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Abstract : If mathematics is the queen of science, then physics might well be the king. It successes are obvious. 
However, as a science, physics may have failed in one regard, and that is to explain what its basic concepts – such 
as state vectors, wavefunctions, and transformation matrices – actually represent. When studying quantum 
mechanics, it is, effectively, hard to keep up the initial enthusiasm, and those who branch out to other fields – 
which is most of us – quickly end up going through the motions only: we regurgitate models and equations and 
know how to solve the standard problems, so as to pass the exam, but then forget about them as soon as possible.  

This paper explores a very intuitive sentiment about the issue: the wavefunction is a rather ‘flat’ mathematical 
object – it is two-dimensional, basically – so it can’t do the trick, perhaps. In contrast, Maxwell’s equations have 
real vectors in them, which is why a deeper or more intuitive understanding of electromagnetism comes relatively 
easily. Indeed, when everything is said and done, we are just human beings living in three-dimensional space, and 
that is why vector equations (or systems of vector equations), as a mathematical tool, make sense to us. This paper 
further explores this sentiment.  

It also offers a way out by, predictably, presenting yet another possible physical interpretation of the 
wavefunction. More importantly (for the reviewer of this paper, at least), this paper offers a sensible response to 
the mainstream view that three-dimensional physical interpretations of the wavefunction cannot make any sense 
because of the weird 720° symmetry of the wavefunction when describing spin-1/2 particles (fermions or – for all 
practical purposes – electrons). The author does so by analyzing (1) Dirac’s belt trick more in detail – and what it 
implies in terms of the interaction between the observer and the object – as well as (2) Feynman’s derivation of 
the transformation matrices for spin-1/2 two-state systems. 
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Why it is hard to understand – and, therefore, explain – quantum math 

Introduction 
Gauss called mathematics “the queen of sciences.” Gauss was also a physicist, and inspired many other 
physicists – such as Boltzmann, Maxwell and Planck. Most notably, perhaps, Gauss’ divergence theorem 
underpins our understanding of the propagation mechanism of an electromagnetic wave – a wonderful 
interplay between circulation and flux, linear and circular motion: two equations (∂B/∂t = –∇×E and 
∂E/∂t = c2∇×B) that capture (almost) anything we know about electromagnetism.2  

If math is the queen, physicists might want to claim physics is the king: “The Schrödinger equation has 
been one of the great triumphs of physics. By providing the key to the underlying machinery of atomic 
structure it has given an explanation for atomic spectra, for chemistry, and for the nature of matter.”3 
And there are, of course, many more recent claims to fame, such as the experimental verifications of the 
theoretical Higgs field in CERN’s LHC accelerator in July 2012, or the detection of gravitational waves by 
Caltech’s LIGO Lab. We may also add recent advances in nuclear fusion or nanotechnology. And, yes, the 
mass-energy equivalence formula (E = mc2) may well be the best-known formula in the world. 

The E = mc2 formula is probably also one of the least understood formulas in the world. Indeed, physics, 
as a science, may have failed in one regard, and that is to explain what the basic concepts in physics – 
such as state vectors, wavefunctions, and transformation matrices – actually are. Indeed, physicists 
themselves have had uninterrupted discussions on the reality of the wavefunction for almost a hundred 
years now (Schrödinger published his equation in 1926). It is, therefore, not surprising that some 
outsiders should think that most physicists do not understand – in a deep or intuitive sense, that is – 
what they are talking about. The eminent physicist Richard Feynman, whom Bill Gates referred to as 
“the best teacher he never had”4, admitted so much when he wrote the following in his introduction to 
quantum mechanics: 

“Atomic behavior appears peculiar and mysterious to everyone—both to the novice and to the 
experienced physicist. Even the experts do not understand it the way they would like to.”5 

Let us be honest: even the mathematically inclined outsiders – such as engineers, or quantitative social 
scientists, such as myself – will admit quantum math is wholly unattractive. In contrast, we all agree 
Maxwell’s equations are wonderfully beautiful. We understand vectors, and we understand why we 
need two of them to explain what is, of course, one force (F = qE + q(v×B). And when we combine them 
with an analysis of the dynamics of the Poynting vector, we start to see how a two-dimensional 
oscillation might propagate through space by constantly borrowing and returning energy from one place 
to another. 

                                                           
2 The ∂B/∂t = –∇×E and ∂E/∂t = c2∇×B are Maxwell’s equations in empty space, when there are no charges or 
currents: j and ρ are, therefore, zero. We will refer to E and B as real vectors – a term which may be loosely 
defined as vectors in three-dimensional space which transform according to Lorentz’ transformation rules and, 
therefore, respect relativity.   
3 Richard Feynman, Lectures on Physics, Volume III (1966), p. 19-18 
4 For a more balanced discussion on Feynman’s qualities as a teacher, see: https://mathblog.com/was-richard-
feynman-a-great-teacher/, accessed on 12 July 2018. 
5 Richard Feynman, Lectures on Physics, Volume III (1966), p. 1-1 



1. Why state vectors don’t feel real 
In his famous Lecturs on Quantum Mechanics, Feynman tells his readers they can skip the chapter on 
transformations from one representation to another. It’s worth quoting him here: “This chapter is a 
rather long and abstract side tour, and it does not introduce any idea which we will not come to by a 
different route in later chapters. You can, therefore, skip over it, and come back later to it if you are 
interested.”6 

I have returned to it because I realize these transformations bother us – outsiders: mathematically 
inclined non-professionals who try to understand and keep up – profoundly. Maxwell’s equations give us 
a relativistically correct description of electromagnetic waves because they are written as vector 
equations. I am not talking abstract state vectors here but real vectors: three-dimensional objects (the 
electric field vector E and the magnetic field vector B) with a magnitude and a direction in the real 
(three-dimensional) space that we imagine to be living in. Of course, we know that the three numbers 
that describe those vectors depend on the reference frame, but we don’t worry about that because we 
know we can do these Lorentz transformations whenever we would want to swap reference frame, and 
we understand those transformations – because we understand relativity theory – somehow, at least. 
😊 In contrast, while the quantum-mechanical state vectors are defined in terms of a base – or a 
representation as it is referred to in quantum mechanics – the transformation rules are complicated and 
non-intuitive. Physicists have accepted that – because they need to get through their exercises, lectures, 
exams or some doctoral thesis, perhaps – but outsiders haven’t: most of us would probably like to think 
of state vectors as some sort of projection of a deeper reality. 

As a young man, looking at study options, I once had a discussion with an engineer – and, yes, it was a 
discussion on quantum physics, the stuff that has fascinated me all of my life, and will continue to do so. 
He was a smart, cultured and sophisticated man. He told me he and most, if not all, of his fellow 
students had been attracted by the same, but they all ended going through the motions only when 
studying quantum physics: they would regurgitate the models and equations, and know how to solve 
the standard problems, but then forget about it as soon as possible. I will never forget his intuitive 
conclusion on the subject-matter: he told me he instinctively felt the wavefunction was like a ‘flat’ 
object, so it couldn’t do the trick. What he meant to say was that, as a mathematical object, it has two 
degrees of freedom only: a ‘real’ and an ‘imaginary’ dimension – both of which are, obviously, equally 
real – or equally necessary in the description, I would say. 

Some 25 years later, I have come to the conclusion he might be right. The wave equation – 
Schrödinger’s equation, that is – is two-dimensional as well. It has to be, of course, because its solutions 
– the wavefunctions – are two-dimensional only. As such, it strongly suggests that the whole 
mathematical framework already incorporates some line of sight between the observer and the object, 
and the discussion on the reality of the wavefunction may then be usefully focused on the relation 
between the real and imaginary part of the wavefunction and that line of sight. 

The line of sight, or the line of motion? In the frame of reference of the object itself – i.e. an electron 
orbital in the context of Schrödinger’s equation – it must be the line of sight, so let us stick to that for 
the time being.  

                                                           
6 Richard Feynman, Lectures on Physics, Volume III (1966), p. 6-1 



2. Why a physical interpretation of the wavefunction makes sense 
In any physical interpretation of the wavefunction, the real and imaginary component of the 
wavefunction will, obviously, be perpendicular to each other. In fact, we may remind the reader that this 
is probably not a matter of interpretation: the real and imaginary part of a complex number are 
orthogonal by definition: a·ei·θ = a·(cosθ + i·a·sinθ). That is how Euler defined them.7 Hence, we have two 
obvious possibilities here: 

1. The real and imaginary component of the wavefunction are both perpendicular to the line of sight. 
2. Only one of them is perpendicular. The other is in the same direction. 

The Stern-Gerlach experiment told us the spin of an electron will always be up or down (as shown 
below) and, therefore, I like to think the second possibility is the more likely one (think of the x-axis as 
the line of sight here), but that is an early assumption only. 

Figure 1: Could this be an electron?  

Mainstream physicists will immediately reject easy physical interpretations of the wavefunction (such as 
the one above) because of their training and – more to the point – because of the weird 720° symmetry 
of the wavefunction. Let me tackle the first objection first. I know most physicists hate philosophers, but 
I think it is about time physicists show how one can get, through the application of an operator, an 
observable (such as the (average or expected) linear or angular momentum) out of the wavefunction if… 
Well… If it doesn’t have any physical meaning. If it is not real, somehow, then how do we get real data 
out of it?  

                                                           
7 In fact, one may argue whether or not Euler (or Cardano, Descartes, Newton, or Leibnitz before him) did actually 
recognize the physical or geometrical meaning in them, as they coined the term ‘imaginary’ for their second 
component (as opposed to ‘real’, for the first component). In any case, this is not a discussion on the history of the 
math and the question is, therefore, rather moot. 



Now, physicists and philosophers will both ask me: what is real? My answer is: “I don’t know what’s real, 
but anything that has a magnitude, a direction (linear or rotational), and something to grab on, is real 
enough for me.” 😊 That brings me to the second question. 

3. What is the reality of an object with a 720° symmetry? 
I must assume you have looked at a number of illustrations of objects that are supposed to have a 
symmetry of 720°. Animations are better than simple pictures in this regard. Indeed, there are many 
nice videos on Dirac’s belt trick (with an actual leather belt or any other object that has belt-like 
characteristics) or, more generally, on 720° symmetries. I can reference one I like in particular: 
https://www.youtube.com/watch?v=JDJKfs3HqRg. It is a physics student who is turning a glass of water 
in his hand – not once, but twice, as one does in tricks like this. The video clearly demonstrates a 360° 
turn is not like we are walking around the object (the glass of water, in this case) to get back to where 
we were. No. We are turning the object around by 360°! That’s a very different thing than (1) looking at 
it, (2) walking around it, and (3) looking at it again. In case you doubt this statement, you should actually 
do the trick yourself (I found doing the trick myself is remarkably illuminating).  

If you don’t like the reference above, I warmly recommend the 3D animated versions of the belt trick 
made by Jason Hise (2016)8. The still below is a frozen image of one of these. 

Figure 2: Dirac’s belt trick with six belts (five are redundant) 

 

The point is, in all of these illustrations, there is no independent object. The object is always connected 
to the observer, or the outside world – be it through Dirac’s belt or, in the referenced video 
(https://www.youtube.com/watch?v=JDJKfs3HqRg), through an arm with a wrist and an elbow. 😊 Both 
have a definite orientation in space: the observer has a notion of what is up and down and – more 
importantly – does something to the object. Hence, it is definitely not like we are making a full 360° turn 
around the object. No. We are turning the object , instead. That’s an entirely different operation. In fact, 

                                                           
8 See: https://commons.wikimedia.org/wiki/User:JasonHise, accessed on 13 June 2018. 



it actually is an operation – in contrast to making a full 360° walk around the object to then look at it 
from the same spot as before, which is not an operation9).    

4. Feynman’s version of Dirac’s belt trick 
Feynman himself acknowledges the above criticism (turning an object around is not the same as going 
around it) in the mentioned (in)famous Lecture on transformations – which is a “long and abstract side 
tour”, as he puts it, but very interesting. In fact, the thought experiments in this chapter come 
tantalizing close to a physical interpretation of the wavefunction of spin-1/2 particles. I’ve elaborated on 
that in a previous paper10, so let me just summarize the basic line of thought here. In the illustration 
below11 (Feynman, III, 6-3), Feynman compares the physics of two beam splitters with a different 
relative orientation: in (a), the angle is 0°, while in (b) we have a (right-handed) rotation of 90° about the 
z-axis.  

Figure 3: A rotation of 90° about the z-axis  

 

He then proves – using geometry and logic only - that the probabilities and, therefore, the magnitudes 
of the amplitudes for the particle to have its spin ‘up’ or ‘down’ (denoted as C+ and C− and C’+ and C’− in 
the S and T representation respectively) must be the same, but the amplitudes must have different 
phases, noting – in his typical style, mixing academic and colloquial language – that “there must be some 
way for a particle to tell that it has turned a corner in (b).” 

The various interpretations of what actually happens here may, in my humble view, shed some light on 
the heated discussions on the reality of the wavefunction – and of quantum states (or state vectors).12 
We know, from theory and experiment, that the amplitudes are different. To be precise, for the given 
difference in the relative orientation of the two apparatuses (90°), we know that the amplitudes are 
given by C’+ = ei·φ/2·C+ = ei·π/4·C+ and C’ = ei·φ/2·C = ei·π/4·C respectively. The more subtle question here is 
the following: is the reality of the particle in the two setups the same? 

                                                           
9 We obviously make abstraction of time passing by here. The argument of the wavefunction will also change as a 
function of time, of course. We assume our 360° turn around the object is done instantaneously.  
10 Reflections on the Reality of the Wavefunction, http://vixra.org/abs/1712.0201, accessed on 12 June 2018.  
11 Richard Feynman, Lectures on Physics, Volume III (1966), p. 6-6 
12 The alert reader will note that we are discussing a two-state system here, as opposed to, say, an electron orbital. 
Hence, the meaning of the wavefunction is definitely not the same. However, this objection is not fundamental. 



Feynman notes that, while “the two apparatuses in (a) and (b) are different”, “the probabilities are the 
same.” He refrains from making any statement on the particle itself: is or is it not the same? The 
common-sense answer is obvious: of course, it is the same! The particle is the same, right? In (b), it just 
took a turn – so it is just going in some other direction. That’s all. However, common sense is seldom a 
good guide when thinking about quantum-mechanical realities. Also, from a more philosophical point of 
view, one may argue that the reality of the particle is not the same: something might – I’d say: must – 
have happened to the electron because, when everything is said and done, the particle did take a turn in 
(b). It did not in (a).  

What did cause it to make a turn in (b). Feynman is equally vague on that. I suspect it’s our experimental 
set-up: we just make it make a turn. And then we are surprised we have a different wavefunction? 
Surely, you’re joking, Mr. Feynman! 😊 

Is he or isn’t he? I strongly feel he was on the fence about it all, but his position – and the orthodox 
interpretation of quantum math – may have prevented him from fully exploring what he was exploring 
here. Feynman notes that, if we rotate the T apparatus by 360°, the system seems to be 
indistinguishable from the zero-degree situation. However, the amplitudes will be different: C’+ = ei·φ/2·C+ 
= ei·π·C+ =  C+ and C’ = ei·φ/2·C = ei·π·C =  C. Both amplitudes are multiplied by −1. Feynman says the 
following in this regard (Feynman, III, 6-3): “It is very curious to say that, if you turn the apparatus 360°, 
you get new amplitudes. They aren’t really new, though, because the common change of sign doesn’t 
give any different physics.” However, in a footnote – a crucial footnote, in my view – he acknowledges 
the reality of the situation might not be the same. Referring to a continuity assumption he had used 
earlier, he notes the following: 

“If something has been rotated by a sequence of small rotations whose net result is to return it 
to the original orientation, it is possible to define the idea that it has been rotated by 360° – as 
distinct from zero net rotation – if you have kept track of the whole history.” 

These are weird philosophical questions. Is an apparatus that has been turned 360° a different 
apparatus? Is an electron that takes a complete turn – over 360° – a different electron? 

My answer is positive: it is different, and so that is why we should not be surprised that the 
wavefunction is different. We definitely meddled: Dirac’s belt – or whatever other physical connection 
between the observer and the object that is being observed – is definitely there! Feynman 
acknowledges the same: rotating something by 360° is distinct from zero net rotation. In fact, we should 
not be surprised that the wavefunction does not return to its original value after one 360° turn, but 
wonder why it returns to its original value after another turn of 360°! Why after two turns? Why not 
after three, or four? Or some rotation in-between, like one-and-a-half or three and three-quarters? Now 
that is a deep symmetry. 

Am I a loner here? I don’t think so. 😊 So… Well… What could we be thinking of? 



5. A physical interpretation of the wavefunction 
Let us look at Schrödinger’s equation’s once more. Feynman’s summary interpretation of Schrödinger’s 
equation is the following: 

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 
from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 
behavior completely different from the ordinary diffusion such as you would have for a gas 
spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 
whereas the solutions of Schrödinger’s equation are complex waves.”13 

Feynman further formalizes this in his Lecture on Superconductivity, in which he refers to Schrödinger’s 
equation as the “equation for continuity of probabilities”.14 His analysis there is centered on 
the local conservation of energy, which makes me think Schrödinger’s equation might be an energy 
diffusion equation. I’ve written about this ad nauseam in the past, and so I’ll just refer you to one of my 
other papers here for the details15, and limit this post to the basics, which are as follows. 

The wave equation (so that’s Schrödinger’s equation in its non-relativistic form, which is an 
approximation that is good enough) is written as: 

 

The resemblance with the standard diffusion equation (shown below) is obvious: 

 

As Feynman notes, it is just that imaginary coefficient that makes the behavior quite 
different. How exactly? Well… You know we get all of those complicated electron orbitals (i.e. the 
various wave functions that satisfy the equation) out of Schrödinger’s differential equation. We can 
think of these solutions as (complex) standing waves. They basically represent 
some equilibrium situation, and the main characteristic of each is their energy level. I won’t dwell on this 
because – as mentioned above – I assume you master the math. Now, you know that – if we would want 
to interpret these wavefunctions as something real (which is surely what I want to do!) – the real and 
imaginary component of a wavefunction will be perpendicular to each other. A general geometric 
representation of the elementary wavefunction ψ(θ) = a·e−i·θ = a·e−i·(E/ħ)·t = a·cos[(E/ħ)·t] − i·a·sin[(E/ħ)·t] 
is shown below: 

                                                           
13 Richard Feynman, Lectures on Physics, Volume III (1966), p. 16-4 
14 Richard Feynman, Lectures on Physics, Volume III (1966), p. 21-3 and 21-4 
15 See: http://vixra.org/author/jean_louis_van_belle_maec_baec_bphil, accessed on 12 June 2018. 



Figure 4: Euler’s formula 

 

The 90° angle makes me think of the similarity with the mathematical description of an electromagnetic 
wave. Let me quickly show you why. For a particle moving in free space – with no external force fields 
acting on it – there is no potential (U = 0) and, therefore, the Vψ term – which is just the equivalent of 
the the sink or source term S in the diffusion equation – disappears. Therefore, Schrödinger’s equation 
reduces to: 

∂ψ(x, t)/∂t = i·(1/2)·(ħ/meff)·∇2ψ(x, t) 

Now, the key difference with the diffusion equation – let me write it for you once again: ∂φ(x, t)/∂t = 
D·∇2φ(x, t) – is that Schrödinger’s equation gives us two equations for the price of one. Indeed, because 
ψ is a complex-valued function, with a real and an imaginary part, we get the following equations: 

1. Re(∂ψ/∂t) = −(1/2)·(ħ/meff)·Im(∇2ψ) 

2. Im(∂ψ/∂t) = (1/2)·(ħ/meff)·Re(∇2ψ) 

In case you would wonder where these equations come from, they can be easily derived from noting 
that two complex numbers a + i·b and c + i·d are equal if, and only if, their real and imaginary parts are 
the same. Now, the ∂ψ/∂t = i·(ħ/meff)·∇2ψ equation amounts to writing something like this: a + i·b = i·(c 
+ i·d). Now, remembering that i2 = −1, you can easily figure out that i·(c + i·d) = i·c + i2·d = − d + i·c. [Now 
that we’re getting a bit technical, let me note that the meff is the effective mass of the particle, which 
depends on the medium. For example, an electron traveling in a solid (a transistor, for example) will 
have a different effective mass than in an atom.  atom. In free space, we can drop the subscript and 
write meff = m.]  

The equations above make me think of the equations for an electromagnetic wave in free space (no 
stationary charges or currents): 

1. ∂B/∂t = –∇×E 

2. ∂E/∂t = c2∇×B 

Now, these equations – and, I must therefore assume, the other equations above as well – effectively 
describe a propagation mechanism in spacetime, as illustrated below: 



Figure 5: Propagation mechanisms 

 

You know how it works for the electromagnetic field: it’s the interplay between circulation and flux. 
Indeed, circulation around some axis of rotation creates a flux in a direction perpendicular to it, and that 
flux causes this, and then that, and it all goes round and round and round. Something like that. I will let 
you look up how it goes, exactly. The principle is clear enough. Somehow, in this beautiful interplay 
between linear and circular motion, energy is borrowed from one place and then returns to the other, 
cycle after cycle. 

Now, we know the wavefunction consist of a sine and a cosine: the cosine is the real component, and 
the sine is the imaginary component. Could they be equally real? Could each represent half of the total 
energy of our particle? I firmly believe they do. The obvious question then is the following: why wouldn’t 
we represent them as vectors, just like E and B? I mean… Representing them as vectors (I 
mean real vectors – something with a magnitude and a direction, in a real vector space – as opposed to 
these state vectors from a Hilbert space) would show they are real, and the transformation matrices we 
need to go from one (representational) base to another might become more intuitive. In fact, that’s why 
vector notation was invented (sort of): we don’t need to worry about the coordinate frame. It’s much 
easier to write physical laws in vector notation because… Well… They’re the real thing, aren’t they?  

What about dimensions? Well… I am not sure. However, because we are – arguably – talking about 
some pointlike charge moving around in those oscillating fields, I would suspect the dimension of the 
real and imaginary component of the wavefunction will be the same as that of the electric and magnetic 
field vectors E and B. We may want to recall these: 

1. E is measured in newton per coulomb (N/C). 

2. B is measured in newton per coulomb divided by m/s, so that’s (N/C)/(m/s). 

The weird dimension of B is because of the weird force law for the magnetic force. It involves a vector 
cross product, as shown by Lorentz’ formula: 

F = qE + q(v×B) 

Of course, it is only one force (one and the same physical reality), as evidenced by the fact that we can 
write B as the following vector cross-product: B = (1/c)·ex×E, with ex the unit vector pointing in the x-
direction (i.e. the direction of propagation of the wave). [Check it, because you may not have seen this 
expression before. Just take a piece of paper and think about the geometry of the situation.] Hence, we 
may associate the (1/c)·ex× operator, which amounts to a rotation by 90 degrees, with the s/m 



dimension. Now, multiplication by i also amounts to a rotation by 90° degrees. Hence, if we can agree on 
a suitable convention for the direction of rotation here16, we may boldly write: 

B = (1/c)·ex×E = (1/c)·i·E 

This is, in fact, what triggered my geometric interpretation of Schrödinger’s equation about a year ago 
now. I have had little time to work on it, but think I am on the right track. Of course, you should note 
that, for an electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero 
point simultaneously (as shown below). So their phase is the same. 

Figure 6: EM wave (circularly polarized) 

 

 

In contrast, the phase of the real and imaginary component of the wavefunction is not the same, as 
shown below. 

Figure 7: The elementary wavefunction 

 

In fact, because of the Stern-Gerlach experiment, we should probably be thinking of a motion like this: 

                                                           
16 The convention would also need to include our understanding of the directions of the real and imaginary 
component of the wavefunction vis-á-vis the line of sight between the observer and the object or, possibly, its 
direction of motion.  



Figure 8: The flywheel (or flying saucer?) model of an electron 

 

But that shouldn’t distract you. The question here is the following: could we possibly think of a new 
formulation of Schrödinger’s equation – using vectors (not state vectors – objects from an abstract 
Hilbert space – but real vectors) rather than complex algebra? I think we can, but then I wonder why 
the inventors of the wavefunction – Heisenberg, Born, Dirac, and Schrödinger himself, of course – never 
thought of that. Or… Well… Perhaps they did. 

One of the more thoughtful commenters on my physics blog17 - where I first ventilated the thoughts 
above – noted the following: “Schrodinger’s equation is just a re-use of the wave equation that comes 
from harmonic motion of something tangible, which is why it is rather bizarre to see quantum physicists 
interpreting it as a merely a probability wave. But when we consider the fact that real strings are “tied” 
to something – an endpoint of sorts – and must interact with it on a particular plane of existence, the 
analogy should hold true for the Schrodinger equation. The borders (what the wave is “tied” to) is 
potential energy, and therefore, the wave itself – by virtue of the fact that it must interact on the same 
plane of existence – should also be an energy wave, which seems to be what you’re saying (albeit you’ve 
come to these conclusions mathematically rather than analogously).” 

I am sure considerations like this must have crossed the minds of the mentioned geniuses and, 
therefore, some more historical research is probably in order.  

  

                                                           
17 https://readingfeynman.org/2018/06/11/should-we-reinvent-wavefunction-math/#comments, accessed on 13 
June 2018. 



Conclusions 
Above, we explained why quantum math comes across as obscure and difficult. The basic difficulty is 
that the standard representation of the wavefunction (and wavefunction) depends on the pre-
establishment of a ‘line of sight’, i.e. the line between the object and the observer – or the line of 
motion of the object – and, hence, that already establishes (part of) the reference frame. In contrast, 
electromagnetic waves – or any other physical wave – are usually represented by vectors (real vectors, 
not state vectors) which have an independent reality, i.e. they do not depend on the reference frame. 

We followed up on these thoughts by offering a physical interpretation of the wavefunction. To be 
precise, we offered a physical interpretation of the matter-wave for an electron.  

This interpretation is remarkably similar to the interpretation of the electromagnetic wave. In fact, I 
suggest their physical dimension is the same. What are the differences? One crucial difference is, of 
course, the phase difference between the two components. There is also the different orientation of the 
angular momentum, which is explained by our interpretation of the direction of the real and imaginary 
component of the wavefunction vis-á-vis the line of sight, or the line of motion of the particle. 

Last but not least, the model of an electron that is offered here combines the idea of an orbital and, 
importantly, the pointlike charge that is whizzing around in it. Hence, the oscillation effectively pushes 
and pulls that charge around. Even if we think of that charge having zero ‘rest mass’ (whatever that may 
be), it should create an ‘electromagnetic mass’ (mass is just a measure of inertia), and that may explain 
why an electron cannot travel through space at the speed of light.  

In such interpretation, the key difference between the EM wave and the matter-wave is just: (1) 
geometry (the physical dimensions of the ‘components’ of both waves would be the same: we’re talking 
an oscillating electromagnetic field in both cases), and (2) the presence – or, in the case of a photon, the 
absence – of a pointlike charge in that whirling oscillation. 

What is the whirling motion of the pointlike charge? The Zitterbewegung, so to speak? I elaborated on 
that in a previous paper, and so I should refer there.18 However, for the convenience of the reader, I will 
provide a short summary here. The model is, basically, a flywheel model. It is inspired by the 
mathematical similarity between the E = m·a2·ω2 (the energy of two oscillators in a particular 90° degree 
combination) and the E = m·c2 formula. If this were to represent something real, then we need to give 
some meaning to the c = a·ω identity that comes out of it. Now, if we assume, just for fun, that E and m 
are the energy and mass of an electron, then the de Broglie relations suggest we should equate ω to 
E/ħ. As for a, the Compton scattering radius of the electron (ħ/(m·c) would be a more likely candidate 
than, say, the Bohr radius, or the Lorentz radius. Why? Because we’re not looking at an electron in orbit 
around a nucleus (Bohr radius), and we’re also not looking at the size of the charge itself (classical 
electron radius), because we assume the charge is pointlike. We get: 

a·ω = [ħ/(m·c)]·[E/ħ] = E/(m·c) = m·c2/(m·c) = c 

Wow! Did we just prove something? No. We don’t prove anything here. We only showed that our E = 
m·a2·ω2 = m·c2 equation might (note the emphasis: might) make sense. Let me show you something 
else. If this flywheel model of an electron makes sense, then we can, obviously, also calculate 

                                                           
18 See: The Wavefunction as an Energy Propagation Mechanism, http://vixra.org/abs/1806.0106, accessed on 13 
June 2018. 



a tangential velocity for our charge. The tangential velocity is the product of the radius and 
the angular velocity: v = r·ω = a·ω = c.  

Wow! Did we just prove something? Is an electron nothing but a point charge that is spinning around 
some center at… Well… The speed of light? 

Maybe. But probably not. We need to explain the mass of our electron here, and that’s not so easy 
because we say it is basically a possibly massless point charge going up and down, and back and forth. 
So we need to calculate the equivalent mass of the energy of that oscillation. We are, of course, talking 
about the electromagnetic mass of a charge, but I am not aware of any model that does that what we 
want to there, and that is to calculate the electromagnetic mass of a charge that is simply moving up 
and down, and back and forth, or left and right, in some harmonic two-dimensional oscillation. There is 
also the added complication that an oscillating charge should radiate its energy away, so we would need 
an explanation of why that is not happening. Hence, the situation is very complicated. We need a 
formula for the electromagnetic mass of a zero mass charge oscillating along one axis – let’s denote that 
by melec – and that mass would be the effective mass for an oscillation that is perpendicular to the first 
one. Fortunately, the two motions are, effectively, independent (because of the 90° angle between 
them). Having said that, it is easy to see that the final calculation might be quite complicated. 

Having said that, we believe the basic ideas might be valid: 

1. A charge with zero rest mass will acquire some electromagnetic mass when linearly oscillating. 

2. This electromagnetic mass provides an anchor for a linear oscillation in a direction that is 
perpendicular to the original one. 

3. Maxwell’s propagation mechanism for an electromagnetic wave may ensure such two-
dimensional oscillation is sustainable and propagates itself, so to speak. 

Does this make sense? Probably. It is difficult to summarize a ten-page paper in just a few paragraphs. 
Hence, I will refer you, once again, to my other paper(s).19 😊 
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