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Abstract 
A basic field is defined in the realm of a mathematical modeling platform that is based on a collection 

of floating platforms and an embedding platform. Each floating platform is represented by a 

quaternionic separable Hilbert space. The embedding platform is a non-separable Hilbert space. A 

basic field is a continuum eigenspace of an operator that resides in the non-separable embedding 

Hilbert space. The continuum can be described by a quaternionic function, and its behavior is 

described by quaternionic differential calculus. The separable Hilbert spaces contain the point-like 

artifacts that trigger the basic field. The floating platforms possess symmetry, which in combination 

with the background platform generates the sources of symmetry related fields.  

1 Modeling platform 
The modeling platform is taken from the Hilbert Book Model. It is based on a series of quaternionic 

separable Hilbert spaces that each manage a private parameter space as eigenspace of a normal 

operator. The modeling platform applies versions of the quaternionic number system as parameter 

values, target values, and eigenvalues. The selected version determines the symmetry of the floating 

platform.   

All Hilbert spaces use the same underlying vector space. A subspace of this vector space scans over 

the vector space as a function of a real progression parameter. The private parameter spaces of the 

separable Hilbert spaces float over a background parameter space, which is the private parameter 

space of an infinite dimensional separable Hilbert space. This Hilbert space is the unique companion 

of a quaternionic non-separable Hilbert space, which has a continuum private parameter space that 

embeds the background parameter space and inhabits an operator that manages the continuum 

eigenspace, which represents the considered basic field. A dedicated quaternionic function describes 

this field. Quaternionic differential and integral calculus describe the behavior of the field. The 

modeling platform can handle several basic fields in parallel. 

The interaction of the field with point-like actuators is defined by second order partial differential 

equations. This document treats the corresponding differential and integral calculus. The paper 

“Tracing the Structure of Physical Reality from its Fundamentals” [1] offers an overview of the 

Wikiversity Hilbert Book Model Project [2]. The document “The behavior of basic fields” treats the 

quaternionic mathematics that is applied in the Hilbert Bool Model. The personal e-print archive of 

the author [3] describes many highlights of the Hilbert Book Model project. 
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2 Quaternions 
Hilbert spaces can only cope with number systems whose members form a divisions ring. 

Quaternionic number systems represent the most versatile division ring. Quaternionic number 

systems exist in many versions that differ in the way that coordinate systems can sequence them. 

Quaternions can store a combination of a scalar time-stamp and a three-dimensional spatial location. 

Thus, they are ideally suited as storage bins for dynamic geometric data of point-like objects.  

In this paper, we represent quaternion q  by a one-dimensional real part 
rq  and a three-dimensional 

imaginary part q  . The summation is commutative and associative 

The following quaternionic multiplication rule describes most of the arithmetic properties of the 

quaternions. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = − + +     (2.1.1) 

The   sign indicates the freedom of choice of the handedness of the product rule that exists when 

selecting a version of the quaternionic number system. 

A quaternionic conjugation exists 

 

 * *( )r rq q q q q= + = −   (2.1.2) 

 ( )
* * *ab b a=   (2.1.3) 

The norm q  equals 

 2 ,rq q q q= +   (2.1.4) 

 

 1

2

1 q
q

q q

− = =   (2.1.5) 

 exp
q

q q q
q



 
=   

 
  (2.1.6) 

q

q
 is the spatial direction of q  . 

A quaternion and its inverse can rotate a part of a third quaternion. The imaginary part of the rotated 

quaternion that is perpendicular to the imaginary part of the first quaternion is rotated over an angle 

that is twice the angle of the argument   between the real part and the imaginary part of the first 

quaternion. This makes it possible to shift the imaginary part of the third quaternion to a different 

dimension. For that reason, must / 4 = . 
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Each quaternion c can be written as a product of two complex numbers a and b of which the 

imaginary base vectors are perpendicular 

 
( )( )

( ) ( )
2

1 2

1 2 1 2 1 3

r r

r r r r r

c a a i b b j

a b a b i a b j a b k c c i c j c k

= + +

= + + + + + = + + +
  (2.1.7) 

Where k i j=    
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3 Quaternionic Hilbert spaces 

Around the turn of the nineteenth century into the twentieth century David Hilbert and others 
developed the type of vector space that later got Hilbert's name. 

The Hilbert space is a extraordinary vector space because it defines an inner product for every 
pair of its member vectors. 

That inner product can take values of a number system for which every non-zero member owns a 
unique inverse. This requirement brands the number system as a division ring. 

Only three suitable division rings existː 

• The real numbers 

• The complex numbers 

• The quaternions 

Hilbert spaces cannot cope with bi-quaternions or octonions 

3.1 Bra's and ket's 

Paul Dirac introduced a handy formulation for the inner product that applies a bra and a ket. 

The bra f   is a covariant vector, and the ket g   is a contravariant vector. The inner product 

|f g  acts as a metric. 

For bra vectors hold 

 f g g f f g+ = + = +   (3.1.1) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (3.1.2) 

For ket vectors hold  

 f g g f f g+ = + = +   (3.1.3) 

 ( ) ( )f g h f g h f g h+ + = + + = + +   (3.1.4) 

For the inner product holds 

 
*

| |f g g f=   (3.1.5) 

For quaternionic numbers   and    hold 

 ( )
* *| | | |f g g f g f f g   = = =   (3.1.6) 

 | |f g f g =   (3.1.7) 

 ( ) ( )
** *| | | |f g f g f g f g     + = + = +   (3.1.8) 

Thus 

 
*f f =   (3.1.9) 

 g g =   (3.1.10) 
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We made a choice. Another possibility would be f f =  and *g g =   

In mathematics a topological space is called separable if it contains a countable dense subset; 

that is, there exists a sequence  
0i

i i
f

=

=
  of elements of the space such that every 

nonempty open subset of the space contains at least one element of the sequence [4]. 

Its values on this countable dense subset determine every continuous function [5] on the 
separable space ℌ. 

The Hilbert space ℌ is separable. That means that a countable row of elements  nf exists 

that spans the whole space. 

If ( )| ,m nf f m n=  [1 if n=m; otherwise 0], then   nf is an orthonormal base of Hilbert 

space ℌ. 

A ket base  k  of ℌ is a minimal set of ket vectors k  that span the full Hilbert space ℌ. 

Any ket vector |𝑓⟩ in ℌ can be written as a linear combination of elements of  k . 

 |
k

f k k f=   (3.1.11) 

A bra base  b  of ℌ† is a minimal set of bra vectors b  that span the full Hilbert space ℌ†. 

Any bra vector f   in  ℌ† can be written as a linear combination of elements of  b . 

 |
b

f f b b=   (3.1.12) 

In practice, a base often selects vectors such that their norm equals 1. Such a base is called an 
orthonormal base 

3.2 Operators 

Operators act on a subset of the elements of the Hilbert space. 

An operator 𝐿 is linear when for all vectors |𝑓⟩  and |𝑔⟩  for which 𝐿 is defined and for all 

quaternionic numbers 𝛼 and 𝛽 

 ( ) ( )L f L g L f L g L f g L f g       + = + = + = +   (3.2.1) 

The operator B  is colinear when for all vectors f   for which B  is defined and for all 

quaternionic numbers there exists a quaternionic number   such that 

 1 1B f B f B f  − −=    (3.2.2) 

If a  is an eigenvector of the operator A with quaternionic eigenvalue ,  

 A a a =   (3.2.3) 

then a  is an eigenvector of A  with quaternionic eigenvalue 
1 −

. 

 
1A a A a a a     −= = =   (3.2.4) 

https://en.wikipedia.org/wiki/Dense_set
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†A   is the adjoint of the normal operator A  

 
*

† †| | |f Ag fA g g A f= =   (3.2.5) 

 ††A A=   (3.2.6) 

 ( )
† † †A B A B+ = +

  (3.2.7) 

 ( )
† † †AB B A=

  (3.2.8) 

If
†A A=  then A  is a self-adjoint operator. 

A linear operator L is normal if
†LL exists and

† †LL L L=   

For the normal operator N holds 

 † †| | |Nf Ng NN f g f NN g= =   (3.2.9) 

  

Thus 

 rN N N= +
  (3.2.10) 

 
†

rN N N= −
  (3.2.11) 

 

†

2
r

N N
N

+
=

  (3.2.12) 

 

†

2

N N
N

−
=

  (3.2.13) 

 

2† † ,r rNN N N N N N N N= = + =
  (3.2.14) 

𝑁𝑟 is the Hermitian part of 𝑁. 

𝑁⃗⃗  is the anti-Hermitian part of 𝑁. 

For two normal operators A  and B  holds 

 ,r r r rAB A B A B A B AB A B= − + +     (3.2.15) 

For a unitary transformation U holds 

 | |Uf Ug f g=   (3.2.16) 

The closure of separable Hilbert space ℌ means that converging rows of vectors of ℌ converge to 
a vector in ℌ. 

3.2.1 Operator construction 

f g  is a constructed operator.  
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 ( )
†

g f f g=   (3.2.17) 

For the orthonormal base  iq consisting of eigenvectors of the reference operator holds 

 |n m nmq q =   (3.2.18) 

The reverse bra-ket method enables the definition of new operators that are defined by quaternionic 

functions. 

  
1

(| )|
N

i

i i iqg F h g hq F q
=

=   (3.2.19) 

The symbol F is used both for the operator F and the quaternionic function ( )F q .  This enables the 

shorthand 

 ( )i i iF q F q q   (3.2.20) 

It is evident that 

 ( )† *

i i iF q F q q   (3.2.21) 

For reference operatorR holds 

 i i iq q q=R   (3.2.22) 

If  iq  consists of all rational values of the version of the quaternionic number system thatH

applies then the eigenspace of ℜ represents the private parameter space of the separable Hilbert 

space ℌ. It is also the parameter space of the function ( )F q that defines operator F in the formula 

(3.2.20). 

3.3 Non-separable Hilbert space 

Every infinite dimensional separable Hilbert spaceHowns a unique non-separable companion 

Hilbert space . This is achieved by the closure of the eigenspaces of the reference operator 

and the defined operators. In this procedure, on many occasions, the notion of the dimension of 
subspaces loses its sense. 

Gelfand triple and Rigged Hilbert space are other names for the general non-separable Hilbert 
spaces [6]. 

In the non-separable Hilbert space, for operators with continuum eigenspaces, the reverse bra-

ket method turns from a summation into an integration. 

 ( ) | | qg dF q F qh g h Vd     (3.3.1) 

Here we omitted the enumerating subscripts that were used in the countable base of the separable 

Hilbert space. 

The shorthand for the operator F is now  

 ( )F q F q q   (3.3.2) 
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For eigenvectors |𝑞⟩ the function ( )F q defines as 

 ( )  | | ' ( ') ' | ' 'F q q Fq q q F q q q dV d= =     (3.3.3) 

The reference operator  ℛ that provides the continuum background parameter space as its 

eigenspace follows from 

  |g h g h dq q q Vd     (3.3.4) 

The corresponding shorthand is  

 q q q   (3.3.5) 

The reference operator is a special kind of defined operator. Via the quaternionic functions that 

specify defined operators, it becomes clear that every infinite dimensional separable Hilbert space 

owns a unique non-separable companion Hilbert space that can be considered to embed its 

separable companion. 

The reverse bracket method combines Hilbert space operator technology with quaternionic function 

theory and indirectly with quaternionic differential and integral technology. 
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4 Quaternionic differential calculus 

4.1 Field equations 

Maxwell equations apply the three-dimensional nabla operator in combination with a time 
derivative that applies coordinate time. The Maxwell equations derive from results of experiments. 
For that reason, those equations contain physical units. 

In this treatment, the quaternionic partial differential equations apply the quaternionic nabla. The 
equations do not derive from the results of experiments. Instead, the formulas apply the fact that 
the quaternionic nabla behaves as a quaternionic multiplying operator. The corresponding 
formulas do not contain physical units. This approach generates essential differences between 
Maxwell field equations and quaternionic partial differential equations. 

The quaternionic partial differential equations form a complete and self-consistent set. They use 
the properties of the three-dimensional spatial nabla.  

The corresponding formulas are taken from Bo Thidé's EMTF book, section Appendix F4 [7].  

Another online resource is Vector calculus identities [8].The three dimensional nabla operator𝛻⃗ is 

extended to the quaternionic nabla 𝛻.  

 The quaternionic differential equations play in a Euclidean setting that is formed by a continuum 

quaternionic parameter space and a quaternionic target space. The parameter space is the 

eigenspace of the reference operator of a quaternionic non-separable Hilbert space. The target 

space is eigenspace of a defined operator that resides in that same Hilbert space. The defined 

operator is specified by a quaternionic function that completely defines the field. Each basic field 

owns a private defining quaternionic function. All basic fields that are treated in this chapter are 

defined in this way. 

Physical field theories tend to use a non-Euclidean setting, which is known as spacetime setting. 

This is because observers can only perceive in spacetime format. Maxwell equations use 

coordinate time, where the quaternionic differential equations use proper time. In both settings, 

the observed event is presented in Euclidean format. The hyperbolic Lorentz transform converts 

the Euclidean format to the perceived spacetime format. Chapter 9 treats the Lorentz transform. 

The Lorentz transform introduces time dilation and length contraction. Quaternionic differential 

calculus describes the interaction between discrete objects and the continuum at the location 

where events occur. Converting the results of this calculus by the Lorentz transform will describe 

the information that the observers perceive when they live in a flat living space. Observers 

perceive in spacetime format. This format features a Minkowski signature. The Lorentz transform 

converts from the Euclidean storage format at the situation of the observed event to the perceived 

spacetime format. Apart from this coordinate transformation, the perceived scene is influenced by 

the fact that the retrieved information in practice travels through a field that can be deformed and 

acts as the living space for both the observed event and the observer. Consequently, the 

information path deforms with its carrier field and this affects the transferred information. In this 

chapter, we only treat what happens at the observed event. So, we ignore the Lorentz coordinate 

transform, and we are not affected by deformations of the information path.  

The Hilbert Book Model archives all dynamic geometric data of all discrete creatures that exist in 

the model in eigenspaces of operators that reside in separable Hilbert spaces whose private 

parameter space floats over the background parameter space, which is the private parameter 

space of the non-separable Hilbert space. For example, elementary particles reside on a private 

floating platform that is implemented by a private separable Hilbert space. 

Quantum physicists use Hilbert spaces for the modeling of their theory. However, most quantum 
physicists apply complex-number based Hilbert spaces. Still, quaternionic quantum mechanics 
appears to represent a natural choice. Quaternionic Hilbert spaces store the dynamic geometric 
data in the Euclidean format in quaternionic eigenvalues that consists of a real scalar valued 
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time-stamp and a spatial, three-dimensional location. These storage bins are ideally suited for the 
archival of dynamic geometric data of point-like objects. 

In the Hilbert Book Model, the instant of storage of the event data is irrelevant if it coincides with, 
or precedes the stored time stamp. Thus, the model can store all data at an instant, which 
precedes all stored timestamp values. This impersonates the Hilbert Book Model as a creator of 
the universe in which the observable events and the observers exist. On the other hand, it is 
possible to place the instant of archival of the event at the instant of the event itself. It will then 
coincide with the archived time-stamp. In both interpretations, after sequencing the time-stamps, 
the repository tells the life story of the discrete objects that are archived in the model. This story 
describes the ongoing embedding of the separable Hilbert spaces into the non-separable Hilbert 
space. For each floating separable Hilbert space this embedding occurs step by step and is 
controlled by a private stochastic process, which owns a characteristic function. The result is a 
stochastic hopping path that walks through the private parameter space of the platform. A 
coherent recurrently regenerated hop landing location swarm characterizes the corresponding 
elementary object. A dedicated footprint operator stores the live story of the elementary particle. 

Antiparticles are elementary particles that appear to travel back in time. The pair creation and 
annihilation events that observers may perceive can show to the creator as time zigzag reflection 
events. The HBM does not contain isolated creation or annihilation events for elementary 
particles. The elementary particles exist during the full life of the Hilbert Book Model. Their 
platform, a separable Hilbert space, prevents these events. 

Elementary particles are elementary modules. Together they constitute all other modules that 
occur in the model. Some modules constitute modular systems. A dedicated stochastic process 
controls the binding of the components of the module. This process owns a characteristic function 
that equals a dynamic superposition of the characteristic functions of the stochastic processes 
that control the components. Thus, superposition occurs in Fourier space. The superposition 
coefficients act as gauge factors that implement displacement generators, which control the 
internal locations of the components. In other words, the superposition coefficients may install 
internal oscillations of the components. These oscillations are described by differential equations. 

4.2 Fields 
In the Hilbert Book Model fields are eigenspaces of operators that reside in the non-separable 

Hilbert space. Continuous or mostly continuous functions define these operators, and apart from 

some discrepant regions, their eigenspaces are continuums. These discrepant regions might 

reduce to single discrepant point-like artifacts. The parameter space of these functions is 

constituted by a version of the quaternionic number system. Consequently, the real number 

valued coefficients of these parameters are mutually independent, and the differential change can 

be expressed in terms of a linear combination of partial differentials. Now the total differential 

change df of field f equals 

 
f f f f

df d i dx j dy k dz
x y z




   
= + + +
   

  (4.2.1) 

In this equation, the partial differentials , , ,
f f f f

x y y

   

   
 are dynamic quaternions.  

The quaternionic nabla 𝛻 assumes the special condition that partial differentials direct along the 

axes of the Cartesian coordinate system. Thus 

 
4

0

i

i i

e i j k
x x y z=

    
 = = + + +

    
   (4.2.2) 

The Hilbert Book Model assumes that the quaternionic fields are moderately changing, such that 

only first and second order partial differential equations describe the model. These equations can 
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describe fields of which the continuity gets disrupted by point-like artifacts. Warps, clamps and 

Green's functions describe the reaction of the field on such disruptions. 

4.3 Partial differential equations 

Generalized field equations hold for all basic fields. Generalized field equations fit best in a 
quaternionic setting. 

Quaternions consist of a real number valued scalar part and a three-dimensional spatial vector 
that represents the imaginary part. 

The multiplication rule of quaternions indicates that several independent parts constitute the 
product. 

 ( )( ) ,r r r r r r rc c c ab a a b b a b a b a b ab a b= + = = + + = − + +    (4.3.1) 

The   indicates that quaternions exist in right-handed and left-handed versions. 

The formula can be used to check the completeness of a set of equations that follow from the 
application of the product rule. 

We define the quaternionic nabla as 

 , , , r
x y z

    
  =  + 

    
  (4.3.2) 

 , ,
x y z

   
   

   
  (4.3.3) 

 
r




 


  (4.3.4) 

 ( ) ,r r r r r r          


 
= + =  = + + =  −  + +  

 
  (4.3.5) 

 ,r r r  = −    (4.3.6) 

 r r E B   = +  = −    (4.3.7) 

Further, 

r  is the gradient of 
r   

,  is the divergence of    

  is the curl of   

The change   divides into five terms that each has a separate meaning. That is why these terms in 

Maxwell equations get different names and symbols. Every basic field offers these terms! 

 r rE  = − −   (4.3.8) 

 B =   (4.3.9) 
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It is also possible to construct higher order equations. For example 

 
rJ B E= −   (4.3.10) 

The equation (4.3.6) has no equivalent in Maxwell's equations. Instead, its right part is used as a 

gauge. 

Two special second-order partial differential equations use the terms 

2

2








 and ,     

 
2

2
, 



 
= −   

 
  (4.3.11) 

 
2

2
, 



 
= +   

 
  (4.3.12) 

The equation (4.3.11) is the quaternionic equivalent of the wave equation. 

The equation (4.3.12) can be divided into two first order partial differential equations. 

 ( )( )( ) ( )* * * ,r r r r r      = =  = =  +  − + =   +     (4.3.13) 

This composes from * =  and  =   

2

2
,




−  


 is the quaternionic equivalent of d’Alembert’s operator . 

The operator 
2

2
,




+  


 does not yet have an accepted name. 

The Poisson equation equals 

 , =     (4.3.14) 

A very special solution of this equation is the Green’s function
1

'q q−
  of the affected field  

 
( )

3

'1

' '

q q

q q q q

−
 = −

− −
  (4.3.15) 

 
( )

( )3

'1 1
, , , 4 '

' ' '

q q
q q

q q q q q q


−
     = −   = −

− − −
  (4.3.16) 

The spatial integral over Green’s function is a volume. 

(4.3.11) offers a dynamic equivalent of the Green’s function, which is a spherical shock front. It can 

be written as 
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( )( )' '

'

f q q c

q q

 


− − −
=

−
  (4.3.17) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − − −   (4.3.18) 

The equation (4.3.11) is famous for its wave type solutions 

 ( )2 2, expr r x        =   = =   (4.3.19) 

Periodic harmonic actuators cause the appearance of waves, 

The Helmholtz equation considers the quaternionic function that defines the field separable. 

 ( ) ( ) ( ),r rq q A q T q =   (4.3.20) 

 2
,

r r
A T

k
A T

   
= = −   (4.3.21) 

 2, A k A  = −   (4.3.22) 

 2

r rT k T  = −   (4.3.23) 

For three-dimensional isotropic spherical conditions, the solutions have the form 

 ( ) ( )( ) ( ) 
0

, , ,
l

m

lm l lm l

l m l

A r a j kr b Y   


= =−

= +   (4.3.24) 

Here 
lj  and 

ly  are the spherical Bessel functions [9], and 
m

lY  are the spherical harmonics [10]. 

These solutions play a role in the spectra of atomic modules. 

A more general solution is a superposition of these basic types. 

(4.3.12) offers a dynamic equivalent of the Green’s function, which is a spherical shock front. It can 

be written as 

 

 
( )( )' '

'

f q q c

q q

 


− + −
=

−
  (4.3.25) 

A one-dimensional type of shock front solution is  

 ( )( )' 'f q q c  = − + −   (4.3.26) 

Equation (4.3.12) offers no waves as part of its solutions. 
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During travel, the amplitude and the lateral direction 
f

f
 of the one-dimensional shock fronts are 

fixed. The longitudinal direction is along 
'

'

q q

q q

−

−
.  

The shock fronts that are triggered by point-like actuators are the tiniest field excitations that exist. 

The actuator must fulfill significant restricting requirements. For example, a perfectly isotropic 

actuator must trigger the spherical shock front. The actuator can be a quaternion that belongs to 

another version of the quaternionic number system than the version, which the background platform 

applies. The symmetry break must be isotropic. Electrons fulfill this requirement. Neutrinos do not 

break the symmetry but have other reasons why they cause a valid trigger. Quarks break symmetry, 

but not in an isotropic way. 

5 Field deformation and expansion 
The spherical shock front  

 
( )( )' '

'

f q q c

q q

 


− + −
=

−
   (5.1.1) 

Integrates over time into the Green’s function of the field. 

 
1

'q q−
  (5.1.2) 

This function possesses a bit of volume. The point-like actuator of the spherical shock front injects 

this volume into the field. According to equation (5.1.1), the injected volume spreads over the full 

field. Initially the injected volume deforms the field. This deformation quickly fades away.  

The effect of the shock front is so tiny and so temporary, that in isolation this pulse response cannot 

be observed. Only in huge coherent and recurrently reproduced swarms the pulses can produce a 

significant and persistent result that can be observed by a suitable instrument. 
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6 Line, surface and volume integrals 

6.1 Line integrals 
The curl can be presented as a line integral 

 
0

1
, lim ,

A
C

n dr
A

 
→

 
   

 
   (6.1.1) 

6.2 Surface integrals 
With respect to a local part of a closed boundary that is oriented perpendicular to vector n  the 

partial differentials relate as 

 , ,r rn n n n        = −  +   = − +     (6.2.1) 

This is exploited in the surface-volume integral equations that are known as Stokes and Gauss 

theorems.  

 dV n dS  =    (6.2.2) 

 , ,dV n dS  =    (6.2.3) 

 dV n dS  =     (6.2.4) 

 
r rdV n dS  =    (6.2.5) 

This result turns terms in the differential continuity equation into a set of corresponding integral 

balance equations. 

The method also applies to other partial differential equations. For example 

 ( ) ( ), , , ,n n n n       =  −     = −   (6.2.6) 

 ( )     , ,
V S S

dV dS dS    =   −       (6.2.7) 

One dimension less, a similar relation exists. 

 ( ), ,
S C

a n dS a dl =    (6.2.8) 

6.3 Derivation of physical laws 
The quaternionic equivalents of Ampère's law are 

 r rJ B E J n B E =    =   (6.3.1) 

 , , ,r

S C S

B n dS B dl J E n dS = = +     (6.3.2) 

The quaternionic equivalents of Faraday's law are: 

 ( ) ( )r r r rB E B n E  =  = −  =   = −   (6.3.3) 
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 , , ,r

c S S

E dl E n dS B n dS=  = −      (6.3.4) 

 ( ) rJ B E v  = − = − =   (6.3.5) 

 ( ), , ,r

S C S

n dS dl v n dS    = = +     (6.3.6) 

6.4 Lorentz force 
The equations (6.3.4) and (6.3.6) enable the derivation of the Lorentz force [11]. 

 
rE B = −   (6.4.1) 

 ( )
( )

( )
( )0

0 0, , ,
S S S

d d
B n dS B n ds B n ds

d d
 

 
 

= +     (6.4.2) 

The Leibniz integral equation [12] states 

 

( )
( )

( ) ( ) ( ) ( ) ( )
( )( )0 0

0

0 0 0 0 0

,

, , ,

S

S C

d
X n dS

dt

X X v n dS v X dl



 



    = +  − 



 
  (6.4.3) 

With 𝑋 = 𝐵⃗   and ⟨𝛻⃗ , 𝐵⃗ = 0⟩  follows 

 

( )
( )

( ) ( ) ( )
( )( )

( )
( )

( ) ( )
( )

0 0

0 0

0 0 0

0 0 0

, , ,

, ,

B

S S C

C C

d d
B n dS B n dS v B dl

d d

E dl v B dl

  

 

   
 

  


= = − 

= − − 

  

 
  (6.4.4) 

The electromotive force (EMF)   [13] equals 

 

 

( )

( )

( )
( )

( ) ( )
( )

00

0 0

0

0 0 0

,

, ,

B

C

C C

F d
dl

q d

E dl v B dl

 

 






  

=


= = −

= + 



 

  (6.4.5) 

 F qE qv B= +    (6.4.6) 
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7 Polar coordinates 
In polar coordinates, the nabla delivers different formulas. 

In pure spherical conditions, the Laplacian reduces to: 

 2

2

1
, r

r r r




  
  =  

  
  (7.1.1) 

The Green’s function blurs the location density distribution of the hop landing location swarm of 
an elementary particle. If the location density distribution has the form of a Gaussian distribution, 
then the blurred function is the convolution of this location density distribution and the Green’s 
function. The Gaussian distribution is 

 ( )
( )

2

3 2

1
exp

22

r
r

 

 
= − 

 
  (7.1.2) 

The shape of the deformation of the field for this example is given by: 

 ( )
2

4

r
ERF

r
r





 
− 
 =T   (7.1.3) 

In this function, every trace of the singularity of the Green’s function has disappeared. It is due to 
the distribution and the huge number of participating hop locations. This shape is just an 
example. Such extra potentials add a local contribution to the field that acts as the living space of 
modules and modular systems. The shown extra contribution is due to the local elementary 
module that the swarm represents. Together, a myriad of such bumps constitutes the living 
space. 
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8 Material penetrating field 

 

8.1 Field equations 

Basic fields can penetrate homogeneous regions of the material. Within these regions, the fields 
get crumpled. Consequently, the average speed of warps, clamps, and waves diminish, or these 
vibrations just get dampened away. The basic field that we consider here is a smoothed 

version     of the original field    that penetrates the material. 

 
r r E B   = +  = −    (8.1.1) 

 rr   = +  = − C B   (8.1.2) 

The first order partial differential equation does not change much. The separate terms in the first 
order differential equations must be corrected by a material-dependent factor and extra material 
dependent terms appear. 

These extra terms correspond to polarization P and magnetization M of the material, and the 
factors concern the permittivity   and the permeability   of the material. This results in 

corrections in the E and the B  field and the average speed of warps and waves reduces from 1 

to 
1


. 

 D P= +E   (8.1.3) 

 
1

H M


= −B   (8.1.4) 

 ,b P = −    (8.1.5) 

 ,f D = −    (8.1.6) 

 b rJ M P= +   (8.1.7) 

 f rJ H D= −   (8.1.8) 

 
1

, b f  


=  = +E   (8.1.9) 

 
1

r b fJ J J


 
=   +B- E=   (8.1.10) 

 ( ) ( )
1

D P H M 


= − − +E-B=   (8.1.11) 

The subscript 
b
signifies bounded. The subscript f signifies free. 
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The homogeneous second order partial differential equations hold for the smoothed field .   

  2 , 0r r v      =   (8.1.12) 

8.2 Pointing vector 

The Poynting vector represents the directional energy flux density (the rate of energy transfer 
per unit area) of a basic field. The quaternionic equivalent of the Poynting vector is defined as: 

 S E H=    (8.2.1) 

 
  

  

  
  

 

 

u  is the electromagnetic energy density for linear, nondispersive materials, given by 

 
, ,

2

E B B H
u

+
=   (8.2.2) 

 , ,f

u
S J E




= −  −


  (8.2.3) 
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9 Lorentz transform 

The shock fronts move with speed c . In the quaternionic setting, this speed is unity.  

 2 2 2 2 2x y z c + + =   (9.1.1) 

Swarms of clamp triggers move with lower speed v  . 

For the geometric centers of these swarms still holds: 

 2 2 2 2 2 2 2 2 2 2' ' ' 'x y z c x y z c + + − = + + −   (9.1.2) 

  

If the locations  , ,x y z and  ', ', 'x y z  move with uniform relative speed v , then 

 ( ) ( )' cosh sinhct ct x = −   (9.1.3) 

 ( ) ( )' cosh sinhx x ct = −   (9.1.4) 

 ( )
( ) ( )

2 2

exp exp
cosh

2

c

c v

 


+ −
= =

−
  (9.1.5) 

 ( )
( ) ( )

2 2

exp exp
sinh

2

v

c v

 


− −
= =

−
  (9.1.6) 

 ( ) ( )
2 2

cosh sinh 1 − =   (9.1.7) 

This is a hyperbolic transformation that relates two coordinate systems. 

This transformation can concern two platforms P  and 'P  on which swarms reside and that move 
with uniform relative speed . 

However, it can also concern the storage location P that contains a timestamp  and spatial 

location  , ,x y z and platform 'P  that has coordinate time t and location  ', ', 'x y z  . 

In this way, the hyperbolic transform relates two individual platforms on which the private swarms 
of individual elementary particles reside. 

It also relates the stored data of an elementary particle and the observed format of these data for 
the elementary particle that moves with speed  relative to the background parameter space. 

The Lorentz transform converts a Euclidean coordinate system consisting of a location  , ,x y z

and proper time stamps  into the perceived coordinate system that consist of the spacetime 

coordinates  ', ', ', 'x y z ct in which 't plays the role of proper time. The uniform velocity v  

causes time dilation 
2

2

'

1

t
v

c


 =

−

 and length contraction 

2

2
' 1

v
L L

c
 =  −   

  



21 
 

References 

[1] Tracing the Structure of Physical Reality from its Fundamentals, 

https://www.opastonline.com/wp-content/uploads/2018/11/tracing-the-structure-of-physical-

reality-by-starting-from-its-fundamentals-atcp-18-018.pdf 

[2] The Hilbert Book Model Project, https://en.wikiversity.org/wiki/Hilbert_Book_Model_Project 

[3] E-print archive, http://vixra.org/author/j_a_j_van_leunen 

[4] Topological space, https://en.wikipedia.org/wiki/Topological_space 

[5] Continuous function, https://en.wikipedia.org/wiki/Continuous_function 

[6] Gelfand triple and rigged Hilbert space, https://ncatlab.org/nlab/show/Gelfand+triple 

[7] Bo Thidé's EMTF book, https://www.calvin.edu/~pribeiro/courses/engr315/EMFT_Book.pdf 

[8] Vector calculus identities, https://en.wikipedia.org/wiki/Vector_calculus_identities 

[9] Spherical Bessel functions, https://en.wikipedia.org/wiki/Spherical_Bessel_Function 

[10] Spherical Harmonics, https://en.wikipedia.org/wiki/Spherical_Harmonics 

[11] Derivation of the Lorentz force, 

https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction 

[12] Leibniz integral equation, https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-

dimensional.2C_time-dependent_case 

[13] electromotive force, https://en.wikipedia.org/wiki/Electromotive_force 

 

 

https://www.opastonline.com/wp-content/uploads/2018/11/tracing-the-structure-of-physical-reality-by-starting-from-its-fundamentals-atcp-18-018.pdf
https://www.opastonline.com/wp-content/uploads/2018/11/tracing-the-structure-of-physical-reality-by-starting-from-its-fundamentals-atcp-18-018.pdf
https://en.wikiversity.org/wiki/Hilbert_Book_Model_Project
http://vixra.org/author/j_a_j_van_leunen
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Continuous_function
https://www.calvin.edu/~pribeiro/courses/engr315/EMFT_Book.pdf
https://en.wikipedia.org/wiki/Vector_calculus_identities
https://en.wikipedia.org/wiki/Spherical_Bessel_Function
https://en.wikipedia.org/wiki/Spherical_Harmonics
https://en.wikipedia.org/wiki/Lorentz_force#Lorentz_force_and_Faraday's_law_of_induction
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Three-dimensional.2C_time-dependent_case
https://en.wikipedia.org/wiki/Electromotive_force

	Abstract
	1 Modeling platform
	2 Quaternions
	3 Quaternionic Hilbert spaces
	3.1 Bra's and ket's
	3.2 Operators
	3.2.1 Operator construction

	3.3 Non-separable Hilbert space

	4 Quaternionic differential calculus
	4.1 Field equations
	4.2 Fields
	4.3 Partial differential equations

	5 Field deformation and expansion
	6 Line, surface and volume integrals
	6.1 Line integrals
	6.2 Surface integrals
	6.3 Derivation of physical laws
	6.4 Lorentz force

	7 Polar coordinates
	8 Material penetrating field
	8.1 Field equations
	8.2 Pointing vector

	9 Lorentz transform

