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Preface

The purpose of this work is to introduce, in a simple, intuitive way, the coherent and
squeezed states of the quantum harmonic oscillator (QHO), through a series of
exercises, which are solved in detail.

Starting from the application of a spatial translation to the ground state of the QHO,
we introduce the spatial and momentum translations, focusing on their application to
the QHO, which leads us to the displacement operator.

Next, we introduce the coherent states and examine their basic aspects.

We then proceed to give a simple and purely intuitive introduction to the squeezed
states and we conclude by identifying the coherent states as states of minimum energy
expectation value compared to the respective squeezed states.

The reader is assumed to have a basic knowledge of the postulates and the
mathematical formalism of quantum mechanics, including the Dirac notation and the

ladder operator method of the QHO.



l. Preliminaries

Applying a spatial translation to the ground state of the quantum
harmonic oscillator (QHO)

A

1) At time t=0, the wave function of a QHO is l//(x)=exp(—ll:ﬁjl//0(x),

where y,(x) is the ground-state wave function, p :—ihdi is the momentum
X

operator (in the position representation), and x, is an eigenvalue of the
position operator (be careful, it is not the position operator).

i) Show that the wave function y (x) is normalized.

ij) Calculate the position and momentum expectation values of the QHO at
time t=0.

iii) Calculate the energy expectation value of the QHO at time ¢t>0.

It is given that

1
mao \+ mao
v, (x)= (Ej exp(—ﬁxzj

and

i > o) = | exp| 2
.[deexp(—ax —2bx)—\/;exp[a j, a>0.

For the integral, see, for instance,

https://en.wikipedia.orq/wiki/Gaussian inteqral

Solution

1) Using the Taylor expansion of the operator exp(—%j , 1.e.

the wave function y(x) is written as


https://en.wikipedia.org/wiki/Gaussian_integral

V/o(X)‘i(lp%lj

n=0 n ' n=0 n

v, (x)

Since x, is a number (not an operator), the momentum operator commutes with x,,

and with i too, and thus

( hj ( hjp

Therefore, the wave function y (x) is written as

(z2x1 )” Vlo(n) (x) _
:i(—xl)n l//o(”)(x):i%(n)'(x)(—xl) v, (x-x,)

Remember that the Taylor series of a (proper) function f (x) about x' is written

w 10=3 LW 0y

m=0 m'

That is
w(x) =y (x—x,) (1)

Using (1), we have
Idx‘t//(x)‘z = Idx‘t//o(x—xl)‘z (2)

Changing the integration variable to
y=x-x,

we have



dx=dy
and

lim y =400

x—>too

Thus, (2) becomes
Jasy (f = sl (o) =1

because the ground-state wave function is normalized.

Therefore, the wave function y(x) is also normalized.

Another way of showing that t//(x) is normalized is by observing that the operator

exp(— lph Al j is unitary.

Indeed, the Hermitian conjugate of exp(— lph Al j is
n N\ NN RN
S | )
ipx 2 f °° h L3 hi
a8 - T
That is

w3

n=0 n'
But
+ i
~ a\' ~ ~ A A A
(e s
n times (n—1) times

+

(5 ) - ()

(n—l) times




That is

A n T A T A n—1 T
B ZTH I U )
5 -5
Using repeatedly, n times, the previous relation, we obtain

(] -

2 times

PN N o~ NT RN =2\
_[_wx _Ipxy _1px _ipx -

That is

IR
h h

By means of (4), (3) becomes

w2

n=0

n=0

Since the momentum operator is Hermitian,

(5
h h

Thus

N N
[exp(—%jj = z py = exp(%j
n=0 .

That is




A t A
o)) ool ®

Using (5) we obtain

A T A A A
[exo( 22| o 125} - exp| 2 oy - 25

Since the commutator of % and — P20 s zero, applying the property

exp( 1+ ) =exp( A)exp(B)ex -3 [ 4.8

yields

exp (%j exp(—%) =exp (%—%j =exp0=1

In the same way,

o~ A N o~ o~ o~ o~
ipx, ipx, ipx, ipx, ipx,  ipx,
exp| ——L || exp| ——L || =exp| —=L |exp| =L |=exp| —TL+—L =1
"PU)("PUB p(hjp(hj p(h hj
ipx ' ipx ipx ipx '
exp| —— || exp| ——— |=exp| —— || exp| —— | | =1
[p(hD p(hj PUXPUD

ipx, \ . . .
Therefore, the operator exp(— ph lj is unitary, and thus it preserves the norms of the

states on which it acts.

Then, in the state space, we have

oo -2 )| o)
Thus

[l =10 = (wlw) = olo)

Using the completeness of the position eigenstates, we have

ipx,
h

)=




| [ ) (ol =0o]| [ af) (o] o) =

I G —
= Idxw<x|y/>= Idxm<x|0>:> Idx‘<x|y/>‘2 = Idx‘<x|0>‘2
%) T oy - ”

Substituting (x|0)=/,(x) and (x|y)=w(x), and using that the ground state is

normalized, i.e. j dx‘t//o (x)‘2 =1, we obtain

—00

zdx‘y/ ()c)‘2 =1

ii) At time ¢ =0, the wave function of the QHO is the wave function (1). Thus, its

position expectation value is written as
<x>0 = jdxl//o*(x—xl)xl//o (x—xl) (6)

Changing again the integration variable to
y=x-x,

we have

X=y+x,

dx=dy

and

lim y =400

x—>too

Thus (6) becomes

‘2

(= [ s (40w ()= [ o (9)ow () | bl ()

The integral j dyw, (¥)yw,(») is the position expectation value of the QHO in the

ground state, which is zero.



We remind that the position expectation value of the QHO in an energy eigenstate
is zero.
i 2 : . :
Also, .[ dy‘t//o ( y)‘ =1, since the ground-state wave function is normalized.

Thus
<x>0 =X (7)

Likewise, the momentum expectation value of the QHO at 1 =0 is

(o), =zdxt//0*(x—xl)(—ih%jy/0 (r=x,)

Doing again the variable change y = x—x,, the previous equation becomes
R . )
()= [ vy () i v ()

The integral .[ dyy, ( y)(—ih dij 7 ( y) is the momentum expectation value of the
o Y

QHO in the ground state, which is zero.

We remind that the momentum expectation value of the QHO in an energy

eigenstate is also zero.

(p),=0 ®

We see that the operator exp(—lph al

j, acting on the ground state of the QHO,

changes (translates) the position expectation value by x, while leaving unchanged the

momentum expectation value.
This is easily generalized to an arbitrary, but bound, state — not necessarily an energy

eigenstate — of a one-dimensional quantum system — not necessarily of the QHO. The

: : ipx, :
constraint that the state on which the operator exp(—%) acts should be bound is

necessary so that it is normalizable and the respective integrals are finite.



Moreover, it can be shown — see the following exercise — that if the operator

ipx, .. : . o :
exp(—%j acts on a position eigenstate |x>, it yields the position eigenstate

|x+xl>, ie.

exp(_"%j|x>:|x+xl>

Due to its property to translate the position, or the position expectation value, by its

ipx,
argument x,, the operator exp| — p

j is a spatial translation operator or, simply, a

translation operator.

Obviously, for each position eigenvalue x,, we can define a spatial translation

operator

- ipx,
T =exp| ——
 =ex| 2%

ii1) Since the Hamiltonian of the QHO is time independent, the Ehrenfest theorem

gives for the time evolution of the QHO energy expectation value

e ) o
Thus
(E), =(E), ©)

At ¢ =0, the state of the QHO is described by the wave function i (x).

Thus, the energy expectation value of the QHO at =0 is
(E), = [ dw (x) (5} (x) (10)

where H (x) is the Hamiltonian of the QHO in the position representation, i.e.

ﬁ(x)——(ihci)z

+—ma’x*
2m 2

Substituting (1) and the previous Hamiltonian into (10), we obtain



—o —0

That is

d 2
® (_Zhdj 1 o
(E), = .[dxt//o*(x—xl)z—mxt//o(x—xl)ntama)zjdxt//o*(x—xl)xzt//o(x—xl) (11)

We’ll calculate the two integrals separately.

Changing again the integration variable to
y=x-x,

we have

X=y+x,

dx=dy

and

lim y =400

x—>too

Thus, the first integral on the right-hand side of (11) is written as

2
)
dy

. v () (12)

vo(x-x)= [ dw, ()

The second integral on the right-hand side of (11) is written as



zde/O* (x_xl)x2‘//O (x_xl) =zdy%* (y)(y+xl)2 W, (y) =
- [ ) 25050 -

:T dy%*(y)yzl//o(y)*lef dy (v) v (9)+ 7 T dyyy (y)vs (7)

The integral .[ dyw, (¥)yw,(») is the position expectation value in the ground state

of the QHO, which is zero.

Also, since the ground-state wave function is normalized, the integral

[ vy (Mwa(r) is 1.

Thus
T dxyy (x=x)x"y, (x—x) =T dvy, (9) v, (v)+x] (13)
Substituting the integrals (12) and (13) into (11), we obtain
S
(), = jdyl/xo*(y)%%(y)v%mwz deyt//o*(y)yzt//o(y)mfj =

RN 1
vo (9)+ [y’ ()5 mey iy (3)+ S me'x’ =

(_ih ) jz
i * Yy 1 2.2 1 2.2
= Jaw, ) 52 Ly () + Lo =

The integral .[ dyy, ( y)I:I (»)w, (») is the energy expectation value of the QHO in

the ground state, which, obviously, is equal to the ground-state energy, i.e. hTQ) .

Thus



(E), =22+ Linarx? (14)

ll;l xlj on the ground

We see that the action of the spatial translation operator exp(—

state of the QHO increases the energy expectation value by the positive amount
Ema)le2 , which is the energy of a classical harmonic oscillator with amplitude |x1| .

By means of (14), (9) is written as
ho 1 5 2
E) =—+—mo'x~ (15
< >t 2 2 1 ( )
This is the energy expectation value of the QHO at time > 0.

More on spatial translation operators

A

2) i) If T =exp| -2 is a spatial translation operator, show that
X 1Y 7

|:)€', f;cl :| = xlfjrl -
ii) Using the previous commutator, show that the action of f“xl on a position

eigenstate yields a position eigenstate with eigenvalue translated by x,, i.e.

A

T

X

x)=|x+x,).
iii) Using the Baker-Campbell-Hausdorff formula

oxp(a) Bexp(~4)= B+[ 4.8]+ [ a[ 48]+ L[ A[A[48]])+.s [A[ 4. [28].]]

n A's or n commutators

show that, for an infinitely many times differentiable function f,
T f(3)T, =f(3+x).

iv) A QHO is in the state T, |y), with |y) being an arbitrary state of the QHO.

Using the previous property of f“xl, express the expectation values of the

position, momentum, and energy, as well as the position and momentum

uncertainties, and the position-momentum uncertainty product, in the

translated state f“xl |1//> in terms of the respective quantities in the untranslated

state |y).



Solution

1) Using the Taylor expansion of T , » the commutator [fc,f“ . ] is written as

)
i) [l A 5 Sl
-5
Pkl

. . x, . .
In the last equality, we used that the quantity —;‘ is a number, and thus it commutes

with the momentum operator.
We remind that the argument x, of the spatial translation operator YA“XI is a real
number, not an operator. You can think of it as being an eigenvalue of the position

operator.

Thus

&7, ]= i@[&ﬂ (1)

We need to calculate the commutator [fc, f)”} .

The result of a commutator is independent of the representation we choose to
calculate it.

Since the momentum operator is to the nth power, we choose to calculate the
commutator in the momentum representation, where the momentum operator is a
scalar variable, and thus we can handle the exponential much easier than if it was an

operator.

) ) ) N o d .
We remind that in the momentum representation, X = zhd— and p=p.
4

Choosing an arbitrary wave function ¢( p) (in the momentum representation), the

action of [fc, f)”} on ¢(p) yields



dp dp dp dp

- ih((l?" ) #(p)+p"¢ (p) —p”¢'(p)j = ihnp""'¢(p)
Here, the prime denotes differentiation with respect to p .
That is
<" |§(p) = "9 p)
dp
Since the wave function ¢( p) is arbitrary,
{ih;—p,p"} = ihnp"”

or, in representation-free form,

dp

{ihi’pn}¢(p):[ihipn_p"ihiJ¢(p):ih{i(p’@(p))_p” d¢(p)j:

[%,p" | =imp" ®)
with n>1. If n =0, the commutator (2) is zero.
Substituting into (1) yields
) T[T
Ao 3 h ~n—1 - h ~An—1 - h h ~n—1
, =) ~—~<—ih = mp" = =
47 ] 2y =2 (n-1)1" 2 CE
I ) SR G I G+
_ S h An-l _ S h An-l S h An': S
IR U A P e I P P Vs
=X, exp(— ip;‘ j =xT,
That is
(&7, ]=x7, G

i) Using the previous commutator, we obtain

A A

xI, T x=xT, =xT =T x+xT,

X X




Thus, the action of the operator fcf“xl on a position eigenstate |x> yields

£ )= (7, 07, ) = . 1) 0, [1)= x5+ 7, |

x)+x7T,

Since x is a number — an eigenvalue of the position operator — it commutes with 7, ,

and thus

4 | =, [ )= (4 )7, )
That is

7, |5 = (x4, |4

Thus, the state T . |x> is a position eigenstate with eigenvalue x+x,.

Therefore

A

T

X

x>:A|x+x1>,

where A is a complex constant.
In the previous exercise, we showed that the operator fxl is unitary, and thus it

preserves the norms of the states on which it acts.

Therefore, although the position eigenstates are not bound, we can assume that
[4]=1

Omitting the physically unimportant constant phase of 4, we end up to

A

T

X

) =|x+x,) @)

ii1) For A= lp; L and B = f (fc) , the Baker-Campbell-Hausdorff formula is written as

h
LV | ipx 1% g A\ipx, [ ipx [P, oo
+3!{ > { 4 [ - ,f(x)m+...+n!{ - { & [ - ,f(x)}...ﬂ )

We need to calculate the commutator [ D f (fc)] . Since the function f is unknown, it

exp(lilxljf(i)exp(—@j:f(’e)+[lZ:CI ’f()e)}L%{lﬁ%’[lﬁ%’f(i)ﬂjL

is suitable to do the calculation in the position representation, where the position



operator is a scalar variable, and thus the operator function f (fc) becomes a scalar

function.

: : o A L od
We remind that in the position representation, x = x and p =—ih g
X

Choosing an arbitrary wave function ¢(x) (in the position representation), the action

of [ p,f(%)] on #(x) yields

10 8(0) = (i o) 0 i o) -
i (@)1 | (o0 9 )9 )

dx dx
it (x) ()

Here, the prime denotes differentiation with respect to X .

That is
. d . ’
—zha,f(x) ¢(x)=—inf"(x)@(x)

Since the wave function ¢(x) is arbitrary,
[—mi, f(x)} —if"(x)

dx
or, in representation-free form,

[,/ (%)]=-itf" (%) 6)

Using (6), we have

0| ] )= 0

zﬂp? f()mf; f’(i)}%xﬁ[&f’(ﬂ] S (<in (8)) =57 (3)

Assuming that



h [, [ ,f<fc>}..-ﬂ ()

k commutators

then
lﬁxl if?xl lﬁxl 2 — lﬁxl lﬁxl lﬁxl 2 — lﬁxl k() (2) | =
{ n s [ ,f<x>}-..ﬂ 4 { s [ B ,f<x>}--} )]

(k+1) commutators k commutators

= %xlkﬂ [}A?a f(k) ()E)] = %xlkﬂ (_ihf(k+1) ()E)) _ x1k+1f(k+1) ()AC)

Thus

h [, [ ,f<fc>}..-ﬂ (),

n commutators

for every n=1,2,...

Thus, the right-hand side of (5) is written as

FE) 0L ()45 (8 #5010 (5 ot 1 (7) =
. n

()

n!

The series z x," is the Taylor expansion of f ()E + xl) about x, i.e.
n=0

w ) (2
zf (x)xl’“:f(fc+x1)

Thus, the right-hand side of (5) is equal to f(X+x;).

Besides, in the previous exercise, we showed that

A A T

Thus, the left-hand side of (5) is written as

NN "
[exp (—%D (%) exp(—%) = YA“XITf(fc)YA“Xl



Therefore, (5) is written as
7f(R)E = f(i+x,) (7

iv) Denoting by <0> >

| and <O> E respectively, the expectation values of an
74

Tylw

operator O in the untranslated state |l//> and in the translated state 7 N |1//> , we have

()i = (7, v)):

where, for more clarity, we use the general notation for inner products, since the

l//> ’ )Ef"‘l

w))=(lw).7,'3T,

spatial translation operators are non-Hermitian.
Using (7), we have

S han

T XTI, =x+x,

since, in this case, f(%)=%.

Thus, the position expectation value in the translated state is written as

<x>fq\.,/> =(|‘/’>’(’e+xl)|‘//>)=(|‘/’>”%

) +(w).x|w)) =

(o

- <x>\v> 5 (| l//> ’ l//>) = <x>\.,> X

1
We assume that the initial, untranslated state |l// > is normalized.

That is
<x>w> = <x>\.,> X (8)

To calculate the position expectation value (8), we didn’t use that the state |l//> isa

QHO state, we only used that it is bound, so that its norm is 1.
Thus, the relation (8) holds for every bound, and normalized, state of any one-
dimensional quantum system.

The momentum expectation value in the translated state is written as

(P, = (., v))

v))=(lw).7," T,

), pT,



Since the spatial translation operators depend only on the momentum operator, they

commute with the momentum operator, and with every function of the momentum

operator, i.e. if g ( [7) is a function of the momentum operator, then

[2(p).7, ]=0 )
Thus
T,'pT, =1,'T, p=p

—_—

Then, the momentum expectation value in the translated state is written as
(P, =(¥).2lw))=(p),,

That is

<p>rw> =(P), (10)

As in the case of the relation (8), the relation (10) also holds for every bound, and
normalized, state of any one-dimensional quantum system.

The energy expectation value in the translated state is written as

(E);,,=(T, v))

The Hamiltonian of the QHO is

l//> ’[:Ijil l//>) = (| l//> > 7’11*[:[7’11

~2
A 1 .
H=L 1 - me’3’
2m 2

Thus, we have

)
NG s 1 oawsn
THT =T —+=—ma’%* |T. =—T."p°T. +
o T 2m 2 B ) )

~»

Using (7) and that the momentum operator squared commutes with T ., » We obtain



~2

A | | N A - 2
YHT =—T'T p* +—ma’ T '3°T. =p—+—ma)2(x+xl) =
1 1 1 1 1 1
()?erl)z
) ~2
- - 2 . .1
=L et (x2 + 2x1x+x12) =L e+ mo’xx+—maw’x =
2m 2m 2

. L1
:H+ma)2x1x+5ma)2x12
That is
A 3 2o 1 22
T 'HT, =H +mo x,x+—mo"x,
1 1 2

Then, the energy expectation value in the translated state is written as

n 1 . A

<E>T W) = [|V/>,(H + mw2x1x+5ma)2x12j| V/>J = (|l//>,H l//>) +ma’x, (|1//>,x 1//>) +
) —_— R A
<E>\v/> <X>\v/>
1 1
+Ema)2xl2 (|w). l//>) = <E>\w> +ma’x, <x>‘w> +§ma)2xl2
1
That is
1

(E)w> = <E>M +ma’x, (x}M +Ema)2x12 (11)

The relation (11) holds for every state of the QHO.

If the untranslated state |l//> is an energy eigenstate |n>, then <x>‘w> =0 and

<E> =F = n+l hw. Then, (11) becomes
lv) 4 2

1 1
()i, = (n+5jha)+5ma)2xlz (12)

For n=0 (ground state), (12) gives (14) or (15) of the previous exercise, as it should
do.

The position uncertainty in the translated state is

(Ax)fq\w - \/<x2 >T}1\l//> _(<x>fql//>)2 (13)

The expectation value of the position operator squared in the translated state is




AD AN

l//>’x T;‘l

(=

Using (7), we obtain

v))=(lw).1,%°1, |v))
T'#T, =(3+x) =& +2xi+x]
Thus

() =) (5 +2mi 7)) = (1), £°]w))+ 25 (lw). %

v))+x(|w),

V)=

= <x2 >\u/> +2x, (x}M +x
That is
<x2 >f.q = <x2 >‘W> +2x, <x>w> +x (14)

Substituting (14) and (8) into (13), we obtain

2

(Ax); ), = \/ (x7),, 20 (x), +2 _(<x>\w> ”1) -
= \/<x2 >‘W> +2x, <x>w> +x” - ((<x>w> )2 +2x, <x>w> + xlzj -
- \/<x2 >\vx> _(<x>\'//> )2 - (AX)M

That is

(Ax); ) =(Ax),, (15)

Thus, the position uncertainty does not change, and this holds for every bound, and
normalized, state of any one-dimensional quantum system.

Similarly, the momentum uncertainty in the translated state is

(49);.1,, = \/ ("), ()i )2 (16)

The expectation value of the momentum operator squared in the translated state is

()= (7, )

Since the momentum operator squared commutes with T W

v), p'T, |v))=(lw).T,'$T,




Thus

(#"); = ()2 )= (r"),,

That is

(), =), (17)

Substituting (17) and (10) into (16), we obtain
(Ap)fq\w =(Ap)\.,> (18)

Thus, the momentum uncertainty does not change, and this also holds for every
bound, and normalized, state of any one-dimensional quantum system.

From (15) and (18), we derive that the position-momentum uncertainty product is the
same in the translated and untranslated state, and this also holds for every bound, and

normalized, state of any one-dimensional quantum system.
Momentum translation operators
3) Similar to the case of spatial translation operators, a momentum translation

operator T, is defined as T, zexp(lpfzx

j, where x is the position operator

and p, is an eigenvalue of the momentum operator.
i) Show that the operator f“pl is unitary.
ii) Show that | p,T, | = pT, .

iii) Show that the action of f“pl on a momentum eigenstate yields a momentum

eigenstate with eigenvalue translated by p,, i.e. f“pl |p)=|p+p).
iv) Using the Baker-Campbell-Hausdorff formula show that, for an infinitely

many times differentiable function f, T,"f(p)T, = f(p+p,).
v) A QHO is in the state T, |y/), with |y) being an arbitrary state of the QHO.

Using the previous property of f“pl, express the expectation values of the



position, momentum, and energy, as well as the position and momentum

uncertainties, and the position-momentum uncertainty product, in the

translated state f“pl |1//> in terms of the respective quantities in the untranslated

state |y).
Solution
1) Using the Taylor expansion of exp(lplij , the Hermitian conjugate of T L, 18 written
as
T (zpl)ﬁjn * (iplfcj" * ((zplxj j

In the same way we proved the relation (4) of the exercise 1, we prove that

GING)

Then, using also that the position operator is Hermitian, we obtain

7 ui@é@ﬂp(%}

n=0 n! n=0 n!
That is
. ip,x
T,'= exp(—?j (1)

Then, the product T Y i ,, Is written as

fpff“pl =exp (—%j exp (%j

) ip x ipx .
Since the commutator of X and P IS zero,



exp(—ll;xjexp(lpfzxj = exp(—%vt%j =exp0=1

That is

In the same way, we have

P77 —ex ip_l’fjex (_mjzex (ip_lx_w_lszl
nop p( A p 5 p P P

Thus

A

T ot
Tpl Tpl _TPITPI _1
Therefore, T , Is unitary.

il) Using again the Taylor expansion of exp(lpfllx

j, the commutator [ﬁ,fm] is

written as

. o : ) :
Using that the position operator commutes with the number % (remember that p, is

a number), we obtain

[57,)- 2 2] [5.4)

n=0

In the previous exercise, we showed that the commutator of the momentum operator

with a differentiable function f of the position operator is
[ 5.1 (3)]=-inf"()

Thus

[ %" |=—ihni""

with n>1. If n=0, the commutator is zero.



A

Then, the commutator [ p.T, ] is written as

n=1 n=1 (n n'=0 n.
I} Y ~
=plexp(pl j=pl n
That is
7.7, = pT, 2)

ii1) Using the previous commutator, we obtain
ﬁTﬁl _Tﬁ1ﬁ=p1Tﬁ1 :ﬁTpl :Tplﬁ_i_plTl’l
Thus, the action of f)f , Onamomentum eigenstate | p> yields

p)+pT,|p)=T,pp)+pT,|p)

ﬁTPl |p> :(Tplﬁ—i_plTPl )|p> :Tplﬁ
where p is the eigenvalue of the momentum eigenstate | p> , L.e. it is a number, and

thus it commutes with T b

Then

pT,|p)=pT, |p)+pT,|p)=(p+p)T,|p)

That is

A

pT, |p)=(p+p)T,

p)

The state T pl | p> is thus a momentum eigenstate with eigenvalue p+ p,.

Therefore

T,|p)=Blp+p),

where B is a complex constant.



Since T , Is a unitary operator, it preserves the norms of the states on which it acts.

Therefore, although the momentum eigenstates are not bound, we can assume that
[B]=1

Then, omitting the physically unimportant constant phase of B, we obtain

A

Tpl

p)=|p+p) 3)

A

iv) For A=- lpfzx and B = f ( f)) , the Baker-Campbell-Hausdorff formula,

oxp(a) Bexp(~4) = B+[ 48]+ [ a[45]|+ [ A[a[4B]]|+.v- [ 4[4 [28].])

n A's or n commutators

1S written as

o A o A o A T ins o A
eXp(—%jf(p)eXp(%j=f(p)+[—lpfzx,f(p)}L—{—lplx,[—lplx,f(p)ﬂvL
1| ipx | ipx | ipk . 1| ipx | ipx | ipx . .
+3!{ g { g [ L 1(h) ﬂ+...+n!{ g { . [ £ 1 (h) ﬂ )

We’ll use the momentum representation to calculate the commutator [)E, f ( ]3)] , since

: .. d . :
in the momentum representation, X = zhd— and p = p, and thus the operator function
P

/(P) becomes a usual, and easy-to-handle, scalar function.

Thus, choosing an arbitrary wave function ¢( p) (in the momentum representation),

we have

10 [p0) =80 (0)- )i o) =8 (o)) (1) 2022 )
=in(f"(p)#(p)+/(p)#(p)~f(P)¥ (p))=if"(p)4(p)

Here, the prime denotes differentiation with respect to p .

That is



{ihi,f(p)}ﬂp) =inf'(p)¢(p)

dp

Since the wave function ¢( p) is arbitrary,

d o
{zh%,f(p)} =ihf (p)
or, in representation-free form,
(5.7 (B)]=inf"(P) (5)

Using (5), we have

_z';;z f(f?} lpl[ (P ]_—%ihf'(f?)=l71f'(f7)

ind [_ind o C[ind ]

- )] [ <[ )| 5] -
.2

=-Leinf"(p)=p'/"(h)

Assuming that

_ipX | ipX | ipE s _ k05
{ ,{ ,[ " ,f(p)}ﬂ p fY(p)

h h

k commutators

then

_m _@ _iplfc R _ _iplfc _ipl)ﬁ _iplfc . _
[ ! { 4 [ 4 ,f(p)}...ﬂ 4 { 4 [ 4 ,f(p)}..}

k commutators

(k +1) commutators

. A okl . k+l
- [— T pt (fo)} =P[5 (p) |[= =ity (p) = p 1 ()
Thus
_ipX | _ipX | _ipX s _ gl
{ - ,{ " ,[ " ,f(p)}ﬂ p'f(p),

n commutators

for every n=1,2,...



Then, the right-hand side of (4) becomes

PR pS (B)+5 27 (3)+ 3,0 ()t 1 ()=

2 3!
"(p @) (5 (n) ( 7 o ) a
= () (P) oL ;p)pf+f 3(,p)pf+...+fn—('p)pln :Z_f n('P)pln

0 (”) 2
The series Zf—('p)pl” is the Taylor expansion of f(p+ p,) about p, i.e.
n=0 n.

o ) (s
Zf (!p)pl”=f(f9+pl)

n=0 n

Thus, the right-hand side of (4) is equal to f ( p+ pl).
Using (1), the left-hand side of (4), i.e. the term exp(—%jf(ﬁ)exp(ﬂj, is

written as fpl'rf(f))fpl :

Therefore, (4) is written as
7,:'Pltf‘(ﬁ)j—\vﬁl =f(ﬁ+p1) (6)

v) Using again, for more clarity, the general notation for inner products, the position

expectation value in the translated state T » |1//> is written as

<x>fm\y/> = (fpl |l//>’)efpl |l//>) :(|V/>’fplfﬁfpl |l//>)

The momentum translation operators depend only on the position operator, and thus

they commute with the position operator, and with every function of the position

operator, i.e. if g (%) is a function of the position operator, then

[2(%).T, |=0 (7

Then, the position expectation value in the translated state is written as

(@, =(w)-2w))=(x),,




That is

(i) =) (8)

Pl

Since we didn’t make use of the fact that the state |l//> is a QHO state, the relation (8)

holds for every bound, and normalized, state of any one-dimensional quantum system.

The momentum expectation value in the translated state is written as

<p>fm‘y/> - (fp‘

Using (6), we obtain

w), bT, [v))=(1w). T, BT, |v))

RS oA
Tpl prl _p+pl

Thus

(P): ) =(w):(2+ 2)lw) =(v). 2lw))+ P (W) |w)) = (), + P

That is

(Pl ={P)y + P ©)

The relation (9) also holds for every bound, and normalized, state of any one-
dimensional quantum system.

As we did in the case of the spatial translation — see the previous exercise — we can
directly calculate the energy expectation value in the translated state. Alternatively,
we can calculate first the expectation values of the position squared and momentum
squared, since we’ll need them to calculate the respective uncertainties, and from
them we’ll derive the energy expectation value.

The expectation value of the position squared in the translated state is written as

<x2>fm\n//> - (fpl '/’>)

Using (7), we obtain

l//> ? 5627:!’1 | l//>) = (| l//> ? f‘pl T)ezj:vﬁl

notA2m gt A2 A2
Tpl X n - Tm Tplx =X
[ ——]



<x2>fm\,,> = (| v). &’ |‘/’>) = <x2 >\W>

That is

) =), (10)

The relation (10) also holds for every bound, and normalized, state of any one-
dimensional quantum system.

The expectation value of the momentum squared in the translated state is written as

<p2>fm\y/> =(fﬁl "”>)

Using (6), we obtain

l//>’ﬁ27:l71 |l//>) =(|¥/>’7:P1Tﬁ27:l71

~ A D A 2 A A
T.'p°T, =(p+p) =p"+2pp+p’

Thus

v))=

v))+p’(|v),

1

() oy = (05" 225+ p2)l0)) = (10). °[w) + 2, (Iw).

= <p2>\41/> +2p1 <p>‘y,> + plz

We remind that we’ve assumed that the bound, and thus normalizable, state |l// > is

normalized.
That is
<p2>fmw> :<p2>w> +2p(p),, +p! (11)

The relation (11) also holds for every bound, and normalized, state of any one-
dimensional quantum system.
Using the Hamiltonian of the QHO, the energy expectation value of the QHO in the

translated state is written as

. o U <p2>;,1 1
(E)y, =(1 >f,,ly/> B <§m oo ¥ >f " 2mT_W> wome’ (),

Substituting (10) and (11) yields



2
p p p
+o = <E>\.,,> +_1<P>\.,,> -

2m m 2m
That is
2
)4 P
(E)yyy =(E)yy+ o H Py +5 (12)

Obviously, the relation (12) holds only for the states of the QHO.

If the untranslated state |l//> is an energy eigenstate |n>, then < p>‘v> =0 and

<E> =F = n+l hw. Then, (12) becomes
lv) 2

2

(4] P,
<E>mn> —(n+§jha)+% (13)

Using (8) and (10), we derive that the position uncertainty in the translated state is the

same as in the untranslated state, i.e.

(Ax) (14)

7w = (&%),

The relation (14) also holds for every bound, and normalized, state of any one-

dimensional quantum system.

Using (9) and (11), the momentum uncertainty in the translated state is written as
2

(4);, ) = \/<p2>f,,lw> _(<p>f,w>) B \/<p2 ) +2m{ph, o _(<p>\w> ”’1) N
B \/<p2>u/> +2pp), + o _((<p>u/>)2 +2p(p)y, ”’IZJ B

2

=\/<p iy _(<p >\w>) =(4p),,,

That is

2

(4); 1, =(22),, (13)

The momentum uncertainty in the translated state is the same as the momentum

uncertainty in the untranslated state.



The relation (15) also holds for every bound, and normalized, state of any one-
dimensional quantum system.

From (14) and (15), we derive that the position-momentum uncertainty product in the
translated state is the same as the position-momentum uncertainty product in the
untranslated state, and this also holds for every bound, and normalized, state of any

one-dimensional quantum system.

The combined action of a spatial and a momentum translation operator

A

4) Let f“xl be a spatial translation operator, i.e. fl Eexp(_l[; Al j and fp. be a

X

momentum translation operator, i.e. TAm = exp (%)

We also define the operator T, . =exp (Mj _

s a (4 5
Since exp[%j:exp [Mj, the order of the two operators

doesn’t matter, and T, . =T, .

We'll show that the three operators T.7,, T,T , and T,  differ only by a

constant phase, and thus they are physically equivalent.

This means that their action on a physical state — not necessarily a QHO state
— yields states that differ only by a constant phase, and thus they are
physically equivalent, i.e. they are the same state.

Solution

The physical equivalence of the three operators follows from the fact that the

ipx ipx, | .
commutator [%,—%} 1S a constant.

Indeed

ik ipx | _(ipy (i E ]3]=_p1x1 i = Py
AR h h)t K h

That is



[ipl)’e _lﬁxl}zixlpl (1)
ok i

Since the previous commutator is a constant, we can use the identity
A . . I~ «
exp(A+B) = exp(A)exp(B)exp(—E[A,BD

which holds if the operators A and B commute with their commutator [ﬁ,lﬂ .

ipX _ipx,
b

In our case, the commutator [ )

} is a constant, and thus it commutes with

both X and —ﬂ.
i i

Then, using the previous identity and the commutator (1), we obtain

i(pl)%_ﬁxl) ip X ipx, ipX ipx, 1 ix,p,
(& —_— = —_— = _— —_—— —_——— =
xp{ - j exp( . - eXp| T~ Jexp| —— - Jexp| ———
ipx ipx, ix, py
=X €X exp| ———
p( h j p( h j p( 2n j

That is

=T exp -2

The exponential exp(— P lj is a constant complex number, and thus it commutes
with both 7, and 7, .

Thus

7. =exp( 217‘;1)? T, )

Therefore, the operators 7, 7, and T,  differ only by a constant phase.

Besides, from (1) we obtain

[_lﬁi @}=_ ip,x _lﬁxl =_ix1p1

Thus, using again the previous identity, we obtain



oo S ) ol el 5ol 550
—_— ‘Ax

That is
exp Ipx, +zp1x 27‘; fp ex X, p,
/] 7] v 2h

. X, . .
The exponential exp(zl—p‘j is a constant complex number, and thus it commutes

with both 7, and 7, .

Thus
ipx, ipX X\ a5
exp| - L B | oxp| BT 7 3
p( 5 hj p(zhjwl (3)
Also
exp| — P, 11y )_ (lplx—lﬁxl):exp i(pX—px,) _f
h h h h h o
Thus, (3) is written as
A X A A
T, . =exp (—21;’ 1 ijl T, (4)

Therefore, the operators T N T , and T ., differ only by a constant phase.

X

Besides, comparing (2) and (4) yields

P =exp(Mjf 7 5)



Therefore, the operators 7, 7, and T, T, differ only by a constant phase.

This means that the spatial translations commute with the momentum

translations, or, in other words, they are independent.

Returning back to the QHO - The displacement operator

A

5) For the QHO, express the operator Tﬂpl,xl = exp [Mj in terms of the

ladder operators and show that it is written as exp(/ld*—/l*&), with

ﬂZL[ﬁ—H’&j, where x, = L is the length scale and p,=~mhw is the

Xo  Po mw

momentum scale of the QHO.

Solution
Solving the definition relations of the ladder operators for the position and momentum

operators, we obtain

Introducing into the previous relations the length and momentum scales of the QHO,

we obtain
fc=%(& +a') (1)
p:i%(&* —&) (2)

i
By means of (1) and (2), the operator is written as

(pl)e - ﬁxl)
hi



. Xo [~ A . Do [~ N
l'(pl)AC—f?xl):l(pl\/05(a+aT)_l\/%(aT_a)xlj_ 1 A

- - _\/Eh (ixopl(&+&f)+p0xl(&T—a)):

| A N n R 1 . n . N
= _(lxopla + lxoplaT + poxlaT - poxla) = E((poxl +1X, P, )aT _(poxl — X Py ) a)

NGY)

That is

1 . . : .
7 = NeT ((poxl +lx0p1)aT _(poxl _lxopl)a)

Using that x,p, = 7, the previous equation is written as

i(px—px 1 . A ' A
(pl h . 1) - ‘/Exopo ((poxl 'onpl)aJr —(poxl —lxopl)a) =

1 [ﬁﬂ-&j&f_[ﬁ_i&j& _
\/5 Xo Do Xo Do

_ L[ﬁﬂ-&j - L[ﬁﬂ-&j ;
\/5 Xo Do 2 %, Py

Q

That is

l(pl)e_ﬁxl)= L{%#—ZPIJGT— L{ﬁ+l&j a
h \/5 X Do 2(x P

Setting

izi{ﬁﬂ-&j 3)
\/E X Do

we end up to

A A

—i(p‘xh_ Pi) = (2a"-2'a) )

Thus, the operator T L. 18 Written as

T 1 =exp(/1&T —/1*&) (5)

Pr1>X



In (5), the operator T L. 18 written in terms of one, but complex, parameter, the

parameter A, instead of the two real parameters x, and p, (the spatial and
momentum translations).
Since the parameters x, and p, can be any real number, from (3) we see that the

parameter A4 can be any complex number.

The operator exp(/ldT —/1*&) is called the displacement operator and it is usually

denoted by D (1), i.e.

D(4)= exp(/léT —/1*&) (6)

The parameter A is called the displacement parameter.

As we’ll see below, for each value of the displacement parameter A, the displacement
operator, acting on the ground state of the QHO, yields an eigenstate of the
annihilation operator, a so-called coherent state.

From (5) and (6), we have

F . =D(4) (7)
h _— (i(pl)ﬁ—f?xl)j
where 7, . =exp |

That is, the operator T . 18 the displacement operator.
Besides, in the previous exercise, we showed that the operator T - differs from the

operators YA“XI T ,, and T Y YA“XI only by a, physically unimportant, constant phase. Thus,

the action of the displacement operator is physically the same as the combined action
of a spatial and a momentum translation operator, or a momentum and a spatial
translation operator. In other words, the displacement operator, acting on an arbitrary
state of the QHO, yields a spatial and a momentum translation, or a momentum and a

spatial translation.

6) At t=0, a QHO is in the state T, |0), where T, =exp {Mj.

i) Show that the state T, .

0) is normalized.



ii) Expand the state T,

0) in the basis of the energy eigenstates of the QHO.

iii) Write the time evolution of the state T, _|0) for t>0.

iv) Show that the probability that the QHO is found in an energy eigenstate at
time t>0 is given by a Poisson distribution. What is the parameter of the

distribution?

Solution

i) We showed in the exercise 4 that the operator 7 L. 18 written as

A AA

ix,p
T, . =exp(—2l—hleplTxl (1)

The Hermitian conjugate of T L. 18 then

. 1 . .
At P A _ X (s s\ XDy syt
Tpl X [exp( 2h ijlTxl j - exp( 2h j(TPI T;‘l ) - eXp( 2h jT;ﬁ TPl
That is
A X A LA
7 e G ©)
Using (1) and (2), and that the operators T ., and T , are unitary, we have

SR Y P\ A et p A
Tpl X Tpl’xl = &Xp (#j 7—;‘1 TPl exp(_#j TPl T;‘l -

2h 2h
:exp(lxlpljexp(_ lxlpljf;lf fplffvpl val :eXp(LXIpl _lxlpljf;lff;l =1
2h 2h — 2h 2h —
exp0=1
Also
AR XDy |7 o XDy it
b XlTpl X _exp( QI’hIJTPlT;‘l exp( 21’7,-11) X TPl -
J4\ D\ A A A p, P s oA

=ex ! T TT'T "=exp| ———+—L|TT"=1

p( 2hj (272)"‘&,";"1 p( o 2hji£

1

exp0=1



Therefore, the operator T L. 1S unitary.

. ix, p, X, Py
We remind that the terms €xp —E and €xp E , as constant complex

numbers, commute with any of the above operators.

Since the operator T L. 1S unitary, it preserves the norms of the states on which it

acts, and thus

)] =[l0}] =

Therefore, the state T o

TPl »X)

0> 1s normalized.

il) Using the completeness relation of the energy eigenstates, i.e. Z|n><n| =1, the

state T - |0> is written as

0= S0 0= S, . 0)= 3001, )

That is

100 =20l |0)|) (3)

This is the expansion of the state T - |0> in the energy basis of the QHO, but we

0).

To do that, we can use that — see the previous exercise —

have to calculate the amplitude <n|f -

T = exp(/l&T —/l*&)

Pr>%

1 p
where 1 =—| 2L +; 5L
\/E(xo poj

We observe that

4 ]| o ] -



That is
[2a",-2a]=|4 (4)
Since the previous commutator is a constant, using the identity
S . . I~ «
exp(A+B) = exp(A)exp(B)exp(—E[A,BD ,
for A=Aa" and B=-1"a, we obtain

AT _ * A _ At _ * A _l 2
exp(/la A a) exp(/la )exp( A a)exp( 2|/1| j
The term exp(——|/l| j is a constant, and thus we can move it to the left and write

exp /la —/la = (——|/l| jexp /la exp( /la)

Thus, the operator T L. 1S Written as

A

T, .= exp(—%ﬂfjexp(l&*)exp(—/l*&) (5)

Then, to calculate the action of 7 L. on the ground state, we must first calculate the
action of exp(—/l*&) on the ground state.

Using the Taylor expansion of exp(—/l*&) , its action on the ground state is written as

0)

m=0 m=0 . m=0 m!

exp<ﬁ*a)|o>—[i“%}|o>—i”m;f”|o>—i(”) i

. A . *
In the last equality, we used that @ commutes with the constant number —A4 .

That is

exp(—/l*&)|0> = i (_/1*) a"

m=0 m '

0)

But, since a kills the ground state,



0)=0if m=1,2,...

4) .

a
m!

~Am
a

0) only the first term, with m =0, survives.

Then, in the series z

m=0
Thus

exp(-4'a)|0)=|0) (6)

Using (5) and (6), the action of T . onthe ground state is written as

A

o>:exp(_%|z|2jexp(w)|o>

P15

Using the Taylor expansion of exp(ﬂ&*) , we obtain

o>—exp(;wj{iwlmexp(;wj[g“j}m |o>}—

A

P>

m=0 m'

1 o A" ~Afm
:exp[_gwj@ﬁa* o>j

In the last equality, we used that @' commutes with the constant number A .

That is

1 - lln ATm
0) :exp[_gwj[z%a*

m=0 .

A

o>] )

P>

Using that a' |n> = \/n+l|n +1> , we have

2> = \/2—!&%14 |2> _ \/2—!\/5&“173

At 3> _

a 0> — af\'fmfl 1> — \/anmfz

_ G [3) == il

at'=1

That is
0) = /1| m) ®)

By means of (8), (7) becomes

af\ tm



A

P15
m=0

R ) ©

Using (9), the amplitude <n|f - |0> is written as

0 =l o L1 | S ) -
—(u|m)

-on(-3 Jo( S gn)-o(-3 )

That is

A

<nT

P>

(nT, . < |m) (10)

0)=exp( - |5

mO

Using the orthonormality of the energy eigenstates, i.e. <n|m>=§ the series

nm >

mO

< |m> becomes

z <|>mzorm J%

Substituting into (10), we obtain

0) =exp(—%|/l|2j% (11)

Substituting the amplitude (11) into the expansion (3), we obtain

0)=exn( 31 S

A

<nT

P1>%

n) (12)

P1>X

1 p
where 1=—| L+i-t
\/E ( Xo Do j
This is the expansion of the state T - |0> in the energy basis of the QHO.

A A

Since T, , = D(/i) , (12) is also written as

2/0)=exp|~213f |3 F- ) (13)

ii1) Denoting by |n>t the time evolution of an energy eigenstate |n> , then



with >0 and E, =(n+%jha).

Then, using (12), the time evolution of the state T - |0> — let us denote it by ‘l//(l‘)> —

1S

o () =exp( 3128 |32, =exp( - |3 Zenol -5t o

That is

v -on{ ) el )

with >0 and ‘t,//(O)>zf

If the initial state is taken at # =7, instead of ¢ =0, then the time evolution of an

energy eigenstate |n> is

) =enp| LD )

and the time evolution of the state T’ - |0> is then

[ (1)) =exp (—%Iilzjg j; exp (—wjlﬂ

with £ 21, and |w(,)) =T,

iv) The state of the QHO at 7 > 0 is given by (14).
The energy eigenstates are orthonormal, thus the probability amplitude that the QHO

is found in an energy eigenstate |m> ,attime >0, is <m‘l// (t)> , which, using (14), is

written as



2\ & A iE,t (e A" (Bt
-oo{ 3 S ool 5 ool 3 o)
That is

iE t I ,2) A"
= exp| — =22 exp| —= |4} | = 15
(o ()= 2 o 242 ) s

Then, the probability that the QHO is found in an energy eigenstate |m> , at time

t>0,1s
SR (_leﬂ_’"z
P 7 P > I
z|2 =2z, the probability P, (¢) becomes
iE t 1p) A" Bt 1ye /1_"1*_
Pm(t)—(exp(—7jexp( 2|/1| jmj(exp( . jexp( 2|/1| jMJ =

iE, t 1, p2) A" iE, t 1,0 (/1)
=eXp _T cXp —§|/1| ﬁexp T eXp _§|2«| M

Using that (/lm )* =(/1* )m , which follows from the property (z,z,...z, )* =22, ..2,

m

Using that for a complex number z,

for z,=z,=..=z =4, which, in turn, follows easily, by induction, from the

elementary property (z,z,) =2z, , the probability P, (¢) becomes

E E 1 1 lm /l* "
£ 0 -0 o o oo 2 -

1 exp(—wz)

(’u*)m :exp(_|;t|2)w

m! m!

= exp(-|4[ )

That is



P, (1) =exp(—|/1|2)T (16)

with m=0,1,...

The probability (16) is time independent and it is given by a Poisson distribution with

parameter |/l|2 .

Observe that

w . /12 " ) /12 m
,;)Pm (t)=;exp(—|/1|2)%:exp(—|,1|2)m2=;)(|M!) 1
explaf)

That is, the probabilities (16) add up to 1, as they should.

: 1 : : .
Using that 4 =—(ﬁ+i &J , we obtain the parameter |/l|2 in terms of the spatial

\/E Xo Py

and the momentum translation, x, and p,, respectively. Then, we have

Izlz—%{(gj {;;N )



Il. The coherent states of the QHO

7) The coherent states of the QHO are defined as the eigenstates of the
annihilation operator (see the references [4], [5], and [6] (section 2.1)).

i) If |2) is an eigenstate of the annihilation operator, i.e. if a|A)=A|1), with

AeC, show that D(4)|0)=|4), i.e. the displacement operator, acting on the

ground state, generates the coherent states.

We remind that the eigenvalues of the annihilation operator are complex
numbers, because the annihilation operator is not Hermitian.

ii) Show that the coherent states are states of minimum position-momentum
uncertainty AND the two individual uncertainties, i.e. the position uncertainty
and the momentum uncertainty, are equally distributed, in the sense that

Ax:ﬁ and Ap=& or, in dimensionless form, g=A—p=L with x,, p,

V2 V2° X, b N2

being, respectively, the length and momentum scales of the QHO. This
property, i.e. the equal distribution of the position uncertainty and the
momentum uncertainty, differentiates the coherent from the squeezed states,
which are also minimum position-momentum uncertainty states, but the two
individual uncertainties are NOT equally distributed.

iii) Calculate the energy expectation value and uncertainty in a coherent state.

iv) Using the expansion of the coherent state |1) in the energy basis of the

QHO, write its time evolution and show that although it remains a coherent
state, and thus a state of minimum position-momentum uncertainty, its

eigenvalue changes. What is the time evolution of the eigenvalue A ?

Solution

1) We’ll show that the states 15(/1)|0> and |/l> have the same expansion in the energy
basis of the QHO, and thus they are the same state.

In the exercise 6, we showed that the expansion of the state 15(/1)|0> in the energy

basis of the QHO is

ll’l

D(1)/0)=exp|~313f |3 F-1n) M




Let us now find the expansion of the state |/l> .

Using the completeness relation of the energy eigenstates, the state |/l> is written as

0= Slablol )= Zlabal )= 3ol )

That is
|ﬂ>=§0<nlﬂ>ln> )

Then, the action of the annihilation operator on the state |/l> is written as

0

=il 30l | -3 ol il

n=0

a
Using that a | n> = \/;| n— 1> , We obtain

a

2)=3(n| )|

Changing the summation index to n' = n—1, we obtain

a

/1>=§<n'+1|/1>\/m|n'>

Renaming the summation index to n, we end up to

a

l}=§<n+l|l>x/ﬁ|n> 3)

Since the state |/l> is eigenstate of a with eigenvalue A4,

2)=4]2)

a
Substituting (2) and (3) into the previous equation yields

2(n+1|i>ﬁ|n> =ft[i0<n|/l>|n>j - 2m<n+l|i>|n> =ioxl<n|/l>|n> N
N 2(m<n+l|l>—l<n|l>)|n>=0



Since the energy eigenstates are linearly independent, from the last equation we

obtain

Vit 1{n+1|2) = A{n| 2) = 0=+ 1{n+1|2) = A(n| 2)

Thus

(n+12) =—2—(n| 2 @
vn+1

with n=0,1,...

Applying the recursive relation (4) repeatedly gives

<n+1|/”t>=\/%@M):\/%in(n—”/w:\/n/l+1%\/n/l_l<”_2|/l>:
A A A A A4
:m:x/n+1ﬁ\/n—ln'\/n—(n—l)<n_n|i>:m"'ﬁ<o|l>:
) J:I)KOW
That is
/anrl
n+1|A)= 0(4
(n+1]2) (Hl),( %)
Thus
(n]2)==0l2) ®

The constant <O|/l> can be calculated using that the state |/l> is normalized, i.e.
(A 4)=1.

Substituting (5) into (2) yields

ﬂ(l’l
n!

7)== (0l4)]n) = (0] )3

That is

12)=(014)% 7 ln) ©



Then, the bra <l| is

=0y S -t 5 U

n=0 n. n=0

where, in the last equality, we used that (zz,...z, )* =2z, ..z, , a complex number

property that follows easily, by induction, from the basic property (zlz2 )* =2z, .

Thus, the bra <l| is

al=y 5L o

Using (6) and (7), we obtain

W_[M 55t |}[<ou>z

-

L =folaf 3L g

*
S~——"

-0l o) 5, )

ﬁ\

Since the two sums are independent, we use different summation indices.

Using the orthonormality of the energy eigenstates, i.e. <m| > o, , we obtain

mn >

—_

N*

—=
=

(al)=[iol2) 3 ( J_) =Kol 22 M=\<Oli>\2§(lﬁ -

()

=[(o[2)f Z
That is

(21 2)=[(0|A)f exo(|)

(0] ) exp(|2I")

Since the state |2,> 1s normalized,

- ol2) exp([4)= ol =eso(-12F ) = ol - exe 51 |



Omitting the physically unimportant phase of <0|/1> , we end up to

<O|/l>=exp(—%|/l|2j ®)

Substituting (8) into (6) yields

12)=exp| 3427 |3l ®
Comparing (1) and (9), we obtain
A)[0)=|2) (10)

i1) In the exercise 4, we showed that the operator T L. 1S Written as

T, . =exp| —2Lu7 T
P p( 2%k j

. ix . . ~
Then, since the term exp(—zl—;;‘j is a constant phase, the action of 7, ~on a

physical state is equivalent, i.e. it is physically the same, to the action of T Y YA“XI .
Since the operator T . 1 the displacement operator 15(/1) , as shown in the exercise

5, the action of 15(/1) is physically equivalent to the action of T Y YA“XI .

Then, omitting the physically unimportant constant phase, we can write

10)

By means of (10), the previous equation becomes

|ﬂ> = f'plf;l

2)|0>=fp|f;

0) (11)

The equation (11) provides a nice intuitive picture of the coherent states, as it
tells us that they result from the application of spatial and momentum

translations to the ground state of the QHO.



We remind that, as also shown in the exercise 4, the order of the two translations

doesn’t matter, i.e.

0)

In the ground state of the QHO, the position and momentum uncertainties are,

Tpl 7—;1

0> = f;l 7’:'Pl

respectively,

(Ax), =% (12)

(Ap)\@ =% (13)

The position-momentum uncertainty product is then

Xo P
(AXAP)M = 02 -

Using that x,p, =7, we obtain

(AvAp), =§ (14)

The ground state is then a state of minimum position-momentum uncertainty.

The ground state is also a coherent state, since it is eigenstate of the annihilation

operator with eigenvalue 0, i.e. G|0)=0(0).

In the exercise 2, we showed that the application of a spatial translation does not
change either the position or the momentum uncertainty.

Thus

(A%); ) = (&%)

T,10)

0
(8p); ) =(2),

By means of (12) and (13), the previous two equations become, respectively,

(Ax), =-% (15)

Lo 2



(8);) = (16)

Similarly, in the exercise 3, we showed that the application of a momentum

translation does not change either the position or the momentum uncertainty.

Thus, taking the state YA“XI |0> as the initial state,

(A’C)f 7, /o) =(Ax)ﬁl‘0>

i

(Ap); ; 0) =(Ap)@l\o>

nta

By means of (15) and (16), the previous two equations become, respectively,

X
(Ax)@lfm = Toz

_ P

(49); 0 =5

By means of (11), the previous two uncertainties are written as

(Ax), =—% (17)

T
(Ap)m =% (18)

By means of (17), (18), and the relation x,p, =%, we obtain

|4)

(AxAp) =§ (19)

Therefore, the coherent states are states of minimum position-momentum

uncertainty and the two individual uncertainties are equally distributed.

iil) The energy expectation value of the QHO in the coherent state |/l> is
(E), =(AlH]7)

The Hamiltonian of the QHO is written as



Thus

(E),, =(Al2)=(E), :<z|hw[a*a+%j|z>:hw<z davl|n)-

—ha{(l /1>+%j

where, in the last equality, we used that a | /l> = /l|/l> .

&T

it z>+%@}—hw(z<z

Thus

(£), =42

&T

A)+ %) ho (20)

Turning again — for more clarity — to the general notation for inner products, the inner

product (A]a'|4) is written as (|/l>,&T | ﬂ)), and using the definition of the Hermitian

conjugate of @', we have

(12).4 z>>={(gj 4), z>}=<a AR = (4120 4)) = 2 (14).]2)
Thus
(A|la"|Ay=2" (21)

Using (21) and that &|ﬂ> = ﬂ|ﬂ> , we have

(ala‘a|a)=2(a|at| A= 22" =|
That is
(ala'a|2) =] 22)

Also, since N=a'a, (22) is the expectation value of the number operator in the

coherent state | l> )

By means of (21), (20) becomes



(8), =(14+3 Jpo @3)

This is the energy expectation value in the coherent state |/l> .

Observe that the energy expectation value depends only on the magnitude of A, not
on its phase.

The energy uncertainty in the coherent state |/l> is

(AE)W - \/<E2 >\/1> B (<E>W )2

We’ll calculate the expectation value of the energy squared in the state |/l> , which is

(£2), =(a°|2)

Using the previous expression of the QHO Hamiltonian, we have

~ o n i n in LY a1
H? =ha)(afa +ljha)(afa+ lj (ha)) (afawL j(a*awt j
2 2 2 2

Y BV B B | OV |
=(ha)) dladta+ata—+=a'a+— =(ha)) daata+ata+—
2 2 4 4
\—/—4
2Lata
2

— (ho) [a Py a+a*a+ij
Then, the expectation value of the energy squared is written as
(£), ={4](no) (a G+ ata s jm
- (ho | (2la'ad'al2)+ (2372 2)+5(41)|

A"‘&

Using (22) and that the state |/l> is normalized, we obtain

(), =y (

We’ll now calculate the inner product <

AT AN

2 1
1| 4)+|4 +Zj (24)

).



Using again the general notation for inner products, we have

(2|a‘aa‘a

a

z}{ﬂ),a*a&*a z)}—z(m,a*(a&*

A2)

2)))= 1{@|z>,a&* 1}} -

2)

—
A44)

—/{&u),&a* 1)} = 4" (| 4),aa"

That is

a'aa'a

(2

=1L (| 2).aa"

A)) (25)

To calculate the inner product (|/l>,&&f|/l>), we use the commutator [&,dq =1 to

replace aa' with 1+a'a.

Thus, we have

)= (2

Using (22) and that (| /l>,

(14).aa'

A)=(12)12)+(12).4'al 2))

/l>) =1 (the state |/l> is normalized), we obtain

(| 4),aa"

2)=1+pf

Substituting into (25) yields

(ala‘aata|2) =] + |4 (26)

By means of (26), (24) becomes

(%), =00 (17 42 #1213+
\—ﬁ/——/

(3]
- (hoy {W [t %U (4o +{ 11 +%)hwj (e +((£),)

where, in the last equality, we used (23).

Thus

<E2 >u> = (|4 hw)z + (<E>u> )2 (27)



Then, the energy uncertainty in the coherent state |/l> is

(a£), = (e} +((),, | (£}, ) =Ano

That is

(AE) ,, =|2|he (28)
Another way of calculating the energy expectation value and uncertainty in the
coherent state |/l> is by using its expansion in the energy basis of the QHO.

In i, we showed that the state |/l> is generated by the action of the displacement
operator in the ground state, i.e. |/1> |0> Since the displacement operator is

the operator 7, , we have

A

|ﬂ> = Tpl !

. 1 p
with 4 =—| L4+
\/E(xo poj

Also, in the exercise 6, we showed that the expansion of the state T -

0) (29)

0> in the

energy basis of the QHO is

0)=ex -3 |3

)

P1>X

By means of (29), the previous expansion is written as

12)=exp| 3427 |3l &)

This is the expansion of the coherent state |/l> in the energy basis of the QHO.

Using (30), the action of the Hamiltonian on the state |/l> yields

1 = A"
n>=exp(—§|/l|2j 5

. 1 c .
H|/”L> = exp(—§|/l|2j T H

Using that £, = (n + %j hw, we obtain



Changing the summation index of the first series to n'=n—1, we obtain

e

n'+l

|n) = A+

Changing again the summation index to n, we end up to

e nRRN

n+l

\/n+l|n+l>

Thus, the action of the Hamiltonian on |/l> yields

ﬁ|z>=exp(—%|i|2j(zﬁ [nt1]n+1)+ %2\7; n>jha) (31)

From (30), the bra </l| is

-exe{ 4127 ) (o s

Using (31) and (32), the energy expectation value of the QHO in the state |/l> is

Using the orthonormality of the energy eigenstates, i.e.

<m|n+l>=§

m,n+1

and <m|n>=§

mn

we obtain




ool ) £ Gt R g e
o WS 5
L o S
el £L2L o

But

z“ Z0( ') Sk z(ll)_exp(w)
Thus

(), =exp(-|2f )(w jexp(|/l| )= (|/1|2+%jha)
That is

(8), =(14+3 Jpo

which is the relation (23).

Working in a similar way, we have



7|2 = exp(——|/l| jz i

ool L JJ —exp(—;m s
ol )£l

Using that n* =n(n—1)+n, we obtain

Flz|l>:exp(—%|/1|z)[z ( (n- l+2n+i)| >J(ha))2

=exp(;wj{jg%m| Y J— T |>} -
:exp[_%u@[ oD 28 AT ) |>j

where, in the first series, we changed the summation index, first to n'=n—-2, and
then again to n, and in the second series, we changed the summation index, first to
n"=n-1, and then again to n.

Thus

2)-

n+2 )
=exp(—%|/1|zJ[ 4 1/ n+2)(n+1)|n+2) +2Z \/n+ |n+1)+ lz

Oy >J  (33)

The expectation value of the energy squared in the state |4) is

(£2), = (28] 2)

By means of (32) and (33), the previous expression becomes

(), = (eXp (_W))

i (j;)' /}/’:_j J(n+2)(n+1)5,,., +2 Z (,1’”)' j; Jn+16, ., +i i (j;)' j% S, (ha))2

m,n=0 m:




_ M Lol +%j exp(14F)

(%), =(eno -1 )) a1 212 . Jexn(14F)(h)" =( 121 +21aF + 4 o) -

:HW +%)2 +|/1|2j(ha))2 = (W +§jhwjz (|4 ne)

That is

(£°), =(ino) +{ (4 +5 o]

or, using (23),

<E2 >u> = (|4 hw)z + (<E>u>)

Therefore, the energy uncertainty in the coherent state |2,> is

2



(a£), = (e} +((),, | (£}, ) =Ano
That is
(AE)W =|A|he

which is the relation (28).

iv) As we saw, the expansion of the state |/l> in the energy basis is given by (30).

Also, the time evolution of the energy eigenstate |n> is

), =exp -2 )

Thus, the time evolution of the state |/l> let us denote it by ‘/l > is

0

4(0) =ex 3147 |35 F 1), =exn( -3 | 3 eno -2 )
That is
1o )5 {2

Then, the action of the annihilation operator on the time evolution of the coherent

) yields

&‘/l(t»=exp(—%|/l|2ji%exp(—ii;tj&
=IN/T

Using that a|n)=+/n|n—1), we obtain

ala(0) =exp{ 31 | 3 exo B Nan-1) -

S i) Dttt G )

n=1 (n—l)!

state

)

Changing the summation index to n' = n—1, we obtain



(1) =exo 314 |3 Zenp -2 ) -
- aexp( -2 | 3<Eeno| it )
Besides, using that £, = (n +%jha), we derive that
E. . =E +ho

Substituting into the expression of a ‘ /l(t)> , we obtain

O e e
- hexp(-ian)esp - |3 rexp( el ) 2exp(-ion) ()

That is

&‘/l(t»:/lexp(—ia)t)‘/l(t» (35)

Therefore, the state ‘/l(t)> is an eigenstate of the annihilation operator, and thus it

remains a coherent state, but its eigenvalue, /lexp(—ia)t), changes periodically with
time.

We observe that the magnitude of the eigenvalue of ‘/l(t)> is

‘/l exp (—ia)t)‘ =4 ‘exp (—ia)t)‘ =4
)

1

That is, the magnitude of the eigenvalue of ‘/l(t)> is constant.

To summarize, the time evolution of a coherent state is a coherent state with

eigenvalue having constant magnitude but time-dependent phase.

8) Express the energy expectation value in a coherent state |1) of the QHO in

terms of the expectation values of the position and momentum.



Solution

In the previous exercise, we showed that the energy expectation value in a coherent

state | /l> 1S

2 1
(E),, =[14F +5 o 0
Since the state |/l> is an eigenstate of @ with eigenvalue 4, we have

34) = 4|2)

Then, the expectation value of a in the state |/l> is

(@), ={

114) = (2|41 2)= (2] 4)

That is
(@), =2 )

In terms of the length and momentum scales, the annihilation operator is written as

_T{;sz

<&>u> = %{% + z%}

Comparing the previous equation with (2) yields

— =A=ReA+ilmA
\/5 Xo Dy }

or

L<x>u>+. 1 (p >u>
\/5 Xo \/_ Po

Since the expectation values of the position and momentum are real, the previous

=ReA+ilmA

equation gives



Red=— ol 3)
2 X,
1 <p>u>
ImA=— 4
\/5 Do *

Using (3) and (4), the square of the magnitude of A is

e o 3] 2]

That is

=4[5 (%)

By means of (5), (1) becomes

<E>M> _%[{<xjj> T +{<1;>0/1> T +1}ha)

Substituting x, =,/— and p, =+vmh® into the previous expression, we obtain
mao

+%ma)2 (<x>l>)2 L (6)

Observe that <E>‘ 2 ZhTQ), as expected, since hTQ) is the ground-state energy of the

QHO, and the equality holds if and only if the expectation values of the position and



momentum are both zero in the coherent state |/l> There is only one coherent state in

which the position and momentum expectation values are both zero, and that coherent
state is the ground state.

In the previous exercise (question ii), we showed that

|ﬂ> = f'plf;l

0) (7)
Using (7), it is easily shown that <x>u> =x, and <p>u> =p,.

Then, (6) is written as

1
<E>M> =p—1+§ma) X +— )]

We see that <E>/1 = hTQ) ifand only if x, =0 and p, =0, thus if and only if

Therefore, <E>‘ 2 :hTQ) if and only if the coherent state is the ground state of the

QHO.

9) Calculate the wave functions describing a coherent state | 1) in the position

and momentum representations, respectively. Express the results in terms of

the expectation values of the position and momentum.

Solution

The wave function of the state |/l> in the position representation is

v, (x)=(x|2)

In the exercise 7 (question ii), we showed that




That is

>

l//ﬂ (x)szl (x) Xy (x)l//() (x) (1)
where, by T pl (x) we denote the momentum translation operator T , In the position

representation, by fxl (x) we denote the spatial translation operator fxl in the position

representation, and t//o(x) is the ground-state wave function of the QHO in the

position representation.

In the position representation, x = x and p =—ih—.

dx
Thus
~ ip,x
T, (x)=exp (%j
and
i (—zh dj X,
T (x)=exp| - dx = exp(—x1 ij
K h dx
Substituting into (1) yields
v, (x)= exp(lp‘xjem (—xl i) v (x) 2)
h dx

Using the Taylor expansion of exp(—x1 dij , 1.e.
X

exp(—xl %j = (_xl ;Cj” 5 (-x)" a"

we obtain




We remind that the Taylor series of a (proper) function f (x) about x is

(=L

m=0 m'

exp( 54y () =vo (x-) ®

Obviously, (3) also holds for an arbitrary function i (x) that has derivatives of all

ordets.

By means of (3), (2) becomes

m(x)=exp("‘;xjm(x—xl) )

Using that x, = <x>‘ 2 and p, = < p>‘ e (4) becomes

v, (x)= exp{i@zl@ X}V/O (x-(x),) )

This is the wave function of the coherent state |/l> in the position representation,

expressed in terms of the position and momentum expectation values.

2
Using that t//o(x)=Liexp{l[ij }, the wave function i, (x) takes the

1
A/ X n X,
0 ;4 0

form

(6)

where x, = N is the length scale of the QHO.
mao



The wave function 7, (p), i.c. the wave function describing the coherent state | 1) in

the momentum representation, can be calculated by taking the Fourier transform of

the wave function v, (x), i.e.

t/h(p){ﬁj;zdxm(ﬂexp(—%xj

Since the wave function i/, (x) is Gaussian, the previous integral can be calculated

using that

) 2
.[ dxexp(—ax2 +bx+c): ‘/zexp[b—+cj, with a >0
a 4

o a

See, for instance, https://en.wikipedia.org/wiki/Gaussian_integral.

Alternatively, we may again use that

0)

or better, that

0)

|ﬂ> = fplj—\;l

2)=

X P

We remind that, as shown in the exetcise 4, the operators 1 ” TXl and T N T », differ

only by a constant phase, and thus their action on an arbitrary state is physically the

same.

Using the previous equation, the wave function 7, (p)=(p|4) is written as

7, (P)=(PIT.T,[0)=T, (P)T, (P){P|0)=T, (P)T, (P)¥s (P)
wo(p)
That is
7,(p)=T,(p)T, (p)¥%(p) (7)

A

where, by fxl ( p) we denote the spatial translation operator 7. in the momentum

X

representation, by T pl ( p) we denote the momentum translation operator T ,, in the


https://en.wikipedia.org/wiki/Gaussian_integral

momentum representation, and 7, ( p) is the ground-state wave function of the QHO

in the momentum representation.

) A d .
In the momentum representation, X = zhd— and p=p.
P

Thus

Substituting into (7) yields

7.(0)=exp 2% Jexp| - -] ()
A h 1 dp 0

From (3), it is obvious that

eXp(—pl %} 7 (p)=v,(p-p)

Then, the wave function 7, (p) is written as

7.(0)=exp 22 |5 (p- )

Using again that x, = <x>‘ 2 and p, = < p>‘ 40 Ve end up to

7,(p)=exp { v <:>ﬂ> }l/;o (p—<p>w) (8)

This is the wave function of the coherent state |/l> in the momentum representation,

expressed in terms of the position and momentum expectation values.

2
Using that 7, ( p)=Lilexp —l{ﬁj , the wave function 17, (p) takes the
\/p_o T4 2\ po

form



7, (p)=———rexp = - )

Note

The energy eigenfunctions of the QHO in the position representation, i.e. the

functions ¥/, (x) , and the energy eigenfunctions of the QHO in the momentum

xX—>p
Xo=Po
—

reptesentation, i.e. the functions 7, (p) , are related by ¥, (x) -y, (p) and

pox
Po=%p

v, (p) = v, (x).

In other wortds, the functions ¥, ( p) are derived from W/, (x) by replacing
position with momentum and the length scale with the momentum scale, and,
likewise, the functions ¥/, (x) are detived from ¥/, ( p) by replacing momentum

with position and the momentum scale with the length scale.
This is a unique property of the QHO, which is due to the form of the harmonic

oscillator potential.
10) Find the time evolution of the wave functions y,(x) and ,(p) of the
previous exercise.

Solution

In the exercise 7, we showed that the state ‘/l(t)>, which is the time evolution of the

coherent state |/l> , 1s also a coherent state, but with time-varying eigenvalue
A(t)=Aexp(—iwt) (1)
Since the state ‘/l(t)> is a coherent state, it can be written as

2(1)) =T, T, ,|0) @)

with z(t)zi[x‘(t)ﬂp‘(t)j.

20 X% P




We remind that, as shown in the exercise 7 (question ii), the coherent state |l> is

X

1 . P
—| i
\/E(xo poj

written as |/1> =TT
JZEESt

0>,With A=

Then, the time evolution of the wave function y, (x), which describes the state |/l>,

1s the wave function
v, (x,t) = <x‘/l(t)> 3)

which describes the state ‘/l(t)> .

Using (2), (3) becomes

v (1) =(x fvpl(t)j:;q(t) 0)= fpl(t) (x) j—zq(t) (x)(x[0) =T, (x)j:;cl(t) (x)vo (x)

That is
v, (x’t)=7:pl(t)(x)j:;q(t)(x)l//0(x) (4)

where, by T (x) we denote the momentum translation operator T .. inthe position
i) ()
representation, by fxl(t)(x) we denote the spatial translation operator 711([) in the

position representation, and i, (x) is the ground-state wave function of the QHO in

the position representation, i.e.

o))

o A L od
In the position representation, x =x and p = —zhd— .
X

Thus




Since the function X, (l‘ ) depends only on time, it commutes with the operator

a
dx’

Thus

ip, (t)x d
v, (x,t)zexp( pl(h) jexp(—xl(t)ajt//o(x) (5)
In the previous exercise, we proved that
xp| =5 L |, (x) = (3—3,)
© dx

Then, obviously,

exp( =1 (1) o ()= (=50

Substituting into (5) yields

v, (x.1) =exp[1p‘(t)xjm(x—xl(r)) (©)

h

In the exercise 8, we explained that for the coherent state |/1> =T » YA“XI 0> , it holds that

<x>u> =, and <p>u> =P
Then, for the state (2) we have <x>\ﬂ(f)> =X, (t) and <p>\/1(f)> =D (l‘) .

Thus, (6) becomes

i(P) oy
w; (x.1) =exp {Tm} Vol ¥ =), M
Since the state ‘/l(t)> is the time evolution of the state |/l>, the expectation values

<x>\ﬂ(f)> and <p>\/1(f)> are the time evolution of the expectation values <x>u> and <p>u>.

t t
Besides, substituting lzi{ﬁﬂ'&j and l(t)zl(xl—()ﬂ'pl—()j into (1),
\/E Xo P \/5 %o Po

we obtain



1 xl(l‘) .pl(t) _L ﬁ_H‘& exp(—iat)=
ﬁ( X, HP—oj_\/E{xo poj P( t)_

I (x . .
S Y Y (cos et —isinawt)=
\/5 Xy Dy
1 [ x LX . . .
=— —‘cosa)t—1—151na)t+z&cosa)t+&sma)tj:
\/5 Xy Xo Dy Do
1 [ x ) ) X, .
=— —lcosa)t+&smwt+z[&cosa)t——lsma)tj
\/5 Xo Do Do Xo
That is
1 (x(t) . t 1 ( x ) . X, .
—[L)le—()j:— —lcosa)t+&sma)t+z[&cosa)t——lsma)tj
\/5 Xo Do 2 x, Do Do Xo
or
x (t . t X . . X, .
ﬁﬂpl( ):—lcosa)t+&s1na)t+{&cosa)t——‘s1na)tj
X0 Dy Xo Do Dy Xo

Since the translations x, (¢) and p, (¢) are real, the previous equation gives

x (1)

2 A cos wr + Prsin o (8)
Xo Xo Po
t
pl—()zﬂcos ot — L sin cor 9
Py Py Xo

From (8) we obtain

x(t)=x cos @f + -2 p sin or
1 1 » )2
0

Substituting the length and momentum scales into the previous equation yields

x, (1) = x, cos ot +-2sin ot
ma

Since <x>‘ s =% (1), the previous equation gives

_ P
<x>w)> =X, CoOS Wt + - sin wt (10)

Similarly, from (9) we obtain



p,(t) =—maox, sin ot + p, cos ot

Since ( p>‘ oy = P (1), the previous equation gives

<p>w)> = —mx, sin ot + p, cos wt (11)

Thus, to summarize, the time evolution of the wave function y, (x) is given by (7),

where the expectation values <x>‘ 200) and <p>‘ ) € given by (10) and (11),

respectively.

In the same way, we find that the time evolution of the wave function 7, ( p) is the

wave function

v, (pat)zexp{m}/;o(p<p>/1(,)>) (12)

h
11 1 pY
where 17, (p)=—=—=—exp ——{ﬁj is the ground-state wave function of the
NPo ;1 2\ py

QHO in the momentum representation.

We leave to the reader to verify (12).

11) Overlap and overcompleteness of the coherent states.

i) Calculate the overlap between two coherent states |1) and |1'). What do

you observe?

i) Show that the set of all coherent states satisfy a completeness relation.

Solution
1) Using the expansion of a coherent state in the energy basis of the QHO, which we

proved in the exercise 7, we have

12)=exo| 314" | 3l

Thus




Then, the inner product </l'|/l> is written as

<w>—{exp(§wrj s <m|}[exp(§|zrjfzo o))

1.2 1 o (A™) g
R

Using the orthonormality of the energy eigenstates, i.e. <m | n> =0, , we obtain

mn >

n

AR T P O I

(#12)=on{ 3T 3 | £ T -
1 ’ 1 © ﬂ(”’l* n

:exp(_gur_gurj;( )

n!

Now, using that (/7,'” )* = (/1'*)” , we obtain

in (Lo 1S 1 e (W)
(112)=exo| 5 AT =31 | ST =exp <312 - Jaf 3T
\—ﬁf——J
exp(ﬁ,'*ﬁ,)
= exp(—l|/l'|2 —l|/l|2jexp(/l'*/l) = exp(—l|/l'|2 L +z'*/1j =
2 2 2 2
1 i r*
- exp(—5(|/l|2 +|2] -244 )j
That is
, 1 2 2 .
</l|/l>=exp(—§(|/l| AT —244 )j 1)

If A+4",(1) gives </l'|/l> # 0, i.e. the states are not orthogonal, they overlap.

The annihilation operator is not Hermitian, thus two eigenstates with different

eigenvalues, i.e. two different coherent states, are not orthogonal.
We’ll now write the term |/l|2 + |/l'|2 —~24A" as a square plus or minus something.

We have



A+ =222 = 22" + A4 = A4 = 24" = QA+ AA A XA AN a0 =

(/17/1')(/1*7/1'*)
=(A-2) A=AV XX (AX) =(A-2)(A-2) +2iIm(2°2) =
2itm(2"2')

=A-A] +2iIm(2°2)
That is
4] +]4T =244" =|A- 2T +2iIm (A" 4')
Substituting into (1) yields
’ 1 ' . * a0 1 ' . * a0
(X' 4) =exp(—§(|/l—/l " +2iIm(2°A ))) = exp(—au—,l [ —itm(2°2 )j -
1 2 ) .,
=exp(—§|/1—/l | jexp(—z im(4°2))
That is
' _ . * a0 _l _ 112
(2] 2)=exp| zIm(/I/l))exp( 1 /1|j )
The overlap between the two coherent states is the absolute value of </l’|/l> , 1.e.
(12} =exp 312~ 27 ®

Since |/l—/l’|20, the maximum overlap happens when A= 1", i.e. when the two

eigenvalues are equal, i.e. when the two coherent states coincide, and it is equal to the
norm of the state to the square, i.e. 1.

If the distance between the eigenvalues of the two coherent states is large, then the
term |/l - /l’| is large, and the overlap between the two states is very small.
On the contrary, if the distance between the two eigenvalues is small, i.e. if the

eigenvalues are close to each other in the complex plane, the overlap tends to 1.

ii) Using again the expansion of a coherent state in the energy basis of the QHO, the

integral Jd/l|/l></l

, where A e C, is written as



[aa|2)(2|= Idi[exp(——w JE%WJ[W(%ng(j;_):w'}_
P

= [dexp(- |/1|)z( )+

m,n=0 m'n .

S
~—
—~
=

In polar coordinates, the complex number A is written as A =re" . Thus, its complex
conjugate A° is A" =re. In polar coordinates, the differential dA is written as
dA=rdrdp, where r is from 0 to oo, while the polar angle ¢ is from 0 to
27t (excluded). Thus

.[d/l|/”t></l|=Irdrd¢exp(—r2)m;0 NP
© m+n_i(n—m)p

:.[rdrd¢exp(—r2) z %|n><m| =

m,n=0 m:n.

_ i [zfd¢ei(nm)(pj[jf drrm+n+lexp(_r2 )j |I’l> <m|
mn=0\_ 0 '

The integral .[ dpe"™? is zero when m#n and 27 when m=n, i.e.

mn

2
.[ dpe"™’ =275
0

Thus, the integral j d/l|/l> </l| becomes

ozl 5, 2 [l o

But
.[drrz”“exp .[drzrz”exp =— Tdr (r2 )n exp( 2) =
0
rf%]ﬁdss exp(—s)==T(n+1)=—n!
0



where we made use of the property I'(n)=(n-1)! of the gamma function
F(t)z.[dxx”l exp(—x), Rer>0.
0

Substituting into the expression of the integral '[ d/l|/l> </l

, we obtain

[aal 4] :mé%m'”iﬁ”' =7 Sln){ol=

where we used the completeness relation of the energy eigenstates.

Thus
1
;jd/1|/1></1|_1 )

This is the completeness relation of the set of the coherent states. Moreover, since the

coherent states overlap, the set is said to be overcomplete.



lll. An intuitive introduction to the squeezed states of the QHO

We know that the ground-state wave function of a QHO having length scale x, is

o))

Let us now consider the wave function

1 1{ x

o8- ren] A2

where & is a dimensionless, positive real parameter.

If £ #1, the wave function y (x;£) is not the ground-state wave function of the QHO
having length scale x,, but it can be thought of as the ground-state wave function of
another QHO, having length scale &x;, .

Moreover, for every value of &, y(x;&) describes the ground state of a, different
each time, QHO.

Since y(x;&) always describes the ground state of a QHO, the position-momentum

uncertainty product will be minimum in the state described by ¥ (x;¢).

If x, =&x, is the length scale of the new QHO, with ground-state wave function

t//(x; & ) , then its momentum scale will be p, = % , where p, is the momentum scale

of the first QHO.

Indeed, since the product of the two scales must be equal to 7, we have
xo’po’ =h=x,p,
Thus

o ' r P
Xy Py =XPy = $XoDy = XDy = Py :?0



Since the wave function y/(x; f) describes the ground state of a QHO with scales x,

and p, , the position and momentum uncertainties in the state described by y/(x;f)

will be

l

X, Do
Ax=-% and Ap =+%.
Np B
In terms of the scales x, and p, of the first QHO, the previous two uncertainties are

respectively written as

Ax:ﬁ and Ap = o

NP

If £#1, we have

Ax & 1 Ap

%o \/§¢\/—T§_po

That is

Ax  Ap
X Po
Thus, with respect to the first QHO, in the state described by i (x; &), which is a state

of minimum position-momentum uncertainty product, the two individual uncertainties
are not equally distributed.

Therefore, for the first QHO, the state described by w (x;¢) is always, i.e. for every

value of the parameter &, a state of minimum position-momentum uncertainty
product, i.e. AxAp = ’x but the uncertainties of the position and momentum are not

equally distributed, taking different values each time the parameter & changes.
For each value of the parameter &, the state described by y(x;&) is called a

squeezed state of the first QHO, and particularly, it is a squeezed state of the ground
state of the first QHO.
In the same way, from each coherent state of the first QHO, we construct squeezed

states of the first QHO.



Thus, making the change x, — &x, in each coherent state of a QHO having

length scale x,, we construct squeezed states of that QHO.

We defined the squeezed states in the position representation, as this provides a better
intuitive picture of the squeezed states. However, working in the same way, we may

well define the squeezed states in the momentum representation too.

The parameter & determines the squeezing of the position and momentum

uncertainties, and thus we may call it squeezing parameter.

The coherent states as states of minimum energy expectation value

12) Show that the energy expectation value of a squeezed state is always
greater than the energy expectation value of its respective coherent state, and
only when the squeezed state coincides with the respective coherent state,
i.e. only when the squeezing parameter is 1, the two energy expectation

values are equal.

Solution

The expectation values do not depend on the representation we may use to calculate
them — they are representation free — and thus we choose to work in the position
representation.

In the exercise 9, we showed that, in the position representation, the coherent state

|/l> is described by the wave function

1
_ - 1
v, (x) ,_xo Texp 5 . - (1

To construct a squeezed state of the coherent state |/l>, we make in (1) the change
x, = &x,, with £>0.
Thus, in the position representation, a squeezed state is described by the wave

function



1o I {X<x>i> T . i(p), x .

v, (x ):?—lexp 5
\ 0 4

As shown in the exercise 8, the energy expectation value of the QHO in the coherent

state | /l> 1S

(Ehy =" *3™ (<x>z>)2 2 ©)

A; §> the squeezed state that is described by the wave function

A; §> is

Denoting by

v, (x; & ) , the energy expectation value of the QHO in the state

A

H

(E).p =(A:€|H|4:€) 4

We may calculate the previous energy expectation value directly in the position

representation, and we urge the reader to do the relevant calculations.

Alternatively, we may use that the state

A; §> is a coherent state of a second QHO,
having length and momentum scales &£x, and %, respectively, where x, and p, are,

respectively, the length and momentum scales of the first QHO.

Then, as shown in the exercise 7, with respect to the second QHO, the position and

momentum uncertainties in the state | A; §> are equally distributed, i.e.

(89), =

and

Dy

(Ap)M@ = \/5

Thus

o)) =500, =52 (19, o

and




\/<p2>/1;§> _(<p>\/1;§> )2 - \/%)é: = <p2>\/1;§> B %+(<p>ﬂ;§>)2 (6)

We’ll use the wave function y, (x;f) to calculate the position and momentum

expectation values. Then, from (5) and (6), we’ll calculate the expectation values of
the position squared and momentum squared, and then, we’ll use them to calculate the

energy expectation value.

A; §> is

In the position representation, the position expectation value in the state

written as
(¥ = [ o (x:8)ww, (x:€)

Substituting into the integral the wave function i/, (x;f) from (2), we obtain

© x—(x) Y
<x>w§> =LL .[ dxx exp {ﬂ} (7)

1
&x, P &x,

Changing the integration variable to x' = x —<x> , the previous integral becomes

4)

zdxxexp - %;?M} —zdx'(x'+<x>l>)exp[(§%;)j }—

A X T, x"
=.[dex exp ——(§x0)2}+<x>l>;[)dx eXp{—(éxo)zl

2

: : : , X :
The first integral is zero, because the function x exp{— > | 1s odd, as product of
$Xy

1?2
. . . X . .
the odd function x' with the even function exp| — , and the integration
ey :
Xo

interval is symmetric.

Using that .[ dx exp(—axz) = \/E , where a > 0, the second integral is
S a

T dx' exp{_ (g:;'z)z } _ /;z(fxo )2 - ;zégxo



Thus

zdxx exp[{%}?”} } = ﬁ%ggxo <x>u>

Substituting into (7) yields
<x>u;;> = <x>u> (8)

Therefore, the position expectation value in a squeezed state is equal to the position

expectation value in the respective coherent state.

In other words, the squeezing of a coherent state does not change the position

expectation value.

In the same way, we calculate the momentum expectation value.

In the position representation, we have

° * . d . < * d y) )
(D)) = jw dxy, (x;é)(—zhajm(nf)?lh Jw dxy, (X;é)%xf)
Using (2), the derivative M is
dx
dy,(x6) | 1 x—<x>w i<p>u> AL <x>u>—x i<p>u> _
dx _{ ngo{ égxo " h l//l(x’é:)_ (ggxo)z " h l///l(x’é:)

Thus, the momentum expectation value is written as
<x> X <p > y)
N 4)
2
(£x,) h
ih

- (§x0)2 j.[dx‘///l*(x;f)(x_<x>g>)‘/’z (x;§)+<p>l>zdxl//;(x;§)y/l (x;§)=

<p>u;§> = —ihi dy (x;(;){ }m (x:¢) =




= (élxh )2 .[ dey | (x; f)xl//l (x; f) — <x>M> .[ dyy (x; f) v, (x; f) +
<X>u.¢g> !
® ) "
+<p>u> ,[ dxy,; (x:8)y, (x:6)= (gg;—)z(<x>z;§> _<x>u> ) + <p>u>
Using (8), we end up to
(P)iey=(P) ©)

Therefore, as in the case of the position expectation value, the squeezing of a

coherent state does not change the momentum expectation value.

The integral j day | (x;gg) v, (x;f) is 1, as the state |[4; §> is normalized. This

follows from the fact that the state

A; §> is a coherent state of the second QHO,

which has scales £x, and &, and thus it is generated by the action of a

displacement operator, which is unitary, on the ground state of the second QHO.

Substituting (8) and (9) into (5) and (6), respectively, we obtain

<xz>u;§> _ 52;02 +(<x>l>)2

2

<P2>u;s> 25_22+(<p h )2

Substituting into the previous two equations the length and momentum scales,

h

X, = — and p, =+/mhe , we obtain, respectively,
2 _&h ?
() —%+(<x>l>) (10)
mhao 2
<p 2>u;:> Pz +(<p>u>) (11)



By means of (10) and (11), the energy expectation value of the QHO in the squeezed
A; §> is

state

+ = +—me
2m 2 2m 2 2me

mhe 2
2 o T < >/1 2 2
<E>u;:> =<P >M lmwz <x2>u;¢> - ( . >) : { e +(<x>u>) j:

= (i +& jh_a) +—(<p>l>) +%ma)2 (<x>u> )2

£ 4 2m
That is
(<p>/1>)2 1, 2 (1 L\hoe
<E>M§§> =7+5m0) (<x>u>) +[?+g€ JT (12)

By means of (3), (12) is written as

ho 1 , | hw 1 5 ho
<E>A;§>:<E>1>_7+[?+6& JT:<E>1>+(?+§ —2}7:

1Y ho
(E)se =(E) {5 ——j e (13)
Since [f—éj % >0, (13) gives

<E>\/1;§> = <E>\/1>

and the equality holds only when

§—é=0:>§2=13§=1

&>0

Therefore, the energy expectation value in a squeezed state is always greater
than the energy expectation value in the respective coherent state, and only when

the squeezing parameter is 1, i.e. only when there is no squeezing, and thus the



squeezed state coincides with the coherent state, the two energy expectation

values are equal.

It is also worth noting that, as seen from the equation (13), the energy expectation

value in the states

A; §> and

/”t;l> is the same, i.c.
4
<E>\/1;§> = <E>‘Aé>

13) What is the energy expectation value in the squeezed state

A;€) when

&—0" and & — o ? Comment on the results.

Solution
We showed in the previous exercise that the energy expectation value in the squeezed

A; §> is

state

<E>M;¢> = <E>M> +[§_éj2 7’%}

where <E >‘ 2 is the energy expectation value in the respective coherent state, and it is

(<p>u> )2 1,

<E>M> :—+Ema) (<x>l>)2 +h7w

We observe that

2

Thus, in both cases, the energy expectation value tends to infinity, i.e.



lim <E>M; e

§_>0+ ,00

In the previous exercise, we showed that the position and momentum uncertainties in

the squeezed state |/l; §> are, respectively,

(AX)M;§> :% and (Ap)M@ - l;)gg ’

We see that, when £ — 0", the position uncertainty tends to zero and the momentum
uncertainty tends to infinity. Then, the squeezed state |/l; §> tends to become a

position eigenstate, i.e. lim
£50"

A; §> =‘x—<x> ﬂ> , and the position eigenstates are states

of infinite energy for the QHO.

Similarly, when & — o, the position uncertainty tends to infinity and the momentum

uncertainty tends to zero. Then, the squeezed state |/l; §> tends to become a
momentum eigenstate, i.e. gim|/1; §> = ‘ p—< p> ﬂ> , and the momentum eigenstates are

also states of infinite energy for the QHO.
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