we want to find and X∗ be an
optimal solution to the problem (1.2). Let Z = X −X∗. Let SVD of U⊤ZV ∈ Rm×m be provided
by

U⊤ZV = U0

[
diag

(
σT (U

⊤ZV )
)

0
0 diag

(
σT c(U⊤ZV )

)]V ⊤
0

where U0, V0 ∈ Rm×m are orthogonal matrices, σT (U
⊤ZV ) =

(
σ1(U

⊤ZV ), · · · , σr(U⊤ZV )
)⊤

,

σT c(U⊤ZV ) =
(
σr+1(U

⊤ZV ), · · · , σm(U⊤ZV )
)⊤

, and we suppose that σ1(U
⊤ZV ) ≥ · · · ≥ σr(U

⊤ZV ) ≥
σr+1(U

⊤ZV ) ≥ · · · ≥ σm(U⊤ZV ). Therefore, the matrix Z is decomposed as

Z = Z(r) + Z(r)
c ,

where

Z(r) = UU0

[
diag

(
σT (U

⊤ZV )
)

0
0 0

]
V ⊤
0 V ⊤

and

Z(r)
c = UU0

[
0 0
0 diag

(
σT c(U⊤ZV )

)]V ⊤
0 V ⊤.

It is not hard to see that X(r)(Z
(r)
c )⊤ = 0 and (X(r))⊤Z

(r)
c = 0.

In order to show the main results, we need some elementary identities, which were given in [14]
(see Lemma 1).

Lemma 2.1. Give matrices {Vi : i ∈ T} in a matrix space V with inner product ⟨·⟩, where T
denotes the index set with |T | = r. Select all subsets Ti ⊂ T with |Ti| = k, i ∈ I and |I| = (rk), then
we get ∑

i∈I

∑
p∈Ti

Vp =

(
r − 1
k − 1

)∑
p∈T

Vp (k ≥ 1), (2.1)
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and ∑
i∈I

∑
p̸=q∈Ti

⟨Vp, Vq⟩ =
(
r − 2
k − 2

) ∑
p̸=q∈T

⟨Vp, Vq⟩ (k ≥ 2). (2.2)

Cai and Zhang developed a new elementary technique which states an elementary geometric
fact: Any point in a polytope can be represented as a convex combination of sparse vectors (see
Lemma 1.1 in [13]). It gives a crucial technical tool for the proof of our main results. It is also the
special case p = 1 of Zhang and Li’s result (see Lemma 2.2 in [15]).

Lemma 2.2. Let r ≤ m be an integer, and α be a positive real number. We can represent any
vector x in the set

V = {x ∈ Rm : ∥x∥1 ≤ rα, ∥x∥∞ ≤ α},

as a convex combination of r-sparse vectors, i.e.,

x =
∑
i

λiui

where
∑

i λi = 1 with λi ≥ 0, | sup(ui)| ≤ r, sup(ui) ⊂ sup(x) and
∑

i λi∥ui∥22 ≤ rα2.

Lemma 2.3. (Lemma 2.3 in [1]) Let X, Y be the matrices of same dimensions. If XY ⊤ = 0 and
X⊤Y = 0, then

∥X + Y ∥∗ = ∥X∥∗ + ∥Y ∥∗. (2.3)

Lemma 2.4. We have

∥Z(r)
c ∥∗ ≤ ∥Z(r)∥∗ + 2∥X −X(r)∥∗. (2.4)

Proof. Since X∗ is the optimal solution to the problem (1.2), we get

∥X∥∗ ≥ ∥X∗∥∗ = ∥X − Z∥∗. (2.5)

Applying the reverse inequality to (2.5), we get

∥X − Z∥∗ = ∥(X(r) − Z(r)
c ) + (X −X(r) − Z(r))∥∗

≥ ∥X(r) − Z(r)
c ∥∗ − ∥X −X(r) − Z(r)∥∗. (2.6)

By Lemma 2.3 and the forward inequality, we get

∥X(r) + (−Z(r)
c )∥∗ − ∥X −X(r) + (−Z(r))∥∗

≥ ∥X(r)∥∗ + ∥Z(r)
c ∥∗ − ∥X −X(r)∥∗ − ∥Z(r)∥∗. (2.7)

Combining with (2.5), (2.6) and (2.7), we get

∥Z(r)
c ∥∗ ≤ ∥X∥∗ − ∥X(r)∥∗ + ∥X −X(r)∥∗ + ∥Z(r)∥∗

≤ ∥Z(r)∥∗ + 2∥X −X(r)∥∗.

The proof of the lemma is completed.
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Select positive integers a and b satisfying a+ b = tr and b ≤ a ≤ r. We use Ti, Sj to represent
all possible index set contained in {1, 2, · · · , r} (i.e., Ti, Sj ⊂ {1, · · · , r}) and |Ti| = a, |Sj | = b,
where i ∈ A and j ∈ B with |A| = (ra) and |B| = (rb). Define

Z
(r)
Ti

= UU0

[
diag

(
σTi(U

⊤ZV )
)

0
0 0

]
V ⊤
0 V ⊤,

and

Z
(r)
Sj

= UU0

[
diag

(
σSj (U

⊤ZV )
)

0
0 0

]
V ⊤
0 V ⊤.

Here σTi(U
⊤ZV ) (σSj (U

⊤ZV )) denotes the vector that equals to σT (U
⊤ZV ) on Ti (Sj), and zero

elsewhere.

Lemma 2.5. We have

Z(r)
c =

∑
k

µkUk, Z(r)
c =

∑
k

νkVk, Z(r)
c =

∑
k

τkWk,

where
∑

k µk =
∑

k νk =
∑

k τk = 1 with νk, µk, τk ≥ 0, Uk, Vk, Wk are b-rank, a-rank and
(t− 1)r-rank (t > 1) with

∑
k

µk∥Uk∥2F ≤ r2

b
α2, (2.8)

∑
k

νk∥Vk∥2F ≤ r2

a
α2, (2.9)

and ∑
k

τk∥Wk∥2F ≤ r2

t− 1
α2. (2.10)

Proof. Set

α =
∥Z(r)∥∗ + 2∥X −X(r)∥∗

r
.

By Lemma 2.4, then

∥Z(r)
c ∥∗ ≤ rα.

By the definition of Z
(r)
c , we get

∥σT c(U⊤ZV )∥1 ≤ rα ≤ b
r

b
α. (2.11)

By the decomposition of Z, we get

∥σT c(U⊤ZV )∥∞ ≤ ∥σT (U⊤ZV )∥1
r

≤ ∥Z(r)∥∗ + 2∥X −X(r)∥∗
r
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≤ α ≤ r

b
α. (2.12)

Combining with Lemma 2.2, (2.11) and (2.12), σT c(U⊤ZV ) is decomposed into the convex combi-
nation of b-sparse vectors, i.e., σT c(U⊤ZV ) =

∑
k µkuk with∑

k

µk∥uk∥22 ≤
r2

b
α2.

Define

Uk = UU0

[
0 0
0 diag(uk)

]
V ⊤
0 V ⊤.

It is easy to see that Uk is b-rank. Therefore, Z
(r)
c is decomposed as Z

(r)
c =

∑
k µkUk with∑

k

µk∥Uk∥2F =
∑
k

µk∥uk∥22 ≤
r2

b
α2.

Likewise, Z
(r)
c can also be denoted by

Z(r)
c =

∑
k

νkVk, Z(r)
c =

∑
k

τkWk,

where Vk is a-rank, Wk is (t− 1)r-rank (t > 1) with∑
k

νk∥Vk∥2F ≤ r2

a
α2,

and ∑
k

τk∥Vk∥2F ≤ r2

t− 1
α2.

One can easily check that
⟨
Z

(r)
Ti

, Uk

⟩
= 0,

⟨
Z

(r)
Sj

, Vk

⟩
= 0 and

⟨
Z(r),Wk

⟩
= 0.

Lemma 2.6. We have that for 0 < t < 1,

ρa,b(t)

(ra)(
r−a
b )

∑
Ti

∩
Sj=∅

[ ∥∥∥A(Z(r)
Ti

+ Z
(r)
Sj

)∥∥∥2
2
− r − a− b

abr

∥∥∥A(bZ(r)
Ti

− aZ
(r)
Sj

)∥∥∥2
2

]
= −2t2(2− t)ab

⟨
AZ(r),AZ

⟩
+ t∆a,b, (2.13)

and for 1 ≤ t < 4/3,

ρa,b(t)
∑
k

τk

[ ∥∥∥A(Z(r) + (t− 1)Wk

)∥∥∥2
2
−
∥∥∥(t− 1)A

(
Z(r) −Wk

)∥∥∥2
2

]
= −2t3[ab− (t− 1)r2]

⟨
AZ(r),AZ

⟩
+ (4− 3t)∆a,b, (2.14)

where
ρa,b(t) = (a+ b)2 − 2ab(4− t),
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and

∆a,b =
r − b

a(ra)

∑
i∈A, k

µk

[
a2
∥∥∥∥A(Z(r)

Ti
+

b

r
Uk

)∥∥∥∥2
2

− b2
∥∥∥A(Z(r)

Ti
− a

r
Uk

)∥∥∥2
2

]

+
r − a

b(rb)

∑
j∈B, k

νk

[
b2
∥∥∥A(Z(r)

Sj
+

a

r
Vk

)∥∥∥2
2
− a2

∥∥∥∥A(Z(r)
Sj

− b

r
Vk

)∥∥∥∥2
2

]
. (2.15)

Proof. The proof takes advantage of the ideas from [9], [14]. By Lemma 2.1, we get

∆a,b = (a2 − b2)

[
r − b

a(ra)

∑
i∈A

∥AZ
(r)
Ti

∥22 −
r − a

b(rb)

∑
j∈B

∥AZ
(r)
Sj

∥22
]

+
2(a2b+ ab2)

r

⟨
r − b

a(ra)

∑
i∈A

AZ
(r)
Ti

+
r − a

b(rb)

∑
j∈B

AZ
(r)
Sj

,AZ(r)
c

⟩

= (a2 − b2)

(
r − b

a(ra)
(r−1
a−1)∥AZ(r)∥22 −

r − a

b(rb)
(r−1
b−1)∥AZ(r)∥22

)
+

2ab(a+ b)

r

⟨
r − b

a(ra)
(r−1
a−1)AZ(r) +

r − a

b(rb)
(r−1
b−1)AZ(r),AZ(r)

c

⟩
= (a2 − b2)

a− b

r
∥AZ(r)∥22 + 2abt

2r − a− b

r

⟨
AZ(r),AZ(r)

c

⟩
= tρa,b(t)∥AZ(r)∥22 + 2abt(2− t)

⟨
AZ(r),AZ

⟩
. (2.16)

where the first equality follows from Lemma 2.5, i.e., Z
(r)
c has the convex decomposition, and in

the second equality, we used the identity (2.1).

As 0 < t < 1, by Lemma 2 [14], we get

LHS = ρa,b(t)

(
a+ b

r

)2

∥AZ(r)∥22

= ρa,b(t)t
2∥AZ(r)∥22. (2.17)

Substituting (2.16) to the right hand side of (2.13), we get

RHS =t

[
tρa,b(t)∥AZ(r)∥22 + 2abt(2− t)

⟨
AZ(r),AZ

⟩]
− 2t2(2− t)ab

⟨
AZ(r),AZ

⟩
=LHS.

Accordingly, the identity (2.13) holds.

As 1 ≤ t < 4/3, we get

LHS = ρa,b(t)

{
[1− (t− 1)2]∥AZ(r)∥22 + 2(t− 1)t

⟨
AZ(r),

∑
k

τkAWk

⟩}
= ρa,b(t)

{
[1− (t− 1)2]∥AZ(r)∥22 + 2(t− 1)t

⟨
AZ(r),AZ(r)

c

⟩}
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= ρa,b(t)

{
(4t− 3t2)∥AZ(r)∥22 + 2(t− 1)t

⟨
AZ(r),AZ

⟩}
.

We have

RHS =(4− 3t)

[
tρa,b(t)∥AZ(r)∥22 + 2abt(2− t)

⟨
AZ(r),AZ

⟩]
− 2t3[ab− (t− 1)r2]

⟨
AZ(r),AZ

⟩
=(4t− 3t2)ρa,b(t)∥AZ(r)∥22 + 2t

{
ab(2− t)(4− 3t)− t2[ab− (t− 1)r2]

}⟨
AZ(r),AZ

⟩
=LHS.

Therefore, the identity (2.14) holds.

Lemma 2.7. Let X, Y be matrices with X, Y ∈ Rm×n. If XY ⊤ = 0 and X⊤Y = 0, then the
following holds:

∥X + Y ∥2F = ∥X∥2F + ∥Y ∥2F . (2.18)

Proof. Due to XY ⊤ = 0 and X⊤Y = 0, combining with the proof of Lemma 2.3 [1], then there
are matrices [UX UY UZ ] and [VX VY VZ ] such that the singular value decompositions of X and Y
are as follows:

X = [UX UY UZ ]

diag(σ(X)) 0 0
0 0 0
0 0 0

 [VX VY VZ ]
⊤,

and

Y = [UX UY UZ ]

0 0 0
0 diag(σ(Y )) 0
0 0 0

 [VX VY VZ ]
⊤,

where [UX UY UZ ] and [VX VY VZ ] are orthogonal matrices. As a consequence, we have the SVD
of X + Y as follows:

X + Y = [UX UY UZ ]

diag(σ(X)) 0 0
0 diag(σ(Y )) 0
0 0 0

 [VX VY VZ ]
⊤.

Therefore,

∥X + Y ∥2F =

∥∥∥∥∥∥
diag(σ(X)) 0 0

0 diag(σ(Y )) 0
0 0 0

∥∥∥∥∥∥
2

F

= ∥X∥2F + ∥Y ∥2F .

The desired result are derived.

Lemma 2.8. It holds that

{[(a+ b)2 − 4ab]t− [(a+ b)2 − 2ab](2− t)δtr}∥Z(r)∥2F − 2abrδtrα
2(2− t) ≤ ∆a,b. (2.19)
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Proof. Note that the ranks of matrices Uk, Z
(r)
Sj

are no more than b, the ranks of matrices Vk, Z
(r)
Ti

are at most a and a+ b = tr. By the tr-order restricted isometry property, we get

∆a,b ≥
r − b

a(ra)

∑
i∈A, k

µk

[
a2(1− δtr)

∥∥∥∥Z(r)
Ti

+
b

r
Uk

∥∥∥∥2
F

− b2(1 + δtr)
∥∥∥Z(r)

Ti
− a

r
Uk

∥∥∥2
F

]

+
r − a

b(rb)

∑
j∈B, k

νk

[
b2(1− δtr)

∥∥∥∥Z(r)
Sj

+
b

r
Vk

∥∥∥∥2
F

− a2(1 + δtr)

∥∥∥∥Z(r)
Sj

− b

r
Vk

∥∥∥∥2
F

]
.

Since the inner product of Z
(r)
Ti

(Z
(r)
Sj

) and Uk (Vk) equals to zero, by some elementary calculation,
we get

∆a,b ≥(a2 − b2)

r − b

a(ra)

∑
i∈A

∥Z(r)
Ti

∥2F − r − a

b(rb)

∑
j∈B

∥Z(r)
Sj

∥2F


− (a2 + b2)δtr

r − b

a(ra)

∑
i∈A

∥Z(r)
Ti

∥2F +
r − a

b(rb)

∑
j∈B

∥Z(r)
Sj

∥2F


− 2ab2(r − b)δtr

r2

∑
k

µk∥Uk∥2F − 2a2b(r − a)δtr
r2

∑
k

νk∥Vk∥2F . (2.20)

By Lemma 2.1, we get ∑
i∈A

∥Z(r)
Ti

∥2F = (r−1
a−1)∥Z

(r)∥2F , (2.21)

and ∑
j∈B

∥Z(r)
Sj

∥2F = (r−1
b−1)∥Z

(r)∥2F . (2.22)

Substituting (2.21) and (2.22) into (2.20) and combining with inequalities (2.8) and (2.9), we get

∆a,b ≥
(a− b)2(a+ b)

r
∥Z(r)∥2F − (a2 + b2)δtr(2− t)∥Z(r)∥2F

− 2ab2(r − b)δtr
r2

r2α2

b
− 2a2b(r − a)δtr

r2
r2α2

a

= {[(a+ b)2 − 4ab]t− [(a+ b)2 − 2ab](2− t)δtr}∥Z(r)∥2F − 2abrδtrα
2(2− t).

Lemma 2.9. It holds that

∥AZ∥2 ≤ 2ϵ (2.23)

Proof. Due to the feasibility of X∗, we get

∥AZ∥2 = ∥AX −AX∗∥2 ≤ ∥AX − b∥2 + ∥AX∗ − b∥2 ≤ 2ϵ.
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Lemma 2.10. (Lemma 4.1 in [9]) For all linear maps A : Rm×n → Rq and r ≥ 2, s ≥ 2, we have

δsr ≤ (2s− 1)δr. (2.24)

Lemma 2.11. It holds that for 0 < t < 1,

ρa,b(t)

(ra)(
r−a
b )

∑
Ti

∩
Sj=∅

[ ∥∥∥A(Z(r)
Ti

+ Z
(r)
Sj

)∥∥∥2
2
− r − a− b

abr

∥∥∥A(bZ(r)
Ti

− aZ
(r)
Sj

)∥∥∥2
2

]
≤ ρa,b(t)t[t− (2− t)δtr]∥Z(r)∥2F , (2.25)

and for 1 ≤ t < 4/3,

ρa,b(t)
∑
k

τk

[ ∥∥∥A(Z(r) + (t− 1)Wk

)∥∥∥2
2
−
∥∥∥(t− 1)A

(
Z(r) +Wk

)∥∥∥2
2

]
≤ ρa,b(t)

{[
t(2− t)− (t2 − 2t+ 2)δtr

]
∥Z(r)∥2F − 2rα2δtr(t− 1)

}
, (2.26)

where
ρa,b(t) = (a+ b)2 − 2ab(4− t).

Proof. We first consider the case of 0 < t < 1. As tr equals to even, we can fix a = b = tr/2; And
as tr equals to odd, we can set a = b + 1 = (tr + 1)/2; For both cases, one can easily prove that

ρa,b(t) < 0. Since Z
(r)
Ti

, Z
(r)
Sj

are a-rank and b-rank, respectively, by utilizing tr-order RIP, we get

ρa,b(t)

(ra)(
r−a
b )

∑
Ti

∩
Sj=∅

[ ∥∥∥A(Z(r)
Ti

+ Z
(r)
Sj

)∥∥∥2
2
− r − a− b

abr

∥∥∥A(bZ(r)
Ti

− aZ
(r)
Sj

)∥∥∥2
2

]

≤
ρa,b(t)

(ra)(
r−a
b )

∑
Ti

∩
Sj=∅

[
(1− δtr)

∥∥∥Z(r)
Ti

+ Z
(r)
Sj

∥∥∥2
F
− r − a− b

abr
(1 + δtr)

∥∥∥bZ(r)
Ti

− aZ
(r)
Sj

∥∥∥2
F

]

=
ρa,b(t)

(ra)(
r−a
b )

{
(1− δtr)

[
(r−a
b )

∑
i∈A

∥Z(r)
Ti

∥2F + (r−b
a )

∑
j∈B

∥Z(r)
Sj

∥2F
]

− 1− t

ab
(1 + δtr)

[
b2(r−a

b )
∑
i∈A

∥Z(r)
Ti

∥2F + a2(r−b
a )

∑
j∈B

∥Z(r)
Sj

∥2F
]}

=
ρa,b(t)

(ra)(
r−a
b )

{
(1− δtr)

[
(r−a
b )(r−1

a−1) + (r−b
a )(r−1

b−1)

]
∥Z(r)∥2F

− (1 + δtr)
1− t

ab

[
b2(r−a

b )(r−1
a−1) + a2(r−b

a )(r−1
b−1)

]
∥Z(r)∥2F

}
= ρa,b(t)t[t− (2− t)δtr]∥Z(r)∥2F , (2.27)

where we made use of Lemma 2.1 to the second equality.

Next, we discuss the case of 1 ≤ t < 4/3.

Observe that Z(r), Wk are r-rank and (t − 1)r-rank, respectively. Under the assumption of
ρa,b(t) < 0, combining with tr-order RIP, we get

ρa,b(t)
∑
k

τk

[ ∥∥∥A(Z(r) + (t− 1)Wk

)∥∥∥2
F
−
∥∥∥(t− 1)A

(
Z(r) +Wk

)∥∥∥2
F

]
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≤ ρa,b(t)
∑
k

τk

[
(1− δtr)

∥∥∥Z(r) + (t− 1)Wk

∥∥∥2
F
− (t− 1)2(1 + δtr)

∥∥∥Z(r) +Wk

∥∥∥2
F

]
= ρa,b(t)

∑
k

τk

{
(1− δtr)

[
∥Z(r)∥2F + (t− 1)2∥Wk∥2F

]
− (t− 1)2(1 + δtr)

(
∥Z(r)∥2F + ∥Wk∥2F

)}
= ρa,b(t)

{[
(1− δtr)− (t− 1)2(1 + δtr)

]
∥Z(r)∥2F − 2δtr(t− 1)2

∑
k

τk∥Wk∥2F
}

≤ ρa,b(t)

{[
t(2− t)− (t2 − 2t+ 2)δtr

]
∥Z(r)∥2F − 2rα2δtr(t− 1)

}
, (2.28)

where the first equality follows from the fact that
⟨
Z(r),Wk

⟩
= 0, and the last inequality, we used

the inequality (2.10).

3 Main results

Theorem 3.1. Consider rank minimization problem b = AX + z with ∥z∥2 ≤ ϵ. If δtr < t/(4− t)
with 0 < t < 4/3, then the solution X∗ to the nuclear norm minimization problem (1.2) fulfils

∥X −X∗∥F ≤ C1ϵ+ C2∥X −X(r)∥∗, (3.1)

where

C1 =
2
√

2(1 + δtr)κ
t

4−t − δtr
, (3.2)

and

C2 =
2
√
2√
r


1

4
+

2δtr +

√
δtr(4− t)

(
t

4−t − δtr

)
t

4−t − δtr

 (3.3)

with

κ = max

{
t

4− t
,

√
t

4− t

}
.

Similarly, Consider rank minimization problem b = AX + z with z such that ∥A∗(z)∥ ≤ ϵ. If
δtr < t/(4 − t) with 0 < t < 4/3, then the solution X◦ to the nuclear norm minimization problem
minX ∥X∥∗ s.t. ∥A∗(z)∥ ≤ ϵ fulfils

∥X −X◦∥F ≤ D1ϵ+ C2∥X −X(r)∥∗, (3.4)

where

D1 =
2
√
2rκ

t
4−t − δtr

, (3.5)

and C2 is given by (3.3).
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Remark 3.1. As t = 1, the upper bound δr < 1/3 is coincident with Theorems 3.7 and 3.8 of [9].
Furthermore, the upper bounds of error estimates ∥X −X∗∥F (∥X −X◦∥F ) are smaller than the
results of [9]. In theory, the recovered precision is given by our results is higher than that of theirs.

Corollary 3.1. Assume that X ∈ Rm×n is a r-rank matrix. Let b = AX. If

δtr < t/(4− t) (3.6)

for 0 < t < 4/3, then the solution X∗ to the nuclear norm minimization problem (1.2) in the
noiseless case (i.e., ϵ = 0) reconstructs X exactly.

Remark 3.2. As t = 1, the upper bound δr < 1/3 is the same as Theorem 3.5 of [9].

The Gaussian noise situation is of special interest in statistics and image processing. Note that
the Gaussian random variables are essentially bounded. The results given in Theorem 3.1 regarding
the bounded noise situation are immediately applied to the Gaussian noise situation, which employs
the similar discussion as that in [16].

Theorem 3.2. Assume that the low-rank recovery model b = AX + z with z ∼ Nq(0, σ
2I). δtr <

t/(4 − t) for some 0 < t < 4/3. Let X∗ represent the minimizer of minX ∥X∥∗ s.t. ∥z∥2 ≤
σ
√

q + 2
√
q log q and let X◦ be the minimizer of minX ∥X∥∗ s.t. ∥A∗(z)∥ ≤ 2σ

√
log n. We have

with probability at least 1− 1/q,

∥X −X∗∥F ≤
2
√

2(1 + δtr)κ
t

4−t − δtr
σ

√
q + 2

√
q log q

+ 2
√
2


1

4
+

2δtr +

√
δtr(4− t)

(
t

4−t − δtr

)
t

4−t − δtr


∥X −X(r)∥∗√

r
,

and probability at least 1− 1/
√
π log n,

∥X −X◦∥F ≤ 4
√
2rκ

t
4−t − δtr

σ
√

log n

+ 2
√
2


1

4
+

2δtr +

√
δtr(4− t)

(
t

4−t − δtr

)
t

4−t − δtr


∥X −X(r)∥∗√

r
,

where κ is defined in Theorem 3.1.

Theorem 3.3. Let 1 ≤ r ≤ m/2. There is a linear map A : Rm×m → Rq with δtr < t/(4− t) + ε
with 0 < t < 4/3, ε > 0 such that for some r-rank matrices Y1, Y2 ∈ Rm×m with Y1 ̸= Y2,
AY1 = AY1. Hence, there don’t exist any approach to exactly reconstruct all r-rank matrices X
based on (A, z).

Remark 3.3. Theorems 3.1 and 3.3 jointly indicate the condition δtr < t/(4− t) with 0 < t < 4/3
is sharp.
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4 Proofs of main results

With above preparation, we present the proof of main result.

Proof of Theorem 3.1. By the definition of α and notice that the rank of Z(r) is at most r, we
get

α2 =
∥Z(r)∥2∗ + 4∥Z(r)∥∗∥X −X(r)∥∗ + 4∥X −X(r)∥2∗

r2

≤
∥Z(r)∥2F

r
+

4∥Z(r)∥F ∥X −X(r)∥∗
r
√
r

+
4∥X −X(r)∥2∗

r2
, (4.1)

where in the last step, we used the fact that for any X ∈ Rm×n (m ≤ n) and p ∈ (0, 1],

m
1
p
− 1

2 ∥X∥F ≥ ∥X∥p (4.2)

with ∥X∥p = (
∑

i σ
p
i (X))1/p.

In the situation of 0 < t < 1, by Lemma 2.10, we have⟨
AZ(r),AZ

⟩
≤ ∥AZ(r)∥2∥AZ∥2

≤
√

1 + δr∥Z(r)∥F ∥AZ∥2
=
√

1 + δ 1
t
(tr)∥Z

(r)∥F ∥AZ∥2

≤

√
1 +

(
2

t
− 1

)
δtr∥Z(r)∥F ∥AZ∥2

≤
√

1 + δtr
t

∥Z(r)∥F ∥AZ∥2, (4.3)

where in the first inequality, we used Cauchy-Schwarz inequality, and the second inequality follows
from RIP of r-order.

Plugging (2.23) to (4.3), it follows that⟨
AZ(r),AZ

⟩
≤ 2ϵ

√
1 + δtr

t
∥Z(r)∥F . (4.4)

Combining with equation (2.13) and inequalities (2.19), (2.25) and (4.4), we have

ρa,b(t)t[t− (2− t)δtr]∥Z(r)∥2F + 4abϵt2(2− t)

√
1 + δtr

t
∥Z(r)∥F

− t

{
{[(a+ b)2 − 4ab]t− [(a+ b)2 − 2ab](2− t)δtr}∥Z(r)∥2F − 2abrδtrα

2(2− t)

}
≥ 0.

Applying inequality (4.1) to above equality, we get

2abt(t− 2)

[
(4− t)

(
t

4− t
− δtr

)
∥Z(r)∥2F

−

[
2ϵ
√

(1 + δtr)t+
4δtr∥X −X(r)∥∗√

r

]
∥Z(r)∥F − 4δtr∥X −X(r)∥2∗

r

]
≥ 0. (4.5)
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In the situation of 1 ≤ t < 4/3, due to the monotonicity of RIC δtr, it implies that⟨
AZ(r),AZ

⟩
≤
√

1 + δr∥Z(r)∥F ∥AZ∥2

≤
√

1 + δtr∥Z(r)∥F ∥AZ∥2
≤ 2ϵ

√
1 + δtr∥Z(r)∥F . (4.6)

It is easy to check that

ab ≥
(
tr

2

)2

− 1

4
=

(2− t)2r2 − 1

4
− (1− t)r2

> −(1− t)r2. (4.7)

Combining with equation (2.14) and inequalities (2.19), (2.26) and (4.6), it holds that

ρa,b(t)

{[
t(2− t)− (t2 − 2t+ 2)δtr

]
∥Z(r)∥2F − 2rα2δtr(t− 1)

}
+ 4ϵ

√
1 + δtrt

3[ab− (t− 1)r2]∥Z(r)∥F

− (4− 3t)

{
{[(a+ b)2 − 4ab]t− [(a+ b)2 − 2ab](2− t)δtr}∥Z(r)∥2F − 2abrδtrα

2(2− t)

}
≥ 0. (4.8)

Due to inequality (4.1), by fundamental calculation, we get

2[(t− 1)r2 − ab]t2
[
(4− t)

(
t

4− t
− δtr

)
∥Z(r)∥2F

−

[
2ϵ
√

1 + δtrt+
4δtr∥X −X(r)∥∗√

r

]
∥Z(r)∥F − 4δtr∥X −X(r)∥2∗

r

]
≥ 0. (4.9)

Thereby, two second-order inequalities concerning ∥Z(r)∥F are established. Under the condition of
δtr < t/(4− t), applying quadratic formula and some elementary compute, we have

∥Z(r)∥F ≤ 1

2(4− t)( t
4−t − δtr)

[
4δtr∥X −X(r)∥∗√

r
+ 2ϵ

√
1 + δtr(4− t)κ

+

[(
4δtr∥X −X(r)∥∗√

r
+ 2ϵ

√
1 + δtr(4− t)κ

)2

+
16δtr∥X −X(r)∥2∗(4− t)

r

(
t

4− t
− δtr

)] 1
2
]

≤ 1

2(4− t)( t
4−t − δtr)

[
8δtr∥X −X(r)∥∗√

r
+ 4ϵ

√
1 + δtr(4− t)κ

+
4∥X −X(r)∥∗√

r

√
(4− t)(

t

4− t
− δtr)δtr

]
=
2
√
1 + δtrκ
t

4−t − δtr
ϵ

+
4δtr + 2

√
(4− t)( t

4−t − δtr)δtr

(4− t)( t
4−t − δtr)δtr

∥X −X(r)∥∗√
r

(4.10)
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with κ is defined in Theorem 3.1, where the second inequality follows from the fact that for any
vector x ∈ Rn, ∥x∥2 ≤ ∥x∥1.

Then,

∥Z(r)
c ∥F =

 ∑
i≥r+1

σ2
i (U

⊤ZV )

1/2

≤

max
i≥r+1

{σi(U⊤ZV )}
∑

i≥r+1

σi(U
⊤ZV )

1/2

=∥Z(r)
c ∥1/2∥Z(r)

c ∥1/2∗

≤∥Z(r)∥1/2∗√
r

(∥Z(r)∥∗ + 2∥X −X(r)∥∗)1/2

≤

(
∥Z(r)∥2F +

2∥X −X(r)∥∗∥Z(r)∥F√
r

)1/2

, (4.11)

where in the second inequality, we used Lemma 2.4, and the third inequality follows from the fact
that for any r-rank matrix X, ∥X∥∗ ≤

√
r∥X∥F .

A combination of (4.10) and (4.11) implies that

∥Z∥F =
(
∥Z(r)

c ∥2F + ∥Z(r)∥2F
)1/2

≤

(
2∥Z(r)∥2F +

2∥X −X(r)∥∗∥Z(r)∥F√
r

)1/2

≤
√
2∥Z(r)∥F +

∥X −X(r)∥∗√
2r

≤
2
√

2(1 + δtr)κϵ
t

4−t − δtr

+
2
√
2√
r

1
4
+

2δtr +
√

(4− t)( t
4−t − δtr)δtr

t
4−t − δtr

 ∥X −X(r)∥∗.

In the situation of the error bound ∥A∗(z)∥ ≤ ϵ, set Z = X −X◦. It holds that

∥A∗AZ∥ = ∥A∗(AX − b)−A∗(AX◦ − b)∥
≤ ∥A∗(AX − b)∥+ ∥A∗(AX◦ − b)∥
≤ 2ϵ.

Moreover, ⟨
AZ(r),AZ

⟩
=
⟨
Z(r),A∗AZ

⟩
≤ ∥Z(r)∥∗ · 2ϵ
≤ 2ϵ

√
r∥Z(r)∥F .

15



The rest of steps are similar with the situation of the error bound ∥z∥2 ≤ ϵ. The proof of Theorem
3.1 is completed.

Proof of Theorem 3.3. Let E = diag(x) ∈ Rm×m with

x =
1√
2r

(1, · · · , 1︸ ︷︷ ︸
2r

, 0, · · · , 0).

Define A : Rm×m → Rq as

AX =
2√
4− t

(σ(X)− ⟨σ(X), σ(E)⟩σ(E)) .

Applying the Cauchy-Schwarz inequality, for all ⌈tr⌉-rank matrices X, we get

|⟨σ(X), σ(E)⟩| ≤ ∥σ(X)∥2∥σ(E) · 1sup (σ(X))∥2

≤
√

⌈tr⌉
2r

∥X∥F ,

and

∥AX∥22 =
4

4− t
⟨σ(X)− ⟨σ(X), σ(E)⟩σ(E), σ(X)− ⟨σ(X), σ(E)⟩σ(E)⟩

=
4

4− t

[
∥X∥2F − | ⟨σ(X), σ(E)⟩ |2

]
.

Therefore,

∥AX∥22 ≤
(
1 +

t

4− t

)
∥X∥2F

≤
(
1 +

t

4− t
+ ε

)
∥X∥2F .

(4.12)

For r > 1/ε, we get

∥AX∥22 ≥
4

4− t

(
1− ⌈tr⌉

2r

)
∥X∥2F

≥ 4

4− t

(
1− tr

2r
− 1

2r

)
∥X∥2F

≥ 4

4− t

(
1− tr

2r
− ε

2

)
∥X∥2F

≥
(
1− t

4− t
− ε

)
∥X∥2F .

Accordingly, by Definition 1.1, we obtain δtr = δ⌈tr⌉ = t
4−t + ε. Suppose Y1 = diag(y1), Y2 =

diag(y2) ∈ Rm×m with
y1 = (1, · · · , 1︸ ︷︷ ︸

r

, 0, · · · , 0)

16



and
y2 = (0, · · · , 0︸ ︷︷ ︸

r

,−1, · · · ,−1︸ ︷︷ ︸
r

, 0, · · · , 0).

It is easy to verify that Y1 and Y2 are both matrices of rank r such that Y1 − Y2 ∈ N (A), i.e.,
AY1 = AY2. Consequently, it is not possible to reconstruct both Y1 and Y2 based on (z,A).

5 Conclusions

In this paper, we establish sufficient conditions which ensure the stable recovery or exactly
recovery of any r-rank matrix satisfying a given linear system of equality constraints via solving
a convex optimization problem, i.e., nuclear norm minimization. When the parameter t is equal
to 1, the bound of RIC δr coincide with the result of [9]. Meanwhile, the derived upper bounds
regarding the reconstruction error are better than those of [9]. Besides, the restricted isometry
property condition is proved sharp.
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