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Abstract: In this work first we discuss the possibility of existence of Dirac negative mass and 

magnetic monopole by formulating Dirac and Maxwell equations from a symmetrical system 

of linear first order partial differential equations. Then, by establishing a complete symmetry 

between space and time, in particular their dual dynamics, we show that the existence of 

negative mass is the result of dynamical symmetry between space and time, and magnetic 

monopole is a manifestation of the temporal topological structure of an elementary particle 

classified by the homotopy group of closed surfaces. We also show that the quantum 

relationship between the electric charge and the magnetic charge obtained by Dirac can be 

derived by imposing a topological relationship between the Gaussian curvatures of the 

temporal and spatial manifolds. 

 

In 1928, Dirac developed a relativistic wave equation to describe the quantum dynamics of an 

elementary charged particle. The equation, however, not only can be used to describe a spin 

half particle, such as an electron, but also predicts the existence of an elementary charged 

particle with negative mass. When the positron was discovered, it was then assumed that a 

negative charged electron that has a negative mass manifests as a positive charged particle 

that has a positive mass of equal magnitude [1]. Equivalently, this assumption states that a 

single Dirac wave equation can be used to describe the dynamics of two different elementary 

particles whose signs of mass and charge are exchanged. Or Dirac equation in fact describes 

the dynamics of a single quantum matter field that simply has two different components one 

of which has a positive mass and one negative mass, similar to the case of Maxwell field 

equations of electromagnetism that describe the dynamics of both the electric field with an 

electric charge    and the magnetic field with a vanishing magnetic charge     . 

Interestingly, the missing magnetic charge in Maxwell field equations led Dirac, in 1931, to 

develop a different theory that shows that the symmetry between electricity and magnetism 

implies the existence of a fundamental magnetic monopole    that is connected to the 

fundamental charge    by the relation           [2]. As stated in his works, Dirac 

uncovered unknown physical entities mainly from his belief that in order to advance in 

scientific investigation we would need to modify and generalise the axiomatic foundations at 

the base of mathematics rather than simply develop logically from an established scheme. 

However, besides the epistemological problems that arise from the paradigm shift in the 

axiomatic foundations of mathematics, the more important facts that we are facing in physics 

are related to the question of why the predicted physical entities of negative mass and 

magnetic charge have never been observed. In this work we will discuss this fundamental 
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question and show that the unobservability of negative mass and magnetic charge may be due 

to the fact that both physical entities are in fact associated with the temporal dynamics of 

elementary particles [3]. We have shown in our previous works that both Dirac equation and 

Maxwell field equations, which should contain in them negative mass and magnetic charge in 

order to be more symmetrical, can be derived from a general system of linear first order 

partial differential equations [4,5]. An explicit form of the system can be written as follows 

[6,7]  

     
 
   
   

 

   

 

   

      
 

 

   

      
                                                                                    

The system of equations given in Equation (1) can be rewritten in a matrix form as 

    
 

   

 

   

                                                                                                                           

where               
 ,                                    ,   ,   and   

are matrices representing the quantities    
 ,   

  and   , and    and    are undetermined 

constants. Now, if we apply the operator    
 

   

 
    on the left on both sides of Equation (2) 

then we obtain 

    
 

   

 

   

     
 

   

 

   

       
 

   

 

   

                                                                      

If we assume further that the coefficients    
  and   

  are constants and        , then 

Equation (3) can be rewritten in the following form 

    
  

 

   
 

 

   

              
  

      

 

   

 

   

     
                 

  

   

 

   

           

In order for the above systems of partial differential equations to be used to describe physical 

phenomena, the matrices    must be determined. We have shown that, as in the case of Dirac 

and Maxwell field equations, the matrices    must take a form so that Equation (4) reduces to 

the following equation 

    
  

 

   
 

 

   

     
                 

  

   

 

   

                                                                      

For the classical electromagnetic field, with the notation                      
 
 

                    
 , and     , the most symmetric form of Maxwell field equations 

of the electromagnetic field that are derived from Faraday’s law and Ampere’s law can be 

written as 



   
  

     
   
  

 
   
  

                                                                                                                         

   
  

     
   
  

 
   
  

                                                                                                                         

   
  

     
   
  

 
   
  

                                                                                                                         

   
  

    
   
  

 
   
  

                                                                                                                            

   
  

    
   
  

 
   
  

                                                                                                                          

   
  

    
   
  

 
   
  

                                                                                                                          

where                       
  is the electromagnetic current in which the electric current is 

              and the magnetic current is              . The system of equations given in 

Equations (6-12) can be written the following matrix form  

   
 

  
   

 

  
   

 

  
   

 

  
                                                                                             

with the matrices    are given as 

   

 

  
 

       
       
       
      
      
       

  
 
        

 

  
 

      
       
      
      
       
       

  
 
     

 

  
 

      
      
       
      
      
        

  
 
       

    

 

  
 

       
      
      
       
      
       

  
 
              

 

 
 
 

      
      
      
      
      
       

 
 
 
                                                                   

Furthermore, if an additional condition that imposes on the function   that requires that it 

also satisfies the wave equation given by Equation (5) then Gauss’s laws will be recovered. 

On the other hand, Dirac equation can be derived from Equation (4) by simply imposing the 

following conditions on the matrices    

  
                                                                                                                                                          

                                                                                                                                          

For the case of    , the matrices    can be shown to take the form 



    

    
    
     
     

                    

    
    
     
     

                                                             

    

     
    
    
     

                      

    
     
     
    

                                                       

With     ,     and     , the system of linear first order partial differential equations 

given in Equation (2) reduces to Dirac equation 

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

Except for the fact that Dirac equation is expressed in complex mathematics and Maxwell 

field equations are real, the two formulations look remarkably similar. With the form of the 

field equations given in Equations (18-21), we may interpret that the change of the field 

        with respect to time generates the field        , similar to the case of Maxwell 

field equations given in Equations (6-8), the change of the electric field generates the 

magnetic field. With this observation it may be suggested that, like the Maxwell 

electromagnetic field which is composed of two essentially different physical fields, the 

Dirac field of massive particles may also be viewed as being composed of two different 

physical fields, namely the field        , which plays the role of the electric field in 

Maxwell field equations, and the field        , which plays the role of the magnetic field. 

Even though Dirac equation and Maxwell field equations when derived from a general 

system of linear first order partial differential equations predict the existence of negative 

mass and magnetic monopole, with the assumption of a complete symmetry with respect to 

the physical entries of the system, in addition to the prediction of their existence from current 

formulations of physical theories such as grand unified theory and superstring theory 

[8,9,10], they have never been observed. In the following we will try to address this 

observational problem by showing that these physical entities may belong to a temporal 

dynamics rather than the conventional spatial dynamics that has been adopted in the current 

formulations of physical theories. 

As shown in our previous work on temporal dynamics that we can generalise to formulate a 

3-dimensional temporal dynamics that involves the second rate of change of time with 



respect to distance [3]. Mathematically, space-time can be assumed to be a six-dimensional 

metrical continuum, which is a union of a 3-dimensional spatial manifold and a 3-

dimensional temporal manifold. The spatial manifold is a simply connected Euclidean space 

   and the temporal manifold is also a simply connected Euclidean manifold   . The points 

of this space-time are expressed as                    , where            representing 

          , and the square of the infinitesimal space-time length is of a quadratic form 

         
      In this work, however, we will consider space-time as two separate 

Euclidean manifolds which are connected dynamically. In this case, the quadratic forms for 

the infinitesimal spatial arc length and the temporal arc length are reduced respectively to the 

forms          
       

       
  and          

       
       

 . In Newtonian 

physics, the dynamics of a particle is a description of the rate of change of its position in 

space with respect to time according to Newton’s laws of motion, where time is assumed to 

flow at a constant rate and is considered to be a 1-dimensional continuum. We can generalise 

this formulation by considering the dynamics of a particle as a description of the mutual rates 

of change of the position and the time of a particle with respect to one another, where not 

only space but time is also considered to be a 3-dimensional manifold. This generalisation 

will yield new insights that can be used to explain physical phenomena. Consider a particle of 

inertial mass   that occupies a position in space. In a coordinate system  , the position of the 

particle at the time   is determined by the position vector                          . 

We have assumed the Newtonian time is the temporal arc length  .  As in classical physics, 

the classical dynamics of the particle is governed by Newton’s laws of motion. We will term 

Newton’s laws as spatial laws. The spatial second law is 

 
   

   
                                                                                                                                                    

These spatial laws determine the dynamics of a particle in space with the assumption that 

time is 1-dimensional, universal and flowing at a constant rate. Similar to the case of 1-

dimensional time, we can establish a dynamics for a 3-dimensional temporal manifold by 

considering space as an independent variable. However, due to the symmetry between space 

and time we may use the following argument to formulate. As in classical dynamics, in order 

for a particle to change its position it needs a flow of time. So, similarly, we assume that in 

order for the particle to change its time it would need an expansion of space. We consider the 

motion of a particle in space as its local spatial expansion. This assumption then allows us to 

define the rate of change of time with respect to space. From this mutual symmetry between 

space and time, a temporal dynamics, which is identical to Newtonian dynamics, can be 

assumed. Consider a particle of a temporal mass   that occupies a time in the 3-dimensional 

temporal manifold. In the coordinate system  , the time of the particle at the position 

specified by the spatial vector   is determined by the temporal vector             

             , where   is the spatial arc length in the 3-dimensional spatial manifold and 

         
       

       
 .  We assume the temporal dynamics of the particle is 

governed by dynamical laws which are similar to Newton’s laws of motion in space. In the 

following we will term these laws as temporal laws. The temporal second law is 



 
   

   
                                                                                                                                                     

With the view that time is a 3-dimensional manifold, it follows that time flow is a complex 

description with regards to a physical process. Time is not simply specified as past, present 

and future, but also dependent on its direction of flow. Only when the direction of flow of 

time can be specified then the state and the dynamics of a particle can be determined 

completely. For example, if time is a 3-dimensional continuum whose topology is Euclidean 

   then the time of a particle with a temporal distance of unit length from the origin of a 

reference system is a temporal sphere of unit radius. In fact, the 3-dimensional temporal 

manifold can be reduced to 1-dimensional continuum by considering the 3-dimensional 

temporal manifold as a compactified manifold of the form     , where    is a 2-

dimensional compact manifold whose size is much smaller than any length. However, in the 

following we will only consider forces that act along a radial spatial direction, such as the 

force of gravity and Coulomb force, therefore even though we can assume time as a 3-

dimensional continuum whose topology is Euclidean   , we will also only consider the 

dynamics of a particle along its radial time. In this case time is effectively a 1-dimensional 

continuum. Therefore, otherwise stated, we will assume       and      . Now consider 

the case when a force that produces the same dynamics to an elementary particle if we apply 

Equations (22) and (23) to it separately. Suppose the temporal dynamics of the particle and its 

spatial dynamics are influenced by the same force F that gives rise to the same physical 

process, then we have 

 
   

   
  

   

   
                                                                                                                                         

Since m and D are constant, Equation (24) can be re-written in magnitude form as 

 
   

   
  

   

   
                                                                                                                                         

Equation (25) can be shown to take the form 

   

   
 
 

 
  

  

  
 
 

                                                                                                                                

From this equation we obtain the following equations  
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Now we consider the case in with        . In this case, if we assume      then    . 

In particular, if the temporal rate of flow equals the spatial rate then we have     . From 



this result we then may assume that the negative mass that appears in Dirac equation is 

associated with the temporal dynamics of an elementary particle, in addition to its spatial 

dynamics which is associated with the positive mass. The positive and negative masses are 

manifestations of the two field components of matter wave.  

We now show that the relationship between the electric charge and the magnetic charge 

          obtained by Dirac can be derived by imposing a tolopogical relationship 

between the Gaussian curvatures of temporal and spatial manifolds. Even though the 

following results are similar to those obtained for the spatial Euclidean continuum, for clarity, 

we will give an abbreviated version by first defining a temporal Gaussian curvature in the 

temporal Euclidean continuum    and then deriving a quantised magnetic charge from 

Feynman integral method [11]. As in spatial dimensions, we consider a temporal surface 

defined by the relation            . Then, as shown in differential geometry, the temporal 

Gaussian curvature denoted by    can be determined by          and given as    

             
       

    
    , where           and               . Let    be a 

3-dimensional physical quantity which will be identified with the surface density of a 

magnetic substance, such as magnetic charge of an elementary particle. We therefore assume 

that an elementary particle is assigned not only with an electric charge    but also a magnetic 

charge   . We further assume that the quantity    is proportional to the temporal Gaussian 

curvature   . Now, as in the case with spatial dimensions, if we consider a surface action 

integral of the form                       , then we have 

  
  
  

 
            

 

     
    

     
                                                                                                           

According to the calculus of variations, similar to the case of path integral, in order to 

extremise the action integral                
        , the functional             

   

must satisfy the differential equations 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                         

However, it is straightforward to verify that with the functional of the form given by the 

relation                       
       

    
       the differential equations given 

by Equation (30) are satisfied by any surface. Hence, we can generalise Feynman’s postulate 

to formulate a quantum theory in which  the transition amplitude between states of a quantum 

mechanical system is a sum over random surfaces, provided the functional    in the action 

integral          is taken to be proportional to the temporal Gaussian curvature    of a 

temporal surface. Consider a closed surface and assume that we have many such different 

surfaces which are described by the higher dimensional homotopy groups. As in the case of 

the fundamental homotopy group of paths, we choose from among the homotopy class a 

representative spherical surface, in which case we can write 

       
  
  

                                                                                                                                 



where    is an element of solid angle. Since     depends on the homotopy class of the 

spheres that it represents, we have        , where   is the topological winding number 

of the homotopy group. From this result we obtain a generalised Bohr quantum condition 

                                                                                                                                                

The action integral               is similar to Gauss’s law in electrodynamics. In this 

case the constant    can be identified with the magnetic charge of a particle. In particular, 

the magnetic charge    represents the topological structure of a physical system must exist in 

multiples of   . Hence, the magnetic charge of a physical system, such as an elementary 

particle, may depend on the topological structure of the system and is classified by the 

homotopy group of closed surfaces. This result may shed some light on why magnetic charge 

is quantised. We are now in the position to show that it is possible to obtain the relationship 

between the electric charge    and the magnetic charge    derived by Dirac by considering a 

spatiotemporal Gaussian curvature   which is defined as a product of the temporal Gaussian 

curvature    and the spatial Gaussian curvature    as follows 

                                                                                                                                                     

The spatiotemporal submanifold that gives rise to this form of curvature is homeomorphic to 

     . If    and    are independent from each other then we can write 

                                                                                              

If we assume further that       , where   is an undetermined constant, then using the 

results                      and                     , we obtain a general 

relationship between the electric charge    and the magnetic charge     

 

    
                                                                                                                                                  

In particular, if     ,      and     , or     ,      and     , then we recover 

the relationship obtained by Dirac,          . 
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