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Abstract 

In this paper, the nonlinear resonances analysis of a RLC series circuit modeled by a modified 
Van der Pol oscillator is investigated. After establishing of a new general class of nonlinear 
ordinary differential equation, a forced Van der Pol oscillator subjected to an inertial 
nonlinearity is derived. From this equation the multiple scales method is used to find the 
various resonant states. As analytical results primary resonance, sub-harmonic resonance of 
order 1/3 and super-harmonic resonance of order 3 are obtained. The steady-state solutions 
and theirs stabilities are determined. Numerical simulations display bistability, hysteresis, 
jump and bifurcation phenomena. The effects of different parameters on the system behavior 
are investigated and results are presented graphically and discussed. 
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1. Introduction 

It is well known that the resonant electrical circuit composing most of the 
electric or electronic devices display a rich variety of nonlinear dynamical 
behavior [1-4]. Therefore, such electrical circuit is governed by nonlinear 
ordinary differential equations. The inherent nonlinearity source in resonant 
electrical systems arises from resistive, inductive and capacitive elements [4]. 
Given the importance of RLC circuit systems in many areas of physics and 
modern engineering applications, the understanding of nonlinear electrical 
properties becomes a necessity from theoretical and practical point of view. 
Therefore this requires of developing a mathematical model taking into account 
the nonlinear character of the three fundamental elements of the electrical 
circuits and proceeding to its numerical simulation before all optimization 
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process and design [5-6]. In this perspective, mathematical modeling of 
nonlinear electrical systems was become a challenge for researchers in these 
three last decades. For instance, Kaufman and Roberts [7] have derived from 
RLC series circuit consisting of a nonlinear resistor and a nonlinear capacitor a 
class of nonlinear differential equations containing the Riccati's equation and 
Abel's equation of the first kind as a special case. Recently various nonlinear 
mathematical models of different complexities have been proposed in open 
literature for analyzing the nonlinear oscillations generated by RLC series circuit 
[8-13]. But it has been remarked that no simplest nonlinear oscillatory circuit 
taking simultaneously into consideration a nonlinear resistor and a nonlinear 
inductor has been developed for generating a class of nonlinear differential 
equations. Therefore this problematic is taken into account in this work for 
investigating a new class of nonlinear differential equations governing the 
dynamic of the nonlinear RLC series circuits and analyzing the nonlinear 
oscillations produced by such electrical circuit system. 

The main objectives of this work consist firstly to derive a new general class of 
nonlinear differential equations governing the nonlinear dynamical behavior of a 
RLC series circuit with nonlinear resistor and nonlinear inductance and secondly 
to analyze the nonlinear oscillations that can arise in such electrical circuit 
through a nonlinear oscillator belonging to this general class. 

In order to attain the fixed objectives in this paper, we generate at first sight, a 
class of nonlinear differential equations (Section 2) and we investigate the 
various resonant states of a nonlinear RLC series circuit by means of the 
multiple scales method (Section 3). We present afterward the numerical results 
and discussions (Section 4). Finally the conclusion of this research work will be 
drawn (Section 5). 

2. Mathematical modeling 
2.1. Formulation of problem 

We consider an electrical circuit composed of a nonlinear resistor )(iR , a 
nonlinear inductance )(iL and a linear capacitance C connected in series and 
driven by voltage source )(tE as shown in Fig 1. From this figure, it concerns to 
build a new general class of nonlinear equations describing the dynamical 
behaviors of the nonlinear resonant circuits using Kirchoff's voltage and current 
laws. 
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Fig.1. Nonlinear RLC series Circuit 

2.2. New general class of mixed Liénard type equations 

Applying Kirchoff's voltage and current laws at Fig.1, one obtain the following 
equation: 

     tEq
C

iU
dt

id
R 

1                                                                                     (1) 

where    iiL
dt

idU L )(
 , iiRiU R )()(   and  

C
qU C   represent the voltage drop 

across the inductor,  resistor and  capacitor respectively.  tE denotes the applied 
voltage, q means the charge at the capacitance,  i and )(ti  designate the flux 
and current respectively. The differentiation with respect to time of the equation 
(1) yields after some algebraic manipulations to the following equation: 

       
dt

tEdi
Cdt

diiU
dt
dii

dt
idi R 






 12

2

2

                                                           (2) 

with 
dt
dqi   

The so obtained equation (2) with nonlinear functions describes the dynamic 
behavior of the nonlinear RLC series circuits. This equation is known as non-
autonomous mixed Liénard-type equations [14] which will have many 
applications in modern electrical engineering, since it is possible to achieve an 
electronic circuit from a nonlinear differential equation [8]. 

Before all analysis of a nonlinear RLC series circuit under consideration, it is 
needed to make clear the nonlinear functions  i , )(iUR  and the applied voltage 

)(tE expressions. At this stage, it is very important to point out that various 
expressions of  i and )(iUR  are used in open literature for analyzing the 
dynamical response of nonlinear electrical circuits [15-17]. For this, we choose 
the expressions of these functions (section 3) in order to investigate the dynamic 
responses of the considered nonlinear resonant circuit. 
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3. Nonlinear resonances analysis 
3.1. Mathematical problem 

In this subsection one purpose to investigate the dynamic responses of a 
nonlinear RLC series circuit subjected to harmonic voltage source of the form: 
   tEtE sin0 . For this purpose, we choose the following expressions for  i

and )(iUR : 

3
31)( iRiRiU R                                                                                                                                             (3) 

and 

3
31)( iLiLi                                                                                                                                              (4) 

where 1R , 3R , 1L  and 3L  are constant parameters. 

Substituting Eqs.(3) and (4) into Eq.(2), we obtain after few mathematical 
operations the following equation 

    tEi
Cdt

diiRR
dt
diiL

dt
idiLL  cos1)3(63 0

2
31

2

32

2
2

31 





                               (5) 

Now, using 0ixi  and t
CL1

1
 , where 0i ,  and x  denote the normalization 

current and the dimensionless variables respectively, Eq.(5) becomes 

        cos21 0
2122 FxxxQxxxx                                               (6) 

with 2
0

1

33 i
L
L

 ,
1

1
1

L
CRQ  , 2

0
1

33 i
QR

R
 ,

i
CLE

F
2

10
0


  and CL1 . 

 It is very important to show that when the dimensionless parameter 0 , Eq. 
(6) becomes       cos0

21 FxxxQx , which represents the famous Van 
der Pol oscillator intensively studied in the open literature in context of various 
problems. Therefore Eq.(6) represents the generalized Van der Pol oscillator. 

Now, in view of importance of the mixed Liénard-type equations in electronic 
areas and other branches of sciences, the problem here is to investigate the 
various resonant states of the equation (6) by applying the multiple scales 
method.  
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3.2. Primary resonance state 

In this case of oscillation, the detuning parameter  and the excitation frequency 
  are related according to  1 . In order to apply the multiple scales 
method, it is necessary to introduce into Eq.(6) the small perturbation parameter 
0 1  . That making, Eq.(6) becomes 

     cos2 0
2122 FxxxQxxxxxx                                       (7) 

with   , 11   QQ  ,    and 00 FF   

Eq.(7) is known as weakly nonlinear equation. From this equation, we define the 
fast time scale 0T , which associates with changes occurring at the frequencies 
1 and   and the slow time scales 1T which associates with modulations in 
the amplitude and phase caused by nonlinearity.  In terms of the new time 
scales, the first and second time derivative become 

100

10

2 DDD
d
d

DD
d
d










                                                                                            (8) 

where 
n

n T
D




  

Now, we begin to assume that the approximate solution of  Eq.(7) can be written 
in the following form: 

     101100 ,,, TTxTTxx                                                                                 (9) 

Substituting Eqs.(8) and (9) into Eq.(7) and equating coefficients of like powers 
of  , we get 

000
2
0  xxD                                                                                                    (10) 

   0000
2
000

12
000

3
001011

2
0 cos22 TFxDxxDQxDxxxDDxxD             (11) 

The solution of Eq.(10) can be expressed in the complex form: 

      00
11100 , iTiT eTAeTATTx                                                                         (12) 
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where  1TA is the complex conjugate of  1TA , and  1TA  is the complex 
amplitude function which can be determined by eliminating the secular terms at 
the higher levels of approximation equation. 

Inserting Eq.(12) into Eq.(11), yields to 

NSTccee
F

AAiAiQAAAiDxxD iTTi 





   .

2
2 010212

111
2
0

                    (13) 

where NST denotes the terms does not produce secular terms and c.c designates 
the complex conjugate terms. 

Now eliminating the secular terms from Eq.(13) and introducing the amplitude 
 1TA by the following polar form: 

     1
11 2

1 TieTaTA                                                                                                                                  (14) 

we obtain after separating real and imaginary parts the following modulation 
equations: 

 sin
2
1

8
1

2
1

0
31

1 FaaQaD                                                                        (15) 

 cos
2
1

8
1

0
2

1 F
a

aD                                                                             (16) 

where   1T   

To determine the steady-state solution, we put 011  DaD into Eqs.(15) and 
(16). Thus we obtain 

31
0 8

1
2
1sin

2
1 aaQF                                                                                       (17) 

3
0 8

1cos
2
1 aaF                                                                                      (18) 

Eqs.(17) and (18) show that there no trivial solution at a=0. For non-trivial 
solution (a≠ 0), eliminating  from these equations yields to 

2
21

2
02

42
1

8






 






  aQ

a
Fa                                                                 (19) 
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Eq.(19) represents the frequency-response equation for primary resonance. 

 In order to analyze the stability of the non-trivial fixed points of modulation 
equations (15) and (16), we let: 

1010 ,   aaa                                                                               (20) 

where a0 and 0 represent the non-trivial solutions and 1a and 1 are assumed to be 
infinitesimal. Substituting Eqs.(20) into Eqs.(15) and (16) and keeping only 
linear terms in the perturbation quantities, we get the following variational 
equations describing the stability of the steady-state solution: 

  10
0

1
2
0

1
'
1 cos

28
3

2
 FaaQa 












                                                                    (21) 

    10
0

0
102

0

0
0

'
1 sin

2
cos

24


a
Fa

a
Fa 








                                                         (22) 

Eqs.(21)and (22) admit solutions of the form     1
2111 ,, Tecca   provided that: 

2
2
1

1 4
2
1

2
ppp

                                                                                       (23) 

with 













0
0

02
0

1

1 sin
28

3
2


a

F
aQp  and 0

2
0

1

0

0
002

0

0
0

0
2 sin

8
3

22
coscos

242























aQ
a
F

a
FaFp  

Therefore the steady state solution is unstable when 2p is greater than zero. 

3.3. Super-harmonic and sub-harmonic resonances 

In this case, we consider a hard resonant excitation, that is to say F0=0(1).  In 
this situation, Eqs.(10) and (11) are modified to 

 0000
2
0 cos TFxxD                                                                                        (24) 

  00
2
000

12
000

3
001011

2
0 22 xDxxDQxDxxxDDxxD                                          (25) 

The solution of Eq.(24) is  

    cceeTATTx TiiT   00
1100 ,                                                                        (26) 
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where  2
0

12 


F  with 1 . Substituting Eq.(26) into Eq.(25) we get: 

      
    

 
   
    NSTcceAi

eAi
ei

eAAiiQAA
eAAiAAAAiQAAAAAiDxxD

Ti

Ti

Ti

Ti

iT


















0

0

0

0

0

)12(2222

)2(2

3323

2123

221222
111

2
0

]122[
]234[

]2[
2232
2242








 

(27) 

Eq.(27) shows two possibles cases of resonances such as 13   and  3 . We 
treat in following section these cases of resonances. 

3.3.1. Super-harmonic resonance ( 13  ) 

In this case of oscillation, the detuning parameter  and the dimensionless 
excitation frequency can be written according to the following relationship 

 13                                                                                                          (28) 

Inserting Eq.(28) into Eq.(27) we obtain 

NSTcceTWxxD iT  0)( 111
2
0                                                                            (29) 

where 

    1

39
52

9
262

33
2212

11
TieiAAiAAAAiQAAAAiDTW  







 










    

Eliminating the secular terms from Eq.(29) and introducing the expression of 
 1TA given by Eq.(14) into   01 TW , we obtain after some mathematical 

operations the following modulation equations: 

 sin
9

5cos
382

33
3

1

1








aaQaD                                                         (30) 

     sin
3

cos
9

54
4

1049
72

33
2222

1 aa
aaD 




                             (31) 

where   1T  
16
9 0F

 . To determine the steady-state solution, we let 

011  DaD . Thus we get 
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3
133

82
cos

3
sin

9
5 aaQ 





 

                                                                  (32) 

   3223
33

4
4

1049
72

cos
9

5sin
3

aaaaa 



                              (33) 

Eqs.(32) and Eq.(33) show that there are no trivial solution at a=0. Eliminating   
from these two equations, the solution of super-harmonic resonance of order 3 is 
given by the following equation: 

   
2

2
12323

2222

8239
5225

18
4

72
18

















 








 







aQ
aa

aa         (34) 

To analyze the stability of the non-trivial fixed points of modulation equations 
(30) and (31) we substitute Eqs.(20) into (30) and (31) and keeping only linear 
terms in the perturbation quantities, we get: 

1211
'
1 JaJa                                                                                                (35) 

1413
'

1  JaJ                                                                                                (36) 

with 2
0

1

1 82
aQJ 




, 0

3

0

3

2 cos
9

5sin
3

 



J , 

 
02

0

3

02
0

3
0

3 sin
3

cos
9

5
4
2


aa

a
J 







  

and 0
0

3

0
0

3

4 sin
9

5cos
3


aa

J 



  

Eqs.(35) and (36) admit solution of the form     1
2111 ,, Tea    where 1 and 2

are constants, provided that 

     4132
2

4141 4
2
1

2
1 JJJJJJJJ                                                        (37) 

Consequently, the steady state solution is unstable when 4132 JJJJ   >0. 

3.3.2. Sub-harmonic resonance of order 
3
1  

To treat this case of nonlinear resonance, we introduce the detuning parameter 
  according to 

 3                                                                                                      (38) 

into Eq.(27), we get 
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NSTcceTZxxD iT  0)( 111
2
0                                                                            (39) 

where 

      152
9
262

22212
11

TieiAAAiAAAAiQAAAAiDTZ  





    

Replacing the expression of amplitude  1TA given by Eq.(14) into  1TZ   and 
eliminating the secular terms from Eq.(39), we obtain after separating real and 
imaginary parts, the following modulation equations: 

 sin
4

5cos
482

2231

1
aaaaQaD 







                                                    (40) 

     sin
4

3cos
4

154
4

388
8

3 2222
1







aaaaD                         (41) 

where  31  T  
16

0F
 . In order to determine the steady-state solution, it is 

enough to set 011  DaD . Thus, we obtain 

82
sin

4
5cos

4

21 aQaa 





 

                                                                 (42) 

   2222 4
4

88
83

1sin
4

cos
4

5 aaaa





 

                                   (43) 

From Eqs.(42) and (43) we observe that there are no trivial solution at a=0. Then 
eliminating the oscillation phase from these two equations we get after some 
algebraic manipulations the following frequency response equation for sub-
harmonic resonance of order 1/3: 

 
21

2
222

22

2844
53

2
694

8
36
















 







 








Qaaaa         (44) 

In order to analysis the stability of the non-trivial solution, we follow the steps 
used in the preceding subsection. Thus, we obtain the following variational 
equations describing the stability of the steady-state solutions: 
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