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It is known that quantum mechanics is one of the most successful theories in physics across
the entire history of physics, nevertheless, many believe that its foundations are still not really
understood like: wave-particle duality, interference, entanglement, quantum tunneling, uncertainty
principle, vacuum catastrophe, wave collapse, relation between classical mechanics and quantum
mechanics, classical limit, quantum chaos etc., and the continuous failures in the unify between
relativity theory and quantum theory may be an indication about a problem in the foundations,
this paper aims at discovering the first small step in the path of solving and understanding these
quantum puzzles, in fact, the key to solving quantum puzzles is by understanding the reality of the
motion and how it occurs. This paper proposes a model of motion with a new action principle like
the principle of least action called ” alike action principle”. Actually, we have been able to deduce the
principles of quantum mechanics so that the oddity of the quantum becomes easier to understand
and interpret, for example, this paper proposes a solution to vacuum catastrophe and gives us the
origin of dark energy, and shows that the basic law of motion must be broader than both quantum

mechanics and classical mechanics.

1. INTRODUCTION

It is known that the foundations of quantum mechan-
ics are still not really understood, In the fifties of the
last century began serious attempts to find an alternative
theory of quantum mechanics or at least to understand
its obsolescence and still this attempts continue until to-
day, for example: David Bohm ”Bohmian mechanics”
[1], Hugh Everett ”The Many-Worlds Interpretation of
Quantum Mechanics” [2], Nelson ”Stochastic Theory”
[3], Gerhard Grossing ”Nonequilibrium Thermodynam-
ics” [4], Laurent Nottale ”principles of scale relativity”
[11], A. Bouda and Toufik Djama [5, 6], Faraggi and Ma-
tone [7], Antony Valentini ” Dynamical origin of quantum
probabilities” [8] and many others.

It is known that the correspondence principle states that
the behavior of systems described by quantum mechanics
reproduces in a statistical way the classical mechanics in
the limit of large quantum numbers, so because we have
only a statistical matching in the classical limit between
quantum mechanics and classical mechanics, Bohr said
that quantum mechanics does not produce clas-
sical mechanics in a similar way as classical me-
chanics arises as an approximation of special rel-
ativity at velocities very slow than light speed.
He argued that classical mechanics exists inde-
pendently of quantum mechanics and cannot be
derived from it.

Max Jammer has said: ”quantum mechanics and classi-
cal dynamics are built on fundamentally different foun-
dations”! [13] Many modern research [14, 16] confirms
that quantum mechanics can not reproduce classical me-
chanics.

Based on this fact it seems that the general equation of
movement must be broader than both quantum mechan-
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ics and classical mechanics!
One important example is the particle in a box model
(the infinite potential well) if we have the potential V

given by :
0
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then the wave function for the stationary state is :
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so the probability density for finding the particle is :
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and if &k = £ the probability density of momentum p of
the particle is :
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We know that for large number n we have:
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so we arrived at the classical limit when the velocity is

”T”h for the same energy level, in this case, Einstein says

[15] that the quantum mechanic is satisfactory complete

for the momentum but it is not for the position! because

(based on the probability density for finding the particle)

we have always some points that the particle can never

exist.

If we examine the probability density for finding the par-

ticle when n — oo we found a sequence of peaks sepa-

rated by a distance equal :
a

A
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that X is de Broglie wavelength:

A= —
mu
and v is the classical velocity, so if the correspondence
principle describes exactly the reality we need to oppose
the objection of Einstein and affirm that in fact, the
motion does not continue!
So we need to start from the concept of the motion itself,
the motion as we know is related to space and time, it is
a continuous change in position of a particle over time,
but the existence of the particle in our world during its
movement causes a real logical problem, It's about the
continuity thus the infinity of a particle's positions, it
corresponds to Zeno’s paradoxes which were issued by
the philosopher Zeno of Elea (ca. 490-430 BC) who has
claimed that ”the reality is in plurality and change
is mistaken, and in particular that motion is
nothing but an illusion”! [9]
This being said, we must resolve this problem by either
assuming that space is not continuous or the movement
itself is not continuous!
In fact, both assumptions must be taken into considera-
tion.
This paper presents a theory of discontinuous motion of
particles in continuous space-time.
So we start from the concept of the motion itself
and assume that the motion (in the quantum world
and classical world) is a sequence of appearances and
disappearances events in space and time.
This is not the first time to assume such idea, some
other scientists take this idea as a really serious one,
such as:
Gao Shan presents a theory of discontinuous motion
of particles [10], Laurent Nottale, Scale relativity [11]
which is a geometrical and fractal space-time theory,
Boisvert, Wilfrid, who has self-published his first book
”Theory of Instantaneous Motion” [12]
In general, the earlier suppositions are good attempts
which take the idea of discontinuity of motion as a real
fact.
But based on this paper, it appears that exists certain
criticisms in their works which briefly come as follows:
- Gao Shan and Boisvert, Wilfrid assume that the
motion is spontaneous.
- Laurent Nottale declares that the motion is non-
differentiable but it is continuous!

2. THE MOTION

Let's assume (FIG. 1.) that ¢ is the duration during
which a moving particle exists before disappearing and
that p is the duration of the particle's disappearance from
our world before it reappears later.

So what about the trajectory of particle?
Since the particle's motion is a sequence of appearances

and disappearances events, the continuous trajectory of
the particle cannot exist, but we can suppose that for
each disappearance and appearance events we have an
imaginary path (FIG.1.) that only reflect the properties
of space and time on the values of € and p.

If the particle at time t; appears in location m; and at
time t; appear in location my affected by an imaginary
path with velocity v so we can suppose:

ta
L:/ vdt (1)
ty

L is the length of the imaginary path, and we have:

to—t1 =€+ pu (2)

We can suppose that the duration of existence of the
particle € is the same for the observer and for the
reference of particle itself because the relative velocity
between the two objects is zero during the phase of
existence of the particle.

However, we can suppose that the particle didn't
measure the duration of its disappearance p from our
world simply because it wasn't in our world during this
phase !

Therefore, we can suppose based on relativity restraint

that:
to 2
Tz/ \J1— St (3)
ty c

That 7 is the proper time, we mean the time which
the particle measured in its related reference during its
movement from (mq,t1) to (ma,tz) using (or affecting
by) an imaginary path. Note that this integral is a line
integral where the function to be integrated is evaluated
along a curve.

so we suppose that € = 7 then:
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so for this imaginary path we have:
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FIG. 1. One quantum jump

3. QUANTUM JUMP

First, we mean specifically by ”quantum jump” one pe-
riod of movement between two appearances of a particle.
As we know, based on Newton's First law of motion:
”In an inertial reference frame, an object either
remains at rest or continues to move at a constant
velocity, unless acted upon by a force”.

But this law is not compatible with the disappearance
and appearance idea!, this law is not always true since
the particle might easily appear (if the quantum jump
is enough) in a forbidden (have a variation to very large
potential field like for example particle in box) place after
some quantum jumps in the direction of the movement
of the particle!, so for a huge number of particles that
jump in the subatomic level the newton law may put
our universe in unstable situation!, and this might hap-
pen specifically when the length of the jump is close (or
greater) to the length of the field's fluctuations.

But in the case where the length of the quantum jump
is very small compared to the length of the field's fluc-
tuations then the first law of Newton will be applicable
because in this case, we can be sure that the particle will
feel the force before that the force gets altered so all ini-
tial velocities are acceptable.

In this case (classical world) if the initial velocity is ¥ so
this velocity must be constant during one quantum jump
(because no significant change in the potential field), in
this case, we assume that the quantum jump J should be
the de Broglie wavelength divided by two:
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when v — ¢ like photon
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We know that F = m#4 but in our point of view of
appearance and disappearance theory the real Newton
equation must not contain the derivative of velocity

FIG. 2. Derive relativity restraint

(unless as an approximation) because the motion always
must be a sequence of quantum jumps, so in the classical
word the Newton equation become (when v < c¢):

ﬁEQ = m’l_)'g - mf)’l (9)
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So in classical world when v is the initial velocity we can
calculate 75 that is the new velocity and e5 that is the
duration of existence of the particle in our world before
disappearing.

But when we come out from classical phase and enter to
the quantum phase we need to modify Newton's first law
as follows:

In any reference, an object either remains at rest
or continues to move using a quantum jump based
on a new action principle called ”alike action prin-
ciple” that takes in consideration all forces exis-
tent in the universe (not only the applicable forces
on the particle itself).

3.1. Derive relativity restraint

As added result we can also derive the relativity
restraint based on our new assumption as (FIG. 2.):
at time tg the particles O and O’ have the same position,
then at time ¢y, O’ moves with speed v respect to O and
in the same time one photon moves with speed C respect
to O as we see in figure, and let's assume that ¢ is the
duration during which O’ exists before disappearing and

v2 that g is the duration of the particle's disappearance

v?2 h
S S
T am? 2 2mvg( c

- 7)from our world before it reappears later.

In general we assume for the reference related to O if one
object has the length L then the same object must have
length oL with respect to O’ and vice versa because we
have symmetry between the two references related to O
and O’, but we not know the value of o as function of
velocity V', and also we not know if the velocity of the
photon is the same for O’ as for O.

We assume that the velocity of the photon with respect
to O" is C' and for the reference related to O we have:
lod| = x, and

loo'| = v(e + p)
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Our new assumption to derive relativity restraint is for
v=cwehavee=0=a=0=

c
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so for one event (z,t) in reference O and (2/,t') in
reference O’ we can deduce the lorentz transformation
as follow:
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4. ALIKE ACTION PRINCIPLE

When the particle is in location m; at time ¢; and we
are investigating where would it be in time t57
We use this equation to distinguish all space paths:

ta
L:/ vdt
ty

for each path, we can define the ordinary action S which
is verified by:

o]
S:/t (imv —U)dt (11)

1

Now we have a lot of choices for the location in time to,
we suppose that we are in quantum phase or in other
words we ignore the classical mechanic effect which per-
mits us to ignore the initial velocity (for the imaginary
path of a particle used to come to the initial position
ml).

In our case (quantum phase) the initial velocity didn't
have a real significant effect on the movement of the par-
ticle as if the particle always forgets how it came to its
initial position and starts again without any initial ve-
locity.

In the quantum phase the particle has some preferred
destinations based on a new quantum action principle

S
FIG. 3. Two imaginary paths

named ”alike action principle” that ensures the ex-
istence of physical harmony within our universe, like for
example preventing the particle from easily reaching to
forbidden locations (guarded by fields of great forces).
Therefore, in general, this new constraint in movement
could be valid at multiple positions at the same time, so
in general, we have multiple acceptable positions in time
to.

Thus the probability of existence came up in our descrip-
tion of the movement in quantum world!

We suppose that we have a preferred value of action
that we call h (plank constant), the new action principle
called ”alike action principle” states:

The preferred appearance destination took by the
particle at time t is the one for which all the re-
mainders due to % (for all paths which lead to
this destination) are stationary.

In other words, having the same (or close to each other)
remainder after dividing them by h.

for example, if we have two actions (for two paths) to one
destination location (FIG. 3.):

Siand So = S =nith+rh 0<ri <1
and So =nsh+1r3h, 0<ry <1=
Sy — S = (ng—nl)h+(r2—r1)h:>

if we have o — r; = 0 then Sy and S; have the
same remainder after dividing by h then we have a
preferred location (point N) at time to, but if we have
’7"2 — 7“1’ = % = the difference between the remainders
reach its maximum so we have a forbidden location
(point N) at time ts.

so we can say that the action value h is the action
preferred in nature and it is the preferred unit of
quantum jump and in reverse, it becomes not preferable
as it goes far from h.

so we need to find a function which verifies the following
requirements:

f(nh) =0 and f(nh+ %) =1 (using as maximum)

It obvious that this function is a periodic function and
the most simple one that verifies these requirements is:

sin?(z)

Thus by having two actions S7 and S5 we can define the
”difference quantum actions” as:

55,5, = sinQ(%(Sl —S5)) (12)
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FIG. 4. many imaginary paths

So when the difference quantum actions are minimum it
yields a maximum preferred destination of particle and
when we have a maximum difference quantum actions it
yields to a minimum preferred destination of particle and
down to forbidden destination.

If we have n paths (In real case we have infinities of
paths) to the potential destination of the particle (FIG.
4.) then we can simply suppose that the difference quan-
tum actions for all n paths are the sum of all the differ-
ences between each pair of paths:

o T
05,,5s,...5, = (Z)SIHQ(h(Si - 55)) (13)
2%

We have some important mathematical properties for
the equation (13) which we introduce here without
demonstrations:

2

n
max of {3s,,s,,..5,} = - (14)
: n(n—1)
1 ) == 7
(S;—S; mod h) is {:I(:Iljllliprobablc in [0,h] 51,82, 5n 4
(15)

5. DERIVE PATH INTEGRAL FORMULATION

We now want to specify the equation which can be
used to calculate the quantity @ that is proportional to
the probability of existence of any potential destinations
at time to, so for each potential destination the input of
this function is dg, s,....s, and the output is proportional
to the probability of appearance of the particle in this
destination.

Accordingly this probability is maximum when
05,.55...5, = 0 and it is minimum (zero) when

08,.5,,...S, is maximum = when dg, g,...s, = 42

, and we can also assume in the case of equation (15)
that the distribution of the quantum difference actions
is allocated evenly across the range between 0 and h.
There isn't any tendency to forbid reaching to the

destination and nor to maximize the probability of
appearance of the particle at this destination, therefore,
in this case, we can suppose that the probability of
appearance is proportional to the number of n paths
(like classical case).

we can simply suppose that the function is linear to the
5517327“.5‘” SO:

Q = adgs,.s,,..s, +b, aand b is constants = we have:

2 _
O:Q%er, andn:aw

Q=n>—45s, 5,5, (16)
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ultimately we have three main results:

one which could be assimilated to the classical mechanic
(in this case all n paths are acceptable), and the two
others are pure quantum results in which one of them
increases the probability of appearance to become pro-
portional to n? and the other prevents any appearance
in the selected destination.

It becomes clear to us that the hidden variable in quan-
tum phase is the quantum jump itself which will be taken
by the particle during the next movement based on a new
action principle called ”alike action principle”.

Now we want to verify that this quantum ”alike action
principle” yields to the path integral formulation of quan-
tum mechanics which is equivalent to Schrodinger equa-
tion, so from equation (16) we have that:

Q=n?—40g, 5,5, = if we taken =2 =
Q=4—-40g,s,
—4- 4sin2(%(51 — 55))

= 4(1 = sin’ (3 (51~ 52)))

= 4cos?(7-(S1 = 55))

=91+ cos( 7 (51~ 52)))

o+ cos(%”sl) cos(%”sg) + sin(Q%Sl) sin(%”sg))
=2+2 cos(%&) cos(%Sg) + 2sin(2%51) sin(%b&)
= cos2(2%51) + sin2(2%51) + 0032(2%82) + SiHQ(Z%SQ)
+2 cos(%rSl) cos(Q%Sg) + 2Sin(2%51) sin(%rSg)

2 2m 2
= (cos(hSl) +COS(hS2)> +

27 27 2
(sin(hsl) + Sln(hSQ))
2
=

2 2
exp (Z%Sl) + exp (Z%SQ)

in general we can prove:
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so we derive the ”path integral formulation” of quantum
mechanics discovered by Feynman (for infinity paths the
sum become an integral).

Thus when the particle exists in a location M in time t1
we need to apply the quantum ”alike action principle”
in all locations to find the probability of appearance at
time ¢o which is proportional to the quantity Qg, s,,...s
in each location.

So any modification in these locations, for example by
modifying the fields through which the imaginary paths
go through will affect the calculation of Qg, s,....s,!
This being said, the appearance of a particle in any new
location will lead once again to the calculation of quan-
tum alike action which clarifies what is called wave col-
lapse.

Furthermore, it also clarifies the ”decoherence” concept
which illustrates the effect of the environment on the
wave function when the particle chooses one location
(which is very close to some particles exist in the environ-
ment) to appear at! unexpectedly, Einstein's supposition
that the observation is not related to the observer, as well
as Bohr's supposition that the observer causes the obser-
vation is not true, so based on our vision, the observed
particle itself causes the observation by choosing one lo-
cation to appear at based on the quantum ”alike action
principle”.

For photon we can do similar to the particle, so when
A < scale of slits etc. then the photon follows a direct
line with the quantum jump in equation (8), but when A
is comparable or greater then the scale of slits etc. then
the photon follow its ”alike action principle”.

n

So for S = :12 (3mw? — U)dt, the similar quantity of
%mzﬂ is the kinitic energy Ej = mc?
ton we can said:

— moc? so for pho-

moc® =0 = Fp = mc® =
S 2(ty —t S
S_mc(ta—t) S

L _ .
= . bt L is the path length =

n 2 2
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: 1exp(z)\ L)
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6. SOME CONCLUSION

So the observer didn't decide where the particle will

appear but the particle itself has decided its next loca-
tion among all possible destinations based on a new ac-
tion principle called ”alike action principle”.
This clarifies to us and makes more understandable all
strange behaviors of matter in quantum mechanics such
as interference, wave collapse, entanglement, quantum
tunneling, uncertainty principle etc. For instance, re-
garding the entanglement:

In fact, two entangled particles took those related phys-
ical values in coordination while being adjacent! and we
observed this physical values right after their quantum
jump which has occurred at a jump velocity:

L

"

which may exceed the speed of light so we do not
have any spooky action at a distance, for example of
equations (5) if v ~ constant =

2
v(tg — T
(t2 —t1)
2c2

6.1. Basic law of motion

Based on the idea of disappearance and appearance it
seems that the general equation of motion is a combi-
nation of the quantum ”alike action principle” (equation
(17)) and the quantified newton law of motion (equations
(9, 10)) so when the quantum jump J = % = % is very
small compared to the length of the potential field's fluc-
tuations then the particle takes into consideration the
initial velocity v and follows the quantified Newton law
of motion (equations (9, 10)).

In the contrary, when the length of the jump is close (or
greater) to the length of the potential field's fluctuations
then the particle ignores the initial velocity v or becomes
with minimal effect and only uses the quantum ”alike ac-
tion principle” to know where it will go!

So in classical limit, I mean when the particle enters in
the classical regime, the initial velocity takes its role to
specify the future movement, in this case we may witness
a chaotic behavior (big sensitivity to initial values) when
we put for example the particle in a special shape such
as a stadium billiard.

In parallel, when we refer back to the quantum regime
the particle always ignores the initial velocities. Thus,
the chaos will disappear from the quantum world (we
verified Berry [17]) as we know in quantum chaos be-
cause the Schrodinger equation is a linear equation which
didn't consider a chaotic behavior as newton law did.

6.2. Relativist case

It is clear that our model of the movement is not sym-
metrical between the observer and the observed particle,
so to have a full symmetry (to be compatible with the
relativity restraint) we need to suppose that all particles
in the universe have also a special appearance and
disappearance motion in the particle's unique related
reference, in this case we can describe the movement
in all references similarly, and we can assume that this



is what we call in quantum mechanics Zitterbewegung
("trembling motion” in German) which is a hypothetical
rapid motion of elementary particles, the period of this

movement is equal to 52— [18].

6.3. Cosmological constant problems

In cosmology, we have two cosmological constant
problems, the first is the old one what we called the
vacuum catastrophe is the big disagreement between the
observed small value of the cosmological constant that
is the value of vacuum energy density (that is the dark
energy) and the theoretical large value of zero-point
energy expected by quantum field theory.

The second (or new) cosmological problem is the coinci-
dence problem that is:

The vacuum energy density is in the same order of
magnitude as the matter density!

This theory may give us a solution for this two problems,
since the particle's motion is a sequence of appearances
and disappearances events, the law of conservation of
energy can states that the total energy of the Universe
remains constant over time, so this paper assume that
when the particle disappears, it back to the universe
as an energy distributed randomly throughout it, then
after some time it returns as a normal particle etc.,
according to the previous paragraph, the particle is
always in trembling motion between disappearance and
appearance modes so it always spends half its time ﬁ
in the existence and the other half in the disappearance,
so if we assume that N is the total number of particles
in our universe and we want to calulate the probability
to have n particle in disappearence mode we have:

n N—n
o=t () )
nl(N —n)!'\ 2 2
so it is clear that we multiply the probability of finding
n particles in disappearance mode with N — n particles
in appearance mode by the number of all combinations
of n particles from the total N, so the equation becomes:

muévim!@]v (19)

it is clear that the expected value of n is % that have

the maximum probability and we can calculate also the
standard deviation SD is:

P(n) =

so if we comapre the SD in n with the expected value %

we have:

SD 1

¥ YN
it is clear that this number is almost zero so the
fluctuation around the expected value is very small,

always we have % random particles in disappearance

mode, therefore we have % random particles back to the

universe as an energy distributed randomly throughout
it, so as result we found that the vacuum energy density
is almost equal to the half of matter density!

For verification with the observed values, we can see
[19], therefore the origin of dark energy is the ordinary
matter itself!

Finally, this theory is just a beginning step of an-
other way to see the physical world and to open a new
deep view of our universe.
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