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Abstract:  We require all components of the Kaluza-Klein metric tensor to be generally-covariant 
across all five dimensions by deconstructing the metric tensor into Dirac-type square root 
operators.  This decouples the fifth dimension from the Kaluza-Klein scalar, makes this dimension 
timelike not spacelike, makes the metric tensor inverse non-singular, covariantly reveals the 
quantum fields of the photon, makes Kaluza-Klein fully compatible with Dirac theory, and roots 
this fifth dimension in the physical reality of the chiral, pseudo-scalar and pseudo-vector particles 
abundantly observed in particle physics based on Dirac’s gamma-5 operator, thereby “fixing” all 
of the most perplexing problem in Kaluza-Klein theory.  Albeit with additional new dynamics 
expected, all the benefits of Kaluza-Klein theory are retained, insofar as providing a 
geometrodynamic foundation for Maxwell’s equations, the Lorentz Force motion and the Maxwell-
Stress energy tensor, and insofar as supporting the viewpoint that the fifth dimension is, at bottom, 
the matter dimension.  We find that the Kaluza-Klein scalar must be a massless, luminous field 
quantum to solve long-standing problems arising from a non-zero scalar field gradient, and we 
suggest multiple pathways for continued development. 
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1.  Introduction – The Incompatibility of Kaluza-Klein and Dirac Theories 
 

About a century ago with the 1920s approaching, much of the physics community was 

trying to understand the quantum reality that Planck had first uncovered almost two decades prior 

[1].  But with the General Theory of Relativity [2] having recently placed gravitation and the 

dynamical behavior of gravitating objects onto an entirely geometric and geodesic foundation 

(which several decades later Wheeler would dub “geometrodynamics” [3]), a few scientists were 

trying to scale the next logical hill, which – with weak and strong interactions not yet known – 

was to obtain a geometrodynamic theory of electromagnetism.  Besides Einstein’s own work on 

this which continued for the rest of his life [4], the two most notable efforts were those of Hermann 

Weyl [5], [6]  who was just starting to develop his U(1) gauge theory in four dimensions (which 

turned out to be a theory of “phase” invariance [7] that still retains the original moniker “gauge”), 

and Kaluza [8] then Klein [9], [10] who quite successfully used a fifth dimension to geometrize 

the Lorentz Force motion and the Maxwell Stress-Energy tensor (see, e.g., [11] and [12]).  This is 

a very attractive aspect of Kaluza-Klein theory, and it remains so because even today, despite 

almost a century of efforts to do so, U(1) gauge theory has not yet successfully been able to place 

the Lorentz Force dynamics and the Maxwell Stress Energy on an entirely-geometrodynamic 

foundation.  And as will be appreciated by anyone who has studied this problem seriously, it is the 

inequivalence of electrical mass (a.k.a. charge) and inertial mass which has been the prime 

hindrance to being able to do so. 

 

Notwithstanding these Kaluza “miracles” of geometrizing the Lorentz Force motion and 

the Maxwell Stress-Energy, this fifth dimension and an associated scalar field known as the 

graviscalar or radion or dilaton raised its own new challenges, many of which will be reviewed 

here.  These have been a legitimate hurdle to the widespread acceptance of Kaluza-Klein theory 

as a theory of what is observed in the natural world.  It is important to keep this historical 

sequencing in mind, because Kaluza’s work in particular predated what we now know to be 

modern gauge theory and so was the “first” geometrodynamic theory of electrodynamics.  And it 

of course predated any substantial knowledge about re weak and strong interactions.  Of special 

interest in this paper, Kaluza-Klein also preceded Dirac’s seminal Quantum Theory of the Electron 

[13] which today is the foundation of how we understand fermion behavior. 

 

Now in Kaluza-Klein theory, the metric tensor which we denote by GΜΝ  and its inverse 

GΜΝ  obtained by G G δΜΑ
ΑΝ

Μ
Ν=  are specified in five dimensions with an index 0,1,2,3,5Μ = , 

and may be represented in the 2x2 matrix format: 

 
2 2

22 2

2

;
1/

g Ag A A A
G G

A g A AA

k k

k

µν µ
µν µ ν µ

ν α β
αβν

φ φ
φφ φ

ΜΝ
ΜΝ

 − +
= =     − +   

. (1.1) 

 

In the above 
2 2kg A Aµν µ νφ+  transforms as a 4x4 tensor symmetric in spacetime.  This is because 

g gµν νµ=  is a symmetric tensor, and because electrodynamics is an abelian gauge theory with a 

commutator , 0A Aµ ν  =  .  The components 
2

5 AkGµ µφ=  and 2

5 kG AνφΝ =  transform as covariant 

(lower-indexed) vectors in spacetime.  And the component 2

55G φ=  transforms as a scalar in 



Jay R. Yablon, June 27, 2018 

2 

 

spacetime.  If we regard φ  to be a dimensionless scalar, then the constant k must have dimensions 

of charge/energy because the metric tensor is dimensionless and because the gauge field Aµ  has 

dimensions of energy/charge. 

 

It is very important to understand that when we turn off all electromagnetism by setting 

0Aµ =  and 0φ = , GΜΝ  in (1.1) becomes singular.  This is indicated from the fact that in this 

situation ( ) ( )00 11 22 33diag , , , ,0G g g g gΜΝ =  with a determinant 0GΜΝ = , and is seen directly from 

the fact that 
55 2

01/G g A Aα β
αβ φ+ == + ∞ .  Therefore, (1.1) relies upon φ  being non-zero to 

avoid the degeneracy of a metric inverse singularity when 0φ = . 

  

We also note that following identifying the Maxwell tensor in the Kaluza-Klein fields via 

a five-dimensional the Einstein field equation, again with φ  taken to be dimensionless, the 

constant k is found to be: 

 
2

04 4 2

2 2 2
4   i.e.,  

2 e e

k G G G
k

c c k c k
π≡ = =ε , (1.2) 

 

where 0

2

01/ 4 / 4ek cµπε π= = is Coulomb’s constant and G is Newton’s gravitational constant. 

 

 Now, as noted above, Kaluza-Klein theory predated Dirac’s Quantum Theory of the 

Electron [13].  Dirac’s later theory begins with taking an operator square root of the Minkowski 

metric tensor ( ) ( )diag 1, 1, 1, 1µνη = + − − −  by defining (“ ≡ ”) a set of four operator matrices µγ  

according to the anticommutator relation { } { }1 1
2 2

,µ ν µ ν ν µ µνγ γ γ γ γ γ η= + ≡ .  The lower-indexed 

gamma operators are likewise defined such that { }1
2

,µ ν µνγ γ η≡ .  To generalize to curved 

spacetime thus to gravitation which employs the metric tensor gµν  and its inverse g µν  defined 

such that g gµα µ
αν νδ≡  and we define a set of µΓ  with a parallel definition { }1

2
, gµ ν µνΓ Γ ≡ .  We 

simultaneously define a vierbein a.k.a. tetrad aeµ  with both a superscripted Greek “spacetime / 

world” index and a subscripted Latin “local / Lorentz / Minkowski” index using the relation 
a

aeµ µγ ≡ Γ .  Thus, we deduce that { } { }1 1
2 2

, a b b a ab
a b a bg e e e eµν µ ν µ ν µ νγ γ γ γ η= Γ Γ = + = .  So just as the 

metric tensor g µν  transforms in four-dimensional spacetime as a contravariant (upper-indexed) 

tensor, these µΓ  operators likewise transform in spacetime as a contravariant four-vector. 

 

One might presume in view of Dirac theory that the five-dimensional GΜΝ  and GΜΝ  in the 

Kaluza-Klein metric tensor (1.1) can be likewise deconstructed into square root operators defined 

using the anticommutator relations: 

 

{ } { } { } { }1 1 1 1
2 2 2 2

, ; ,G GΜ Ν Μ Ν Ν Μ ΜΝ
Μ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ Γ Γ = Γ Γ + Γ Γ ≡ , (1.3) 
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where ΜΓ  and ΜΓ  transform as five-dimensional vectors in five-dimensional spacetime.  This 

would presumably include a five-dimensional definition A
Aε γΜ Μ≡ Γ  for a tetrad Aε Μ , where 

0,1,2,3,5Μ =  is a world index and 0,1,2,3,5A =  is a local index, and where 5γ  is a fifth operator 

matrix which may or may not be associated with Dirac’s 5 0 1 2 3iγ γ γ γ γ≡ , depending upon the 

detailed mathematical calculations which determine this 5γ . 

 

However, as we shall now demonstrate, the Kaluza-Klein metric tensors in (1.1) cannot be 

deconstructed into ΜΓ  and ΜΓ  in the manner of (1.3) without modification to their 505 0G G=  and 

55G  components, and without imposing certain constraints on the gauge fields Aµ  which remove 

two degrees of freedom and fix the gauge of these fields to that of a photon.  We represent these 

latter constraints by A Aµ µ
γ= , with a subscripted γ  which denotes a photon and which is not a 

spacetime index.  This means that in fact, in view of Dirac theory which was developed afterwards, 

the Kaluza-Klein metric tensors (1.3) are really not generally-covariant in five dimensions.  Rather, 

they only have a four-dimensional spacetime covariance represented in the components of 
2 2G g Ak Aµν µν µ νφ= +  and G gµν µν= , and of 

2

5 AkGµ µφ=  and 
5G Aµ µ= − , which are all patched 

together with fifth-dimensional components with which they are not generally-covariant.  

Moreover, even the spacetime components of (1.1) alone are not generally covariant even in the 

four spacetime dimensions alone, unless the gauge symmetry of the gauge field Aµ  is broken to 

remove two degrees of freedom and fixed to that of a photon, A Aµ µ
γ= . 

 

In today’s era when the General Theory of Relativity [2] is now a few years past its 

centenary, and when at least in classical field theory general covariance is firmly-established as a 

required principle for the laws of nature, it would seem essential that any theory of nature which 

purports to operate in five dimensions that include the four dimensions of spacetime, ought to 

manifest general covariance across all five dimensions, and ought to be wholly consistent at the 

“operator square root” level with Dirac theory.  Accordingly, it is necessary to “repair” Kaluza-

Klein theory to make certain that it adheres to such five-dimensional covariance.  In so doing, 

many of the most-nagging, century-old difficulties of Kaluza-Klein theory are immediately 

resolved, including those related to the scalar field in 2

55G φ=  and the degeneracy of the metric 

tensor when this field is zeroed out, as well as the large-magnitude terms which arise when the 

scalar field has a non-zero gradient.  Moreover, the fourth spacelike dimension of Kaluza-Klein is 

instead revealed to be a second timelike dimension.  And of extreme importance, this Kaluza-Klein 

fifth dimension which has spent a century looking for direct observational grounding, may be tied 

directly to the clear observational physics built around the Dirac 5γ , and the multitude of observed 

chiral and pseudoscalar and axial vector particle states that are centered about this 5γ .  Finally, 

importantly, all of this happens without sacrificing the Kaluza “miracle” of placing 

electrodynamics onto a geometrodynamic footing.  This is what will now be demonstrated.  
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2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional 

Spacetime, and the Covariant Fixing of Gauge Fields to the Photon 
 

 The first step to ensure that Kaluza-Klein theory is covariant in five dimensions using the 

operator deconstruction (1.3), is to obtain the four-dimensional spacetime deconstruction: 

 

{ } { } { }1
2

2 21 1
2 2

, a b b a ab
a b a b G kg A Aµν µµ ν µ ν ν µ µ ν µ ν µν νε ε γ γ γ γ η ε ε φΓ Γ = Γ Γ + Γ Γ = + += ≡ =  (2.1) 

 

using a four-dimensional tetrad aµε  defined by a
aµ µε γ ≡ Γ , where 0,1, 2,3µ =  is a spacetime 

world index raised and lowered with Gµν  and Gµν , and 0,1, 2,3a =  is a local Lorentz / Minkowski  

tangent spacetime index raised and lowered with abη  and abη .  To simplify calculation, we set 

gµν µνη=  thus 
2 2 A AG kµν µµ νν η φ+= .  Later on, we will use the minimal-coupling principle to 

generalize back from gµν µνη ֏ .  In this circumstance, the spacetime is “flat” except for the 

curvature in Gµν  brought about by the electrodynamic terms 
22 Ak Aµ νφ .  We can further simplify 

calculation by defining an aµε ′  such that a a aµ µ µδ ε ε′+ ≡ , which represents the degree to which aµε  

differs from the unit matrix aµδ .  We may then write the salient portion of (2.1) as: 

 

( ) ( )
2 2

ab ab ab ab ab ab
a b a a b b a b b a a b a b

a b a b
a b ab k A A

µ ν µ µ ν ν µ ν ν µ µ ν µ ν

µν ν µ µ ν µ ν µν µ ν

η ε ε η δ ε δ ε η δ δ δ η ε δ η ε η ε ε

η η ε ε ηη ε ε φη

′ ′ ′ ′ ′ ′= + + = + + +

′ ′ ′ +′= + + + =
. (2.2) 

 

Note that when electrodynamics is “turned off” by setting Aµ  and / or by setting 0φ =  this reduces 

to 
ab

a b νµ µνη ε ε η=  which is solved by the tetrad being a unit matrix, a aµ µε δ= .  Subtracting µνη  

from each side of (2.2) we now need to solve: 

 
22a b a b

a b ab A Akν µ µ ν µ ν µ νη ε η ε η ε ε φ′ ′ ′ ′+ + = . (2.3) 

 

  The above contains sixteen (16) equations for each of 0,1, 2,3µ =  and 0,1, 2,3ν = .  But, 

this is symmetric in µ  and ν  so in fact there are only ten (10) independent equations.  Given that 

( ) ( )diag 1, 1, 1, 1abη = − − − , the four µ ν=  “diagonal” equations in (2.3) produce the relations: 

 
0 0 0 1 1 2 2 3 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 2 2 3 3 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0

2 2 2 2 2 2 2 2

2

0

1

2

0

2

1

2

2

2

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

k

k

A A

A A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

ε ε

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =
′ ′ ′ ′ ′ ′ ′+ + = − + 1 1 2 2 3 3 2

2 2 2 2 2 2

3 0 0 1 1 2 2 3 3 2

3 3 3 3 3

2

2 2

2

33 3 3 3 3 3 3 3 3 3 32
a b a b

a b ab

k

k

A A

A A

φε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε φ

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =

. (2.4a) 

 

Likewise, the three 0µ = , 1, 2,3v =  mixed time and space relations in (2.3) are: 
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1 0 0 0 1 1 2 2 3 3 2

1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 0 0 1 1 2 2 3 3 2

2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2

3

3 0 0 3

2

0 1

0 2

0

2

0 3

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A A

k

k

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′+ + = − + 0 0 0 1 1 2 2 3 3 2

3 0 3 0 3 0 3

2

0 30 3
A Akε ε ε ε ε ε ε φε ε′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4b) 

 

Finally, the pure-space relations in (2.3) are: 

 
2 1 0 0 1 1 2 2 3 3 2

2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 0 0 1 1 2 2 3 3 2

3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1

1 3 3 1

2

1 2

2 3

3

2

3 1

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A

k

k A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε ε ε

φ
η ε

φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′+ + = − − 3 0 0 1 1 2 2 3 3 2

1 3 1 3 1 3

2

33 1 11
A Akε ε ε ε ε ε ε ε φε′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4c) 

 

Now, we notice that the right-hand side of all ten of (2.4) have nonlinear second-order products 
22 Ak Aµ νφ  of field terms, while on the left of each there is a mix of linear first-order and nonlinear 

second-order expressions containing the 
a

µε ′ .  Our goal at the moment, therefore, is to eliminate 

all of the first order expressions from the left-hand sides of (2.4) to create a structural match 

whereby a sum of second order terms on the left is equal to a second order term on the right. 

 

In (14.3a) the linear appearances are of 0

0ε′ , 1

1ε′ , 2

2ε′  and 3

3ε′  respectively.  Noting that the 

complete tetrad 
a a a

µ µ µε δ ε′= +  and that 
a a

µ µε δ=  when electrodynamics is turned off, we first 

require that 
a a

µ µε δ=  for the four aµ =  diagonal components, and therefore, that 

0 1 2 3

0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = = .  As a result, the fields in 
22 Ak Aµ νφ  will all appear in off-diagonal 

components of the tetrad.  With this, (2.4a) reduce to: 

 
2

0 0

2

1 1

1 1 2 2 3 3 2

0 0 0 0 0 0

0 0 2 2 3 3 2

1 1 1 1 1 1

0 0 1 1 3 3 2

2

2

22 2 2 2 2

0 0 1 1 2 2 2

3 3 3 3 3 3

2

2

3 3

A A

A A

k

k

k

A A

A A

k

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε

φ

φ
ε

φ

φε

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =

. (2.5a) 

 

In (2.4b) we achieve structural match using 1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above, and also by setting 

1 0

0 1ε ε′ ′= , 2 0

0 2ε ε′ ′= , 3 0

0 3ε ε′ ′= , which is symmetric under 0 1, 2,3a↔ =  interchange.  Therefore: 

  
2 2 3 3 2

0 1 0 1

1 1 3 3 2

0 2 0 2

1 1 2 2 2

0 3

2

0

0 1

2

2

3

0 2

0 3

A A

A

Ak

A

k

A

k

φ
φ

ε ε ε ε
ε ε ε ε
ε ε φε ε

′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

. (2.5b) 

 

In (2.4c) we use 1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above and also set 2 1

1 2ε ε′ ′= − , 3 2

2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  which 

are antisymmetric under interchange of different space indexes.  Therefore, we now have: 
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2

1 2

2

2 3

2

3 1

0 0 3 3 2

1 2 1 2

0 0 1 1 2

2 3 2 3

0 0 2 2 2

3 1 3 1

k A

A A

k

A

A A

k

φ
φ
φ

ε ε ε ε
ε ε ε ε
ε ε ε ε

′ ′ ′ ′− =
′ ′ ′ ′− =
′ ′ ′ ′− =

. (2.5c) 

 

In all of (2.5), we now only have matching-structure second-order terms on both sides. 

 

 For the next step, closely studying the space indexes in all of (2.5) above, we now make an 

educated guess at an assignment for the fields in 
22

i jk A Aφ .  Specifically, also using the symmetric-

interchange 1 0

0 1ε ε′ ′= , 2 0

0 2ε ε′ ′= , 3 0

0 3ε ε′ ′=  from earlier, we now guess an assignment: 

 
1 0 2 0 3 0

0 1 0 2 2 301 3; ;A Ak k kAε ε ε ε ε εφ φ φ′ ′ ′ ′ ′ ′= = = = = = . (2.6) 

 

Because all space-indexed expressions in (2.5) contain second-order products of the above, it is 

possible to have also tried using a minus sign in all of (2.5) whereby 1 0

0 1 1Akε ε φ′ ′= = − , 
2 0

0 2 2Akε ε φ′ ′= = −  and 3 0

0 3 3Akε ε φ′ ′= = − .  But absent motivation to the contrary, we employ a plus 

sign which is implicit in the above.  Substituting (2.6) into all of (2.5) and reducing now yields: 

 

2 2 3 3

1 1 1 1

1 1 3 3

2 2 2 2

1 1 2 2

3

1

3

1 2 2 3 3 0 0

3 3

0

0

0

A A A A A A A A

ε ε ε ε
ε ε ε ε
ε ε ε ε

− − − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

, (2.7a) 

 
2

2 3 0 1

2

1 3

2 3 2

1 1

1 3 2

2 2

1

0 2

2

1

2

2 3

2

3 03

k k k

k k k

A A A A

A A A A

A A A Ak k k

ε ε
ε ε
ε

φ φ φ
φ φ φ
φ φ ε φ

′ ′− − =
′ ′− − =
′ ′− − =

, (2.7b) 

 
3 3 1 1 2 2

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′− = − = − = . (2.7c) 

 

 Now, one way to satisfy the earlier relations 2 1

1 2ε ε′ ′= − , 3 2

2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  used in (2.5c) 

as well as to satisfy (2.7c), is to set all of the pure-space components: 

 
2 1 3 2 1 3

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′= = = = = = . (2.8) 

 

This disposes of (2.7c) and last three relations in (2.7a), leaving only the two constraints: 

 

1 1 2 2 3 3 0 0A A A A A A A A− − − = , (2.9a) 

 
2 22 2 2

0 1 0 2 3

2

00 A A Ak k kA A Aφ φ φ= = = . (2.9b) 
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These above relations (2.9) are extremely important.  In (2.9b), if any one of 1A , 2A  or 3A  

is not equal to zero, then we must have 0 0A = .  So, we take as a given that at least one of 1A , 2A  

or 3A  is non-zero, whereby (2.9a) and (2.9b) together become: 

 

0 1 1 2 2 3 30; 0A A A A A A A= + + = , (2.10) 

 

These two constraints have removed two redundant degrees of freedom from the gauge field Aµ , 

in a generally-covariant manner.  Moreover, for the latter constraint in 1 1 2 2 3 3 0A A A A A A+ + =  to 

be satisfied, it is necessary that at least one of the space components of jA  be imaginary.  For 

example, if 3 0A = , then one way to solve the entirety of (2.10) is to have: 

 

( )exp /A A iq xσ
µ µ σε= − ℏ , (2.11a) 

  

with a polarization vector  

 

( ) ( ),
ˆ 0 1 0 / 2R L z iµε ≡ ± + , (2.11b) 

 

where A has dimensions of charge / energy to provide dimensional balance given the dimensionless 

,R Lµε .  But the foregoing is instantly-recognizable as the gauge potential A Aµ γ µ=  for an 

individual photon (denoted with γ ) with two helicity states propagating along the z axis, having 

an energy-momentum vector 

 

( ) ( ) ( )ˆ 0 0 0 0zcq z E cq h hµ ν ν= = . (2.11c) 

  

This satisfies 
2 2

0q q m cµ
µ γ= = , which makes this a massless, luminous field quantum.  

Additionally, we see from all of (2.11) that 0A qµ
µ = , and 0j

jA q =  as is also true for a photon.  

The latter 0j
jA q =  is the so-called Coulomb gauge which is ordinarily imposed as a non-covariant 

gauge condition.  But here, it has emerged in an entirely covariant fashion. 

 

 In short, what we have ascertained in (2.10) and (2.11) is that if the spacetime components 
22G Akg Aµν µ νµν φ+=  of the Kaluza-Klein metric tensor with gµν µνη=  are to produce a set of 

µΓ  satisfying the Dirac anticommutator relation { }1
2

, Gµ ν µνΓ Γ ≡ , the gauge symmetry of Aµ  must 

be broken to correspond with that of the photon, A Aµ γ µ= .  The very act of deconstructing Gµν  

into square root Dirac operators covariantly removes two degrees of freedom from the gauge field 
and forces it to become a photon field quantum.  Moreover, (2.11a) implies that i A q Aα µ α µ∂ =ℏ  

while (2.11c) contains the energy E hν=  of a single photon.   So, starting with an entirely-

classical 2 2 A AG kµν µµ νν η φ+=  and merely requiring the formation of a set of µΓ  transforming 
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covariantly in spacetime with the anticommutator { }1
2

, Gµ ν µνΓ Γ ≡ , we covariantly end up with 

some of the core relations of quantum mechanics. 

 

 Even outside of the context of Kaluza-Klein theory, entirely in four-dimensional spacetime, 
the foregoing calculation solves the long-perplexing problem of how to covariantly eliminate the 
redundancy inherent in using a four-component Lorentz vector Aµ  to describe a classical 

electromagnetic wave or a quantum photon field with only two transverse degrees of physical 

freedom:  If we posit a metric tensor given by 
22G Akg Aµν µ νµν φ+= , and if we require the 

existence of a set of Dirac operators µΓ  transforming as a covariant vector in spacetime and 

connected to the metric tensor such that { }1
2

, Gµ ν µνΓ Γ ≡ , then we are given no choice but to have 

A Aµ γ µ=  be the quantum field of a photon with two degrees of freedom covariantly-removed and 

only two degrees of freedom remaining.  

 

 Moreover, we have also deduced all of the components of the tetrad 
a a a

µ µ µε δ ε ′= + .  

Pulling together all of 0 1 2 3

0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = =  together with (2.6) and (2.8), and setting A Aµ γ µ=  

to incorporate the pivotal finding in (2.10), (2.11) that the gauge-field must be covariantly fixed to 

the gauge field of a photon (again, γ  is a subscript, not a spacetime index), this tetrad is: 

 

1 2 3

1

2

3

1

1 0 0

0 1 0

0 0 1

a a a

k k k

k

k

A A

Ak

A

A

Aµ µ

γ γ γ

γ

γ

γ

µ

φ φ φ
φ
φ
φ

ε δ ε

 
 
 ′= + =
 
  
 

. (2.12) 

  

 Finally, because a
a

α
µ µ α µε γ ε γ= ≡ Γ , we may use (2.12) to deduce that the Dirac operators: 

 
0 1 2 3

0 0 0 0 0 1 0 2 0 3 0

0 1

1 1 1 0 1 1 1 0

0 2

2 2 2 0

1

2 2 2 0

0

2

3

3 3 3 0 3 33 3 0

jjk

k

A

A

A

A

k

k

α
α

α
α

α
α

α
α

γ

γ

γ

γ

ε γ ε γ ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ

φ

γ

φ

γ

φ

φ

Γ = = + + + = +

Γ = = + = +

Γ = = + = +

Γ = = + = +

, (2.13) 

 

which consolidate into a set of µΓ  transforming as a four-vector in spacetime, namely: 

 

( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = + + . (2.14) 

 

It is a useful exercise to confirm that (2.14) above, inserted into (2.1), will produce 
2 2G k A Aµν µν γ µ γνη φ= + , which may then be generalized from gµν µνη ֏  in the usual way by 
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applying the minimal coupling principle.  As a result, we return to the Kaluza-Klein metric tensors 

in (1.1), but apply the foregoing to now rewrite these as: 

 
2 2

2 2 2

2

;
1/

k kg A A A g A
G G

A A g A Ak

µν µ
µν γ µ γν γ µ γ

ν α β
γν γ αβ γ γ

φ φ
φ φ φ

ΜΝ
ΜΝ

   + −
= =      − +   

. (2.15) 

 

The only change we have made is to replace A Aµ γ µ֏ , which is to represent the remarkable result 

that even in four spacetime dimensions alone, it is not possible to deconstruct 
2 2G k A Aµν µν γ µ γνη φ= +  into a set of Dirac µΓ  defined using (2.1) without fixing the gauge field 

Aµ  to that of a photon Aγ µ .  Now, we extend this general covariance to the fifth dimension. 

 

3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Five-Dimensional Metric 

Tensor 
 

 To ensure general covariance at the Dirac level in five-dimensions, it is necessary to first 

extend (2.1) into all five dimensions.  For this we use the lower-indexed (1.3), namely: 

 

{ } { }1 1
2 2

, GΜ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ . (3.1) 

 

As just shown, the spacetime components of (3.1) with gµν µνη=  and using (2.14) will already 

reproduce 
2 2G k A Aµν µν γ µ γνη φ= +  in (2.15).  Now we turn to the fifth-dimensional components. 

 

 We first find it helpful to separate the time and space components of GΜΝ  in (2.15) and so 

rewrite this as: 

 
2 2 2

00 0 05 00 0 0 0 0 0

2 2 2

0 5 0 0

2 2 2

50 5 5

2 2

2 2

5 0

k k k

j jk j j j jk j k j

k k

G G G g A A g A A A

G G G G g A A

k k k

k k k

k k

g A A A

G G G A A

γ γ γ γ γ

γ γ γ γ γ

γ γ

φ φ φ
φ φ φ
φ φ φ

ΜΝ

  + +
 = + + 
 



 =  
 
 

. (3.2) 

 

We know of course that 
0 0Aγ = , which is the constraint that first arose from (2.10).  So, if we 

again work with gµν µνη=  and set 
0 0Aγ = , the above simplifies to: 

 

00 0 05

2 2

0 5

2 2

50 5 55

2

1 0 0

0

0

k

j jk j jk j k j

k k

G G G

G G G G A A Ak

G A

k

G G k
γ γ γ

γ

η φ φ
φ φ

ΜΝ

 
 

 
 = + 
 


=

  

 


. (3.3) 

 

 Next, let us define a 5Γ  to go along with the remaining µΓ  in (2.14) in such a way as to 

require that the symmetric components 
2

5 5j j jG G Ak γφ= =  in (3.3) remain fully intact without any 
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change.  This is important, because these components in particular are largely responsible for the 

Kaluza “miracles” which reproduce Maxwell’s equations together with the Lorentz Force motion 

and the Maxwell Stress-Energy Tensor.  At the same time, because 
0 0Aγ =  as uncovered at (2.10), 

we can always maintain covariance between the space components 
2

5 5j j jG G Ak γφ= =  and the 

time components 05 50G G=  in the manner of (1.1) by adding 
2

0 0kAγφ =  to anything else we 

deduce for 05 50G G= , so we lay the foundation for the Kaluza miracles to remain intact.  We 

impose this requirement though (3.1) by writing the 5Γ  definition as: 

 

{ } { } 21 1
52 55 5 52

,j j j jj jG AG k γφΓ Γ = Γ Γ + Γ Γ ≡ = = . (3.4) 

 

Using 0j j jkAγφγ γΓ = +  from (2.14) and adding in a zero, the above now becomes: 

 

{ } { } { }1 1 1
5 5

2

5 0 52 2 2
0 , ,j j jj jA Ak kγ γ γφ φγ≡ Γ Γ + Γ Γ = Γ + Γ+ , (3.5) 

 

which reduces down to a pair of anticommutation constraints on 5Γ , namely: 

 

{ }
{ }

1
52

1
0 52

,

,

0 j

φ

γ

γ

= Γ

= Γ
. (3.6) 

 

Now let’s examine possible options for 5Γ . 

   

Given that 0 0 jjkAγφγ γΓ = +  and 0j j jkAγφγ γΓ = +  in (2.14), we anticipate the general 

form for 5Γ  to be 5 X YγΓ ≡ +  in which we define two unknowns to be determined using (3.6).  

First, X is one of the indexes 0, 1, 2, 3 or 5 of a Dirac matrix.  Second, Y is a complete unknown 

which we anticipate will also contain a Dirac matrix as do the operators in (2.14).  Using 

5 X YγΓ ≡ +  in (3.6) we first deduce: 

 

{ } { } { } { }
{ } { } { } { }

1 1 1 1
5 52 2 2 2

1 1 1 1
0 5 5 0 0 0 0 0 0 02 2 2 2

, ,

, ,

0

0

j j j X j X j j j X j

X X X

Y Y Y

Y Y Y

γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γφ γ+

= Γ + Γ = + + + = +

= Γ + Γ = + + + = +
. (3.7) 

 

From the top line, so long as X Yγ ≠ −  which means so long as 5 0Γ ≠ , we must have both the 

anticommutators { }, 0j Xγ γ =  and { }, 0j Yγ = .  The former { }, 0j Xγ γ =  excludes X being a space 

index 1, 2 or 3 leaving only 0Xγ γ=  or 5Xγ γ= .  The latter { }, 0j Yγ =  makes clear that whatever 

Dirac operator is part of Y must likewise be either 0γ  or 5γ .  From the bottom line, however, we 

must also have the anticommutators { }0 , 0Xγ γ =  and { }1
02
,Yγ φ= .  The former means that the 
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only remaining choice is 5Xγ γ= , while given 0 0 1γ γ =  and { }0 5, 0γ γ =  the latter means that 

0Y φγ= .  Therefore, we conclude that 5 5 0γ γφΓ = + .  Thus, including this in (2.14) now gives: 

 

( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + + . (3.8) 

 

With this final operator 5 5 0γ γφΓ ≡ + , we can use all of (3.8) above in (3.1) to precisely reproduce 

2

5j jG Ak γφ=  and 
2

5k kG Ak γφ=  in (3.3), as well as 
2 2G k A Aµν µν γ µ γνη φ= +  given 

0 0Aγ = .  This 

leaves the remaining components 05 50G G=  and 55G to which we now turn. 

 

 If we use 
0 0 jjkAγφγ γΓ = +  and 5 5 0γ γφΓ = +  in (3.1) to ensure that these remaining 

components are also fully covariant over all five dimensions, then we determine that: 

 

{ } ( )( ) ( ) ( ){ }
{ } { } { }

1 1
05 50 0 5 5 0 0 5 0 5 0 02 2

1 1 1
0 0 0 5 5 02 2

2

2
, , ,

j j

j j

j j

j j

G G k k

k k

A A

A A

γ γ

γ γ

φ φ φ φ

φ φ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ φ φγ γ

= = Γ Γ + Γ Γ = + + + + +

= + + + =
, (3.9) 

 

( ) ( ) { }2 2

55 5 5 5 0 5 0 5 5 0 0 5 0 0 5 1G γ γ γ γ γ γ φ γ γ φ γ γ γ γφ φφ= Γ Γ = + + = + + + = + . (3.10) 

 

These two components are now different from those in (3.3).  However, in view of this Dirac 

operator deconstruction these are required to be different to ensure that the metric tensor is 

completely generally-covariant across all five dimensions, just as we were required at (2.15) to set 

j jA Aγ=  at (2.12) to ensure even basic covariance in four spacetime dimensions.   

 

Consequently, changing (3.3) to incorporate (3.9) and (3.10), we now have: 

 

00 0 05

2 2

0 5

2 2

50 5 55

2

1 0

0

1

k

j jk j jk j k j

k k

G

k k

G G

G G G G A A

k

A

G G G A
γ γ γ

γ

φ
η φ φ

φ φ φ
ΜΝ

 
 = 

 
 = + 
 +






 

. (3.11) 

 

This metric tensor is fully covariant across all five dimensions, and because it is rooted in the Dirac 

operators (3.8), we expect that this can be made fully compatible with Dirac’s theory of the 

multitude of fermions observed in the natural world, as we shall examine further in section 5.  

Moreover, in the context of Kaluza-Klein theory, Dirac’s Quantum Theory of the Electron [13] 

has also forced us to set j jA Aγ=  in the metric tensor, and thereby also served up a quantum theory 

of the photon.  Because of its origins in requiring Kaluza-Klein theory to be compatible with Dirac 

theory, we shall refer to the above as the “Dirac-Kaluza-Klein” (DKK) metric tensor, and shall 

give the same name to the overall theory based on this. 

 

Importantly, when electrodynamics is turned off by setting 0jAγ =  and 0φ =  the signature 

of (3.11) becomes ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with a determinant 1GΜΝ = − , versus 
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0GΜΝ =  in (1.1) as reviewed earlier.  This means that the inverse obtained via G G δΜΑ
ΑΝ

Μ
Ν=  

will be non-singular as opposed to that in (1.1), and that there is no reliance whatsoever on having 

0φ ≠  in order to avoid singularity.  This in turn frees 55G  from the energy requirements of φ  

which cause the fifth dimension in (1.1) to have a spacelike signature.  And in fact, we see that as 

a result of this signature, the fifth dimension in (3.11) is a second timelike, not fourth spacelike, 

dimension.  In turn, because (3.10) shows that 2

55

2

5 51G φ γ γ φ= + = +  obtains its signature from 

5 5 1γ γ = , it now becomes possible to fully associate the Kaluza-Klein fifth dimension with the 5γ  

of Dirac theory.  This is not possible when a theory based on (1.1) causes 55G  to be spacelike even 

though 5 5 1γ γ =  is timelike, because of this conflict between timelike and spacelike signatures.  

Moreover, having only 2

55G φ=  causes 55G  to shrink or expand or even zero out entirely, based 

on the magnitude of φ .  In (3.11), there is no such problem.  We shall review the physics 

consequences of all these matters more deeply in section 9 following other development.  At the 

moment, we wish to consolidate (3.11) into the 2x2 matrix format akin to (1.1), which consolidates 

all spacetime components into a single expression with manifest four-dimensional covariance. 

 

In general, as already hinted, it will sometimes simplify calculation to set 
0 0Aγ =  simply 

because this puts some zeros in the equations we are working with; while at other times it will be 

better to explicitly include 
0Aγ  knowing this is zero in order to take advantage of the consolidations 

enabled by general covariance.   To consolidate (3.11) to 2x2 format, we do the latter, by restoring 

the zeroed 
0 0Aγ =  to the spacetime components of (3.11) and consolidating them to 

2 2G k A Aµν µν γ µ γνη φ= + .  This is exactly what is in the Kaluza-Klein metric tensor (1.1) when 

gµν µνη= , but for the fact that the gauge symmetry has been broken to force A Aµ γ µ= .  But we 

also know that 505 0G G=  and 
5 5j jG G=  have been constructed at (3.9) and (3.4) to form a four-

vector in spacetime.  Therefore, referring to these components in (3.11), we now define a new 

covariant (lower-indexed) four-vector: 

 

( )2

jAkµ γφ φΦ ≡ . (3.12) 

 

Moreover, 2

55 5 5 0 0G γ γ φ γ γ= +  in (3.10) teaches that the underlying timelike signature (and the 

metric non-singularity) is rooted in 5 5 1γ γ = , and via 2 2

0 0φ γ γ φ=  that the square of the scalar field 

is rooted in 0 0 1γ γ =  which has two time indexes.  So, we may now formally assign 55 1η =  to the 

fifth component of the Minkowski metric signature, and we may assign 2

0 0φ = Φ Φ  to the fields in 

Gµν  and 55G .  With all of this, and using minimal coupling to generalize gηΜΝ ΜΝ֏  which also 

means accounting for non-zero 
5gµ , 5g ν , (3.11) may now be compacted via (3.12) to the 2x2 form: 

 
2

5 0 0 5

5 55 5 0 055

G G g A A g
G

G G g g

kµν µ µν γ µ γν µ

ν ν

µ

ν
ΜΝ

 + Φ 
= =    + Φ Φ Φ  

Φ Φ
+ 

+
. (3.13) 
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This is the Dirac-Kaluza-Klein metric tensor which will form the basis for all continued 

development from here, and it should be closely contrasted with (1.1).  The next step is to calculate 

the inverse GΜΝ  of (3.13) above.  

 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor 
 

As already mentioned, the modified Kaluza-Klein metric tensor (3.13) has a non-singular 

inverse GΜΝ  specified in the usual way by G G δΜΑ
ΑΝ

Μ
Ν= .  We already know this because when 

all electromagnetic fields are turned off and g ηΜΝ ΜΝ= , we have a determinant 1GΜΝ = −  which 

is one of the litmus tests that can be used to demonstrate non-singularity.  But because this inverse 

is essential to being able to calculate connections, equations of motion, and the Einstein field 

equation and related energy tensors, the next important step – which is entirely mathematical – is 

to explicitly calculate the inverse of (3.13).  We shall now do so. 

 

Calculating the inverse of a 5x5 matrix is a very cumbersome task if one employs a brute 

force approach.  But we can take great advantage of the fact that the tangent space Minkowski 

tensor ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  has two timelike and three spacelike dimensions when we 

set 0jAγ =  and 0φ =  to turn off the electrodynamic fields, by using the analytic blockwise 

inversion method detailed, e.g., in [14].  Specifically, we split the 5x5 matrix into 2x2 and 3x3 

matrices along the “diagonal”, and into 2x3 and 3x2 matrices off the “diagonal.”  It is best to work 

from (3.11) which does not show the time component 
0 0Aγ =  because this is equal to zero for a 

photon, and which employs gµν µνη= .  We expand this to show the entire 5x5 matrix, and we 

move the rows and columns so the ordering of the indexes is not 0,1, 2,3,5Μ = , but rather is 

0,5,1, 2,3Μ = .  With all of this, (3.11) may be rewritten as: 

 

1 2 3

2 2 2

1 1 1 1 2

00 05 01 02 03

2 2 2 2

50 55 51 52 53

2 2 2 2

10 15 11 12 13 1 3

2 2 2

2 2 1 2

2 2 2 2

20 25 21 22 23

30 35 31 32 33

2

1 0 0 0

1

0 1

0 1

G G G G G

A A AG G G G G

A A A A A A AG G G G G G

A A A A A AG G G G G

G G G G G

k k k

k k k k

k k k k

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

ΜΝ

 
  + 
  − +
  − + 


=



=




2 3

2 2 2

3 3 1 3 2

2 2 2 2

3 30 1

A

A A A A A A Ak k k k
γ

γ γ γ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 − + 

. (4.1) 

 

Then, we find the inverse using the blockwise inversion relation: 

 

( ) ( )
( ) ( )

1 1
1 1 1 1 1 11

1 1
1 1 1

− −− − − − − −−

− −− − −

 + − − −   =      − − − 

A A B D CA B CA A B D CA BA B

C D D CA B CA D CA B

 (4.2) 

 

with the matrix block assignments: 

 



Jay R. Yablon, June 27, 2018 

14 

 

1 2 3

2 2 2

1 1 1 1 2 1 3

2 2 2

2 2 1 2 2 2 3

2 2 2

3 3 1 3

2 2 22

2 2

2

2 2

2 2 2 2

2 2

3

2

3

2

0 0 01
; ;

1

0 1

0 ; 1

0 1

A A A

A A A A A A A

A A A A A A A

A A A A A

k k k

k k k k

k k

A

k k

k k k Ak

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φφ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

  
= =   +   

   − +
   = = − +   
   − +   

A B

C D

. (4.3) 

 

 The two inverses we must calculate are 1−A  and ( ) 1
1

−−−D CA B .  The former is a 2x2 

matrix easily inverted, see, e.g. [15].  Its determinant 
2 2

1 1φ φ−= + =A , so its inverse is: 

 
2

1 1

1

φ
φ
φ−  +

=  


−
− 

A . (4.4) 

 

Next, we need to calculate 1−−D CA B , then invert this.  We first calculate: 

 
2

2

1 2

2 2 2

2

2 4 4 4

3 3 3

2 4

2 2

1

2

1 2 3

3

2 2 2

1 1 1 1 2 1 3

1 2 3 2

2 2

1 2

2

2 3

3

0
0 0 01

0
1

0

0

0

0

k

k
k k k

k

k k k k
k k k

k k
k k k

k

A

A
A A A

A

A A A A A A A
A A A

A A
A A A

A

γ

γ
γ γ γ

γ

γ γ γ γ γ γ γ
γ γ γ

γ γ
γ γ γ

γ

φ
φφ

φ φ φ
φ

φ φ φ φ
φ

φ
φ

φ φ
φ φ

φ φ φ
φ

−

 
  + − = −    

   
 

 
 − − − = − = −   
  

 

−
−

CA B

2 2

1 2 2 2 3

2 2 2

3 1 3

4

4

3

4

3

4

4

2

A A A A A

A A A A A

k

A

k

k k k
γ γ γ γ γ

γ γ γ γ γ γ

φ φ
φ φ φ

 
 
 
 
 

. (4.5) 

  

Therefore: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2

1 1 1 2 1

2 4 2 4 2 4

1 2 4 2 4 2 4

2 4 2

3

2 2 2

2 1 2 2 2 3

2 2 2

3 1 3 2 3 3

2

4 2 4

2 4

1

1

1

jk j k

A A A A A A

A A A A

k k k

k k k

k

A A

A A A A A Ak k

k A A

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

η φ φ

−

 − +
 
 − = − +
 
 − + 

− − −

− − −

−

= +

− −

−

D CA B
. (4.6) 

 

 We can easily invert this using the skeletal mathematical relation ( )( ) 2
1 1 1x x x+ − = − .  

Specifically, using the result in (4.6) we may write: 

 

( )( ) ( )( )
( ) ( ) ( )

2 4 2 4

2
2 4

2 2

2 42 4

jk kl

jk kl k

j k k l

j kl jk k l j k k l jl

A A A A

A A A A A A A A

k k

k k

γ γ γ γ

γ γ γ γ γ γ γ γ

η φ φ η φ φ

η η φ φ η η φ δφ

+ −

+ −

− −

= − − − =
. (4.7) 
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The j k k lA A A Aγ γ γ γ  term zeros out because 0k kA Aγ γ =  for the photon field.   Sampling the diagonal 

1j l= =  term,  
1 1 1 1 11 1 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  Sampling the off-diagonal 1j = , 

2l =  term, 
2 1 2 2 11 2 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  By rotational symmetry, all other terms 

zero as well.  And of course, jk kl jlη η δ= .  So (4.7) taken with (4.6) informs us that: 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
2

2 2 2

1 1 1 2 1 3

2 2

1 2 4

2

2

2

4

1 2 2 2 3

2 2 2

3

2 4 2 4

2 4 2 4 2 4

2 4 2

1 3 2 3 3

4 2 4

1

1

1

jk j kA A

A A A A A A

A A A A A

k

k

A

A A A A A

k k

k k k

k k k A

γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

η φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

− −
− = −

 − − − −
 
 = − −

−

− − −

− −
 
 − − − −

− − −

− − − 

D CA B

. (4.8) 

 

We now have all the inverses we need; the balance of the calculation is matrix multiplication. 

 

 From the lower-left block in (4.2) we use C in (4.3), with (4.4) and (4.8), to calculate: 

 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2

1 1 1 2 1

1
1 1

2 4 2 4

3
1

2 2 2

2 1 2 2 2 3

2 4
2

2

2 4 2 4 2 4 2

2
2 4 2 4 2 4

3

2

2 2 2 3
3 1 3 2 3 3

1 0
1

1 0
1

01

A A A A A A A

A A A A A A A

AA A A A

k k k k

k k k k

kk k A Ak

γ γ γ γ γ γ
γ

γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ

φ φ φ φ φ φ φ
φφ φ φ φ φ φ φ

φφ φ φ φ φ φ

φ

φ
φ

−− −

− − −
−

=

− −

 +     +  +        

− − −
−

+ 

−

=

− − −

D CA B CA

( ) ( )
( ) ( )
( ) ( )

2 4 3 2 2 43 3

1 1 1 1
1 1

3 3

2 2 2 2 2 2

3 3
3

3 3

2
3 2

3 2 4 3 2 2 4 2 3

3 3

2

3 2
3 2 4 3 2 2 4 2

k k k k

k k k k

k k k k

A A A A A A A A A A

A A A A A

k

A A A A A

A AA A A A A A A A

k k k k k

k k k k k k

k kk k k k

γ γ γ γ γ γ γ γ
γ γ

γ γ γ γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ γ γ

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ

φ φφ φ φ φ φ φ φ φ

 − + − 
 − − + = −
 

− −

− −

− − − − − + 
3γ

 
 
 
 
 

, (4.9) 

 

again using 0k kA Aγ γ = .  We can likewise calculate ( ) 1
1 1

−− −− −A B D CA B  in the upper-right block 

in (4.2), but it is easier and entirely equivalent to simply use the transposition symmetry 

G GΜΝ ΝΜ=  of the metric tensor and the result in (4.9) to deduce: 

 

( )
3 3 3

1
1 1 1 2 3

2 2

2

2

1 3

k k k

k k

A A A

A A Ak
γ γ γ

γ γ γ

φ φ φ
φ φ φ

−− − − − −
− −

 
=   
 

A B D CA B , (4.10) 

 

 For the upper left block in (4.2) we use B in (4.3), with (4.4) and (4.9) to calculate: 
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( )
1 1

2 2

1

1
1 1 1 1

3 2

2 2

3 2

2

2 3

3 3

2

2 2

3 2

2 2 2

5 4 2

0 0 01 1

1 1

0 01 1 1

1 1 1k k k k

A A

A A
A

k k

k k
k k k

k k

k k

A A
A A

A A A A

γ γ

γ γ
γ γ γ

γ γ

γ γ γ γ

φ φ
φ φ φ φφ φ
φ φ

φ φ φ
φ φ φ

φ φ φ
φ φ

φ φ φ
φ φ

−− − − −+ −

 −
    + +  + −      

     − 

    + +

− −
=

− −

− − −+
+ =     −   − −

=
−

A A B D CA B CA

 
 
 

, (4.11) 

 

again using 0k kA Aγ γ = .  And (4.8) already contains the complete lower-right block in (4.2). 

 

 So, we now reassemble (4.8) through (4.11) into (4.2) to obtain the complete inverse: 

 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 3

1 2 3

2 2 2

1 1 1 1 1

2 3 3 3

2 2 2

1
3 2 2 4 2 4 2 4

3 2 2 4 2 4 2 4

3 2 2 4

2 1 3

2 2 2

2 2 2 1 2 2 2 3

2

3 3 3

1

1

1

1

A A A

A A A

A A A A A A A A

A A A A A A A A

A A A

k k k

k k k

k k k k k

k k k k k

k k k A

γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

φ
φ

−

−
−

− − −

− − −

+ − − −

  − − − − −= 
  − − − − −

− − −

A B

C D

( ) ( )2 22 4 2

1

4

3 2 3 31A A Ak k Aγ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 
 − − − − −

 (4.12) 

 

Then we reorder rows and columns back to the 0,1, 2,3,5Μ =  sequence and connect this to the 

contravariant (inverse) metric tensor GΜΝ
 to write: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 3 3

3 2 4 2 4 2 4 2

3 2 4

1 2 3

2 2 2

1 1 1 1 2 1 3 1

2 2 2

2 2 1 2 2 2 3 2

2 2 2

3

2 4 2 4 2

3 2 4 2 4 2 4

3 1 3 2 3 3

2

1

1

1

1

A A A

A A A A A A A A

A A A A A A A AG

A A A

k k k

k k k k k

k k

A A

k k k

Ak k kAk Ak

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ

φ

φ φ φ φ φ

φ φ φ φ φ φ φ φ

ΜΝ

+ −

− − − − − − −

− − − − − − −

− − − − − − −

− − −

−

−=

− 3

1 2 3

2 2 2 1A A kAk k

γ

γ γ γφ φ φφ

 

−

 
 
 
 
 
 
  
 

. (4.13) 

 

In a vitally-important contrast to the usual Kaluza-Klein GΜΝ  in (1.1), this is manifestly not 

singular.  This reverts to ( ) ( ) ( )diag diag 1, 1, 1, 1, 1G ηΜΝ ΜΝ= = + − − − +  when 0Aγ µ =  and 0φ =  

which is exactly the same signature as GΜΝ  in (3.11).  Then we consolidate to the 3x3 form: 

 

( )
2 300 0 05

0 5 3 2 4 2

50 5 55

2

2

1

1

k

j j k j

k

k

j jk j jk

k

AG G G

G G G G A A A A

G G G A

k

k k k

k

γ

γ γ γ γ

γ

φ

φ

φ φ
φ η φ φ φ

φ

ΜΝ

− 
  = − − 
  −

 + −
 

= −





 

. (4.14) 

 

 Now, the photon gauge vectors jAγ  in (4.14) still have lower indexes, and with good 

reason:  We cannot simply raise these indexes of components inside the metric tensor at will as 
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we might for any other tensor.  Rather, we must use the metric tensor (4.14) itself to raise and 

lower indexes, by calculating A G Aγ γ
Μ ΜΝ

Ν= .  Nonetheless, it would be desirable to rewrite the 

components of (4.14) with all upper indexes, which will simplify downstream calculations.  Given 

that 
0 0Aγ =  for the photon and taking 

5 0Aγ = , and raising indexes for 
0Aγ  and 

5Aγ  while 

sampling 
1Aγ  and once again employing 0kkA Aγ γ = , we may calculate: 

 

( )
0 0 01 02 03 3

1 2 3

1 1 11 12 13 2 4

1 2 3 1 1

5 5 51 52 53 2

1 2

2

1

3

0

0k

k

k

k

k

k

A G A G A G A G A A A

A G A G A G A G A A A A A A

A G A G A G A G A A A

k

k

k

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ

φ φ

φ

Ν
Ν

Ν
Ν

Ν
Ν

= = + + = − =

= = − −+ ++ = =

= = + + = − =

− , (4.15) 

 

The middle result applies by rotational symmetry to other space indexes, so that:  

 

A G A A A g Aµ µν µν µ µν
γ γν γν γ γνη= = =֏ , (4.16) 

 

which is the usual way of raising indexes in flat spacetime, generalized to g µν  with minimal 

coupling.  As a result, with g µν µνη=  we may raise the index in (3.12) to obtain:  

 

( ) ( )2 2j
jAk kAµ

γ γφ φφ φΦ = = − . (4.17) 

 

We then use (4.17) to write (4.14) as: 

 

( )
2 3 000 0 05

0 5 3 2 4

50 5 5

2

5 0

1

1

k

j j

k

j jk j jk j

k

k

k

AG G G

G G G G A A A

G

k

k k

G G

γ

γ γ γ

φ φ
φ η φ φΜΝ

− 
  = − − 
  −

 + − Φ
 

= − −Φ 
  Φ −Φ 

. (4.18) 

 

 Now we focus on the middle term, expanded to 
2 42 2

j
j

k
k

k jA A Ak Ak γ γ γ γη φ φ+− .  Working 

from (4.17) we now calculate: 

 
0 0 2 0 3 0 4 23; ; ;k j j k

k j j kA A A Ak k kγ γ γ γφ φ φ φΦ Φ = Φ Φ = − Φ Φ = − Φ Φ = . (4.19) 

 

So, we use (4.19) in (4.18), and raise the indexes using k
j

j
kA A A Aγ γ γ γ=  from (14.16), to write: 

 
00 0 05 0 0 0 0

0 5 0 2

50 5 55 0

2

1

1

k k

j jk j j jk j k j k j

k k

G G G

G G G G A

G G

k A

G
γ γη φΜΝ

 + Φ Φ Φ Φ Φ  −
  = + 
  −

 = Φ Φ − Φ Φ −Φ




 Φ −Φ 

. (4.20) 
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Then, again taking advantage of the fact that 
0 0Aγ = , while using 00

001 η η= =  and 55

551 η η= =  

we may consolidate this into the 2x2 format: 

    
0 0 2

5

5

5 55 5

G G A A
G

G G

kµν µ µν µ µ ν µ
γ γ

ν ν

νη
η

ΜΝ    − Φ Φ Φ Φ −Φ
= =   −Φ   

+
. (4.21) 

 

This is the inverse of (3.13) with gµν µνη= , and it is a good exercise to check and confirm that in 

fact, G G δΜΑ Μ
ΑΝ Ν=  . 

 

 The final step is to apply minimal coupling to generalize gη ΜΝ ΜΝ
֏ , with possible non-

zero 
5gµ , 5g ν , 5g µ  and 5g ν .  With this last step, (4.21) now becomes: 

 
0 0 2 5

5

5

5 55 55

k g

g g

G G g A A
G

G G

µν µ µν µ µ ν µ
γ

ν
γ

ν ν ν

µ
ΜΝ    − Φ Φ Φ Φ − Φ

= =   − Φ   

+
. (4.22) 

 

The above along with (3.13) are the direct counterparts to the Kaluza-Klein metric tensors (1.1).  

This inverse, in contrast to that of (1.1), is manifestly non-singular. 

 

Finally, we commented after (2.6) that it would have been possible to choose minus rather 

than plus signs in the tetrad / field assignments.  We make a note that had we done so, this would 

have carried through to a sign flip in all the 0

kε  and 
0

kε  tetrad components in (2.12), it would have 

changed (2.14) to ( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = − − , and it would have changed (3.8) to include 

5 5 0γ γφΓ = − .  Finally, for the metric tensors (4.22), all would be exactly the same, except that we 

would have had 
5 5 5G G gµ µ µµ= = − Φ  and 5 5 5G G gµ µ µµ= = + Φ , with the vectors in (3.12) and 

(4.17) instead given by ( )2

jAkµ γφφΦ = −  and ( )2 jAkµ
γφφΦ = − .  We note this because in a 

related preprint by the author at [16], this latter sign choice was required at [14.5] in a similar 

circumstance to ensure limiting-case solutions identical to those of Dirac’s equation, as reviewed 

following [19.13] therein.  Whether a similar choice may be required here cannot be known for 

certain without calculating detailed correspondences with Dirac theory based on the ΜΓ  in (3.8).  

In the next section, we will lay out the Dirac theory based on the Kaluza-Klein metric tensors 

having now been made generally-covariant in five dimensions.   

 

5.  The Dirac Equation with Five-Dimensional General Covariance 
 

 Now that we have obtained a Dirac-Kaluza-Klein metric tensor GΜΝ  in (3.13) and its non-

singular inverse GΜΝ
 in (4.22) which are fully covariant across all five dimensions and which are 

connected to a set of Dirac operators ΜΓ  deduced in (3.8) through the anticommutators (3.1), there 

are several additional calculations we shall perform which lay the foundation for deeper 

development.  The first calculation, which vastly simplifies downstream calculation and provides 
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the basis for a Dirac-type quantum theory of the electron and the photon based on Kaluza-Klein, 

is to obtain the contravariant (upper indexed) operators GΜ ΜΝ
ΝΓ = Γ  in two component form 

which consolidates the four spacetime operators µΓ  into a single four-covariant expression, then 

to do the same for the original ΜΓ  in (3.8). 

 

 As just noted, we may raise the indexes in the ΜΓ  of (3.8) by calculating GΜ ΜΝ
ΝΓ = Γ .  It 

is easiest to work from (3.8) together with the 3x3 form (4.20), then afterward consolidate to 2x2 

form.  So, we first calculate each of 0Γ , jΓ  and 5Γ  as such: 

 

( )( ) ( ) ( )

0 0 00 0 05

0 5

0

0 0 0 0

0 0

0 5 0

0 0 500

1

k
k

j
k

k

k k

k

jA A

A A

G G G G

k k

k k

γ γ

γ γ

γ γ γ γ γ γ

γ γ γ

φ φ φ

γ

Ν
Ν

+ Φ Φ Φ Φ

Γ = Γ = Γ + Γ + Γ

= + + + − Φ

+ Φ + Φ −

+

= Φ

, (5.1a) 

 

( ) ( ) ( ) ( )0

0 5

0 5

2

0 0 0

2

5

0 50

j jk j k j k j
k k

j k j

j j j jk j
k

k k

j jk

A A A

G G G G

k k k

k

A

kA A

γ γ γ γ

γ γ

γ γ γ γ γφ γ

γ

η

γ γ

φ φ

γ

φ

Ν
ΝΓ = Γ = Γ

Φ Φ − Φ Φ − Φ

+ Φ + Φ

+ Γ + Γ

= + + + + +

− Φ=

, (5.1b) 

 

( ) ( ) ( )

5 5 50 5 55

0 5

5

0

0

0 5 0

k
j

k
k

j k k

G

kA

G G G

kAγ γγ γ γ γ γ γφ φ γφ

Ν
Ν

Φ −

Γ = Γ = Γ + Γ + Γ

= − + + + + =Φ
. (5.1c) 

 

To reduce the above, we have employed ( )2 jAkµ
γφ φΦ =  from (4.17) which implies that 

0k
kAγΦ =  via 0k kA A =  from (2.10).  We have also used j k

jk
jA A Aγ γ γη= = −  from (14.16), and 

the basic Dirac identities 0

0γ γ= , kk
k k

jγ γη γ= −=  and 5

5γ γ= .  We also include a term 
00 0 0kAγ γΦ =  in (5.1a) to highlight the four-dimensional spacetime covariance with (5.1b), 

notwithstanding that this term is a zero because the gauge symmetry has been broken to that of a 

photon.  Making use of this, we consolidate all of (5.1) above into the two-part: 

 

( )0 0 5 5k k kkA Aµ µ µ
γ

µ
γγ γ γ γ γΜ + Φ + Φ − ΦΓ = . (5.2) 

 

 As a final step to consolidate the Dirac matrices, we use the 2x2 consolidation of the metric 

tensor GΜΝ  in (3.13), with gµν µνη= , to lower the indexes in (5.2) and obtain a two-part 

G Ν
Μ ΜΝΓ = Γ .   Doing so we calculate: 

 

( )( )2 0

0 0

5

5

2 0 5 5

00

2

k

k

k

k kk

A A

G G G

kA A

kA

k k

Ak A kA

ν
µ µ µν µ

ν ν ν
µν γ µ γν γ γ

γ

ν
µ

µ µ γ µ γ µγ

γ γ γ γ γ

γ γ γ γ

η φ

Ν
ΝΓ = Γ = Γ + Γ

= + Φ

= −

+ + Φ + Φ − Φ

+ Φ Φ Φ + Φ

, (5.3a) 
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( ) ( )

5

5 5 5 55

0 5 5

0 0

5 0 0

0 1kkkA A

G G G

k

ν
ν

ν ν ν ν
γ γν γ γ γ γ γ

γ γ

Ν
Ν

+ Φ + Φ − Φ +

Γ = Γ = Γ + Γ

= Φ + Φ Φ

= + Φ

. (5.3b) 

 

Above, we use the same reductions employed in (5.1), as well as 0A Aγν γ
ν = , 0Aγν

νΦ =  and 

2ν
ν φΦ Φ = .  We then consolidate this into the two-part: 

 

( )( )0 0 5 0 00 0kkA A Ak k kγ µ γµ µ µγγ γ γ γ γΜ + Φ Φ Φ + ΦΓ = − + Φ . (5.4) 

 

Making use of ( )2

jAkµ γφ φΦ ≡  in (3.12), again mindful that 0Aγ µ = , and noting that 

0 00 Ak γ µµ φ− =Φ Φ Φ =Φ  for the 0µ =  time component and 2

0 0 0k kA Ak kγ µ γµ φ− = −Φ Φ Φ =Φ  

for the kµ =  space components, it is a good exercise to confirm that (5.4) does reduce precisely 

to ( )0 0 5 0k jk jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + +  obtained in (3.8).   Using (5.2) and (5.4) and 

reducing with ( )2 jAkµ
γφ φΦ = , 

0 0

k kγ γ γ γ= − , 0kk
j jA Aγ γγ γ = , 0Aµ γ

µΦ =  and 0A Aγ µ γ
µ = , it 

is also a good exercise to confirm that:  

 

5γ γΜ Μ
Μ ΜΓ Γ = = . (5.5) 

 

And, it is a good exercise to confirm that (5.4) and (5.2) used in (1.3), see also (3.1), respectively 

reproduce the covariant and contravariant metric tensors (3.13) and (4.22). 

 

 Finally, having the upper-indexed (5.2) enables us to extend the Dirac equation governing 

fermion behavior into all five of the Kaluza-Klein dimensions, in the form of: 

 

( )2 0i c mcΜ
ΜΓ ∂ − Ψ =ℏ . (5.6) 

 

If we then define a five-dimensional energy-momentum vector ( )5cp cp cpµΜ =  containing the 

usual four-dimensional ( )cp E cµ = p , and given that (3.13) and (4.22) provide the means to 

lower and raise indexes at will, we may further define the wavefunction 

( ) ( )0
exp /U p ip xΣ Σ

ΣΨ ≡ − ℏ  to include a Fourier kernel ( )exp /ip xΣ
Σ− ℏ  over all five dimensions 

( )0 5x ct ctΣ = x .  These coordinates now include a timelike 
5 5x ct=  which is heretofore 

distinguished from the ordinary time dimension 
0 0x ct=  because as earlier reviewed, (3.13) has 

the tangent-space signature ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − + .  And ( )0
U pΣ  is a Dirac spinor which 

is now a function of all five components of pΣ  but independent of the coordinates xΣ
.  In other 
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words,  ( )0
0U pΜ

Σ∂ = , which is why we include the 0 subscript.  With all of this, we can convert 

(5.6) from configuration space to momentum space in the usual way, to obtain: 

 

( ) ( )2

0
0mccP U pΜ Σ

ΜΓ − = . (5.7) 

 

 It is important to note that it is not possible to obtain the Dirac-type equations (5.6) and 

(5.7) from the usual Kaluza-Klein metric tensor and inverse (1.1), precisely because this metric 

tensor is not generally-covariant across all five dimensions.  And in fact, as we first deduced at 

(2.10), the Kaluza-Klein (1.1) are not even truly-covariant in the four spacetime dimensions alone 

unless we set the gauge field A Aµ γ µ֏  to that of a photon with only two transverse degrees of 

freedom.  Of course, we do not at this juncture know precisely how to understand the fifth 

component 5cp  of the energy momentum or the second time dimension 
5 5x ct= .  But it is the 

detailed development and study of the Dirac-Kaluza-Klein (DKK) equations (5.6) and (5.7) which 

may provide one set of avenues for understanding precisely how the energy 5cp  and the time 
5t  

are manifest in the natural world. 

 

6.  The Dirac-Kaluza-Klein Metric Tensor Determinant and Inverse 

Determinant 
 

It is also helpful to calculate the metric tensor determinants.  These are needed in a variety 

of settings, for example, to calculate the five-dimensional Einstein-Hilbert action, see e.g. [17], 

which expressly contains the determinant as part of the volume element 4dg x−  in four 

dimensions and which we anticipate will appear as 5dG x−  in five dimensions.  As we shall later 

elaborate in section 10, the Einstein-Hilbert action provides what is perhaps the most direct path 

for understanding the fifth dimension as a “matter” dimension along the lines long-advocated by 

the 5D Space-Time-Matter Consortium [18].  Moreover, the Einstein-Hilbert action, from which 

the Einstein equation is also derived as reviewed in [17], is also essential for calculating quantum 

mechanical path integrals which would effectively provide a quantum field theory of gravitation 

in five-dimensions.  For all these reasons, it is helpful to have obtained this determinant. 

 

To calculate the determinant, we employ the block calculation method reviewed, e.g., at 

[19].  Specifically, for an invertible matrix which we have shown GΜΝ  to be via GΜΝ
 in (4.22), 

the determinant is calculated with: 

 

1G −
ΜΝ = −=

A B
A D CA B

C D
, (6.1) 

 

using the exact same blocks specified in (4.3) to calculate (4.2).  Keep in mind that the blocks in 

(4.3) are based on having used what we now understand to be the tangent Minkowski-space 

g ηΜΝ ΜΝ= .  As we found following (4.3), 
2 21 1φ φ−= + =A , so (6.1) simplifies to 
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1G −
ΜΝ = −D CA B .  Moreover, we already found 

1−−D CA B  in (4.6).  So, all that we need do is 

calculate the determinant of this 3x3 matrix, and we will have obtained GΜΝ . 

From (4.6) which we denote as the matrix 1

ijm −−≡ D CA B , we write out the full 

determinant, substitute (4.6), then reduce to obtain: 

 

( ) ( )
11 22 33 12 23 31 13 21 32 13 22 31 12 21 33 11 23 32

2 2

1 1 2 2 3 3

4
1 1

ijm m m m m m m m m m m m m m m m m m m

A A A Ak A Aγ γ γ γ γ γφ φ

= + + − − −

= − + ++− = −
. (6.2) 

 

Most of the terms cancel identically because of the equal number of + and – signs in the 

top line of (6.2).  The only remaining term besides –1 itself, contains 0j jA Aγ γ = , which is zero 

because of (2.10) which removed two degrees of freedom from the gauge field and turned it into 

A Aµ γ µ=  for a massless, luminous photon.  So, we conclude, neatly, that 1 1−− = −D CA B , and 

because 1=A , that 1G ηΜΝ ΜΝ= − = .  Moreover, because 
11M M

−− =  for any square matrix, 

we likewise conclude that 1G ηΜΝ ΜΝ= − = .  Then, because the blocks in (4.3) are based on 

having used g ηΜΝ ΜΝ= , we may employ minimal coupling to generalize from gηΜΝ ΜΝ֏ , so 

that the complete five-dimensional determinant and its inverse are: 

 
1 1;G G g g G G g g− ΜΝ ΜΝ −

ΜΝ ΜΝ= =≡ ≡ ≡ ≡ . (6.3) 

 

In the above, the massless, luminous A Aµ γ µ=  and the scalar field φ  wash entirely out of the 

determinant, leaving the determinants entirely dependent upon gΜΝ  which accounts for all 

curvatures other than those produced by Aγ µ  and φ .  

 

 For the determinant of the four-dimensional spacetime components Gµν  alone, we employ 

the exact same calculation used in (6.1), but now we split Gµν  into a 1x1 time “block” with 

1= =A A , a 3x3 space block with the same 2 2k A Aµν γ γµ νη φ= +D , and the 1x3 and 3x1 blocks 

0=B  and 0=C .   So (6.1) becomes Gµν = =A D D .  We next note that 
1−−D CA B  in (4.6) 

differs from D  in (4.3) merely by the term 4 2 Ak Aγνγ µφ− , which tells us that the calculation of D  

will produce the exact same result as (6.2) leading to 1Gµν µνη= − = , with the inverse following 

suit.   Consequently, after generalizing gµν µνη ֏  via minimal coupling, we find that for the four 

dimensions of spacetime alone: 

 

;G g G gµν µν
µν µν= = . (6.4) 
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Here too, the massless, luminous A Aµ γ µ=  with two degrees of freedom and the scalar φ  are 

washed out entirely.  Note, comparing (6.3) and (6.4), that we have reserved the notational 

definitions G GΜΝ≡  and g gΜΝ=  for the five-dimensional determinants. In four dimensions, we 

simply use the spacetime indexes to designate that (6.4) represents the four-dimensional spacetime 

subset of the five-dimensional metric tensor determinant and inverse. 

 

7.  The Dirac-Kaluza-Klein Lorentz Force Motion 
 

 Kaluza-Klein theory which will celebrate its centennial next year, has commanded 

attention for the past century for the very simple reason that despite all of its difficulties (most of 

which as will be reviewed in section 9 arise directly or indirectly from the degeneracy of the metric 

tensor (1.1) and its lack of five-dimensional covariance at the Dirac level) because it successfully 

explains Maxwell’s equations, the Lorentz Force motion and the Maxwell stress-energy tensor on 

an entirely geometrodynamic foundation.  This successful geometrodynamic representation of 

Maxwell’s electrodynamics – popularly known as the “Kaluza miracle” – arises particularly from 

the components 2

5 5 kG G Aµ µ µφ= =  of the metric tensor (1.1), because the electromagnetic field 

strength F A Aµν µ ν ν µ= ∂ − ∂  is among the objects which appear in the five-dimensional Christoffel 

connections Μ
ΑΒΓɶ  (particularly in 

5

µ
αΓɶ  as we shall now detail), and because these F µν  then make 

their way into the geodesic equation of motion in a form that can be readily connected to the 

Lorentz Force motion, and because they also enter the Einstein field equation in a form that can 

be likewise connected to the Maxwell stress-energy tensor.  Therefore, it is important to be assured 

that in the process of remediating the various difficulties of Kaluza-Klein’s metric tensor (1.1), the 

5-covariant metric tensor (3.13) does not sacrifice any of the Kaluza miracle in the process.  

 

 In (3.13), 2

5 5 kG G Aµ µ µφ= =  from (1.1) which are responsible for the Kaluza miracle are 

replaced by 
5 5 5G G gµ µ µµ= = + Φ .  For a flat Minkowski tangent space g ηΜΝ ΜΝ=  these reduce 

to 
5 5G Gµ µµ= = Φ .  At (3.4) we required 

2

55 j jj AG kG γφ= =  to precisely match GΜΝ  from the 

Kaluza-Klein metric (1.1), maintaining the same spacetime covariance as 
5 5G Gµ µ=  in (1.1) 

because 
2

0 0kAγφ = , to keep the “miracle” intact.  So, for a five-dimensional metric defined by: 

 
2 2c d G dx dxΜ Ν

ΜΝΤ ≡  (7.1) 

 

the equation of motion obtained by minimizing the geodesic variation is: 

 
2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd d cd

x

c cd

α β

αβ α

αΜ Β
Μ Μ Μ Μ
ΑΒ

Α

= −Γ −Γ − Γ − Γ
Τ Τ Τ Τ Τ Τ Τ Τ Τ

=ɶ ɶ ɶ ɶ  (7.2) 

 

just as in Kaluza-Klein theory, with connections of the “first” and “second” kinds specified by: 

 

( )
( )

1
2

1
2

;G G G

G G G G G

Σ ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ

Μ ΜΣ ΜΣ
ΑΒ Β ΣΑ Α ΒΣ Σ ΑΒ Σ ΑΒ

Γ = ∂ + ∂ − ∂

Γ = ∂ + ∂ − ∂ = Γ

ɶ

ɶ ɶ
, (7.3) 
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likewise, just as in Kaluza-Klein theory.  One may multiply (7.2) through by 
2 2/d dτΤ  to obtain: 

 
2 5 5

5 552

5

2
2

d dx dx dx dx dx dx dx dx

c d cd cd cd cd cd cd c

x

d cd

β

α

α α

β ατ τ τ τ τ τ τ τ τ

Μ Β
Μ Μ Μ

Β

Α
Μ

Α= −Γ −Γ − Γ − Γ=ɶ ɶ ɶ ɶ  (7.4) 

  

which is the equation of motion with regard to the ordinary invariant spacetime metric line element 

dτ , in which this four-dimensional proper time is defined by: 

 
2 2 2 2c d G dx d Ax g dx dx k dx dxAµ ν µ

γ µ γν
ν µ ν

µν µντ φ≡ = + . (7.5) 

 

The space acceleration with regard to proper time τ  is then given by 
2 2/jd x dτ  with 

1,2,3jΜ = =  in (7.4).  And if we then multiply this through by 0 22 /d dtτ  (mindful again that 

we now need to distinguish 
0dt  from the second time dimension 

5dt ), we obtain the space 

acceleration 02 2/jd x dt  with regard to the ordinary time coordinate. 

 

The above (7.1) through (7.5) are exactly the same as their counterparts in Kaluza-Klein 

theory, and they are exactly the same as what is used in the General Theory of Relativity in four 

spacetime dimensions alone, aside from minor notational changes intended to distinguish four- 

from five-dimensional objects.  The only difference is that Kaluza-Klein theory uses the metric 

tensor (1.1) which has a spacelike fifth dimension, while the present DKK theory uses the metric 

tensor (3.13) which as a timelike fifth dimension.  But the main reasons we are reviewing the 

equation of five-dimensional motion (7.4) is to be assured that the Kaluza miracle is not 

compromised by using the different metric tensor (3.13) rather than the usual (1.1). 

 

As noted above, the connections 
5α

ΜΓɶ  are the particular ones responsible for the Kaluza-

Klein representation of electrodynamics, whereby 
5

µ
αΓɶ  governs accelerations in the four spacetime 

dimensions and 5

5αΓɶ  governs the fifth-dimensional acceleration.  So, let’s examine 
5

µ
αΓɶ  more 

closely.  Using (3.13) and (4.22) in (7.3) along with the symmetric G GΜΝ ΝΜ=  we obtain: 

 

( )
( )

( ) ( ) ( ) ( )( )
( ) ( )

0 0 2

1
5 5 5 52

51 1
5 5 5 552 2

1
5 0 0 5 5

2

5

0
1

0

2

552

G G G G

G G G G G G

k kg A A g A A g

gg

gσ

µ µ
α α α α

µσ µ
σα α σ σ α α

µσ µ µ σ
γ γ σα γ σ γ α α σ σ α

µ
α

σ α

µ

Σ
Σ Σ ΣΓ = ∂ + ∂ − ∂

= ∂ + ∂ − ∂ + ∂

= − Φ Φ Φ Φ ∂ + Φ Φ + ∂ − ∂

+ − Φ ∂ +

+ + Φ + Φ

Φ Φ

ɶ

. (7.6) 

 

For a flat tangent space G ηΜΝ ΜΝ=  with ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  thus 0Gα ΜΝ∂ =  this 

simplifies to: 

 

( ) ( )( ) ( )1 1
5 5 0 02 2

0 0 2 2

0 0k kA A A Aµ µσ µ µ σ µ
α γ γ γ σ γ α σ α

σ
σ ααηΓ = − Φ Φ Φ Φ ∂ Φ Φ + ∂ − ∂+ Φ Φ − ∂ ΦΦ Φɶ . (7.7) 
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 What is of special interest in (7.7) is the antisymmetric tensor term α σσ α∂ − ∂Φ Φ , because 

this is responsible for an electromagnetic field strength F A Aγ µν µ γν ν γ µ= ∂ − ∂ .    To see this, we 

rewrite (3.12) as: 

 

( )2 2

0 jA kAkµ γ γφ φ φ=Φ + , (7.8) 

 

again taking advantage of 
0 0Aγ =  to display the spacetime covariance of Aγ µ .  We then calculate 

the antisymmetric tensor in (7.7) in two separate bivector parts, as follows: 

 

( ) ( )
( ) ( )

( )

2 2

0 0 0

2

0 0 0 0

2

0 0

0

0

2

2

k k k

k k k k k

k k k

k

k

k k

k k

k k

A A

A A A A

F A A

γ γ

γ γ γ γ

γ γ γ

φ φ φ

φ φ φ φ

φ φ φ φ

Φ Φ =

=

∂ − ∂ ∂ − ∂ +

∂ − ∂ ∂ −+

= −

∂ − ∂

∂ − ∂ − ∂

, (7.9a) 

 

( ) ( )
( ) ( )

( )

2 2

2

2

2

2

j k j k j

j k j

k j k

k k j

jk k

j k

j k j

A A

A A A A

k k

k k

kF k A Aγ

γ γ

γ γ γ γ

γ γ

φ φ

φ φ φ

φφ φ

∂ − ∂ ∂ − ∂

∂ ∂ ∂ −

Φ Φ =

= − + ∂

∂ − ∂= −

. (7.9b) 

 

We see the emergence of the field strength tensor F A Aγ µν µ γν ν γ µ= ∂ − ∂  in its usual Kaluza-

Klein form 2kFγ µνφ , modified to indicate that this arises from taking F µν
γ  for a photon A ν

γ , which 

is a point to which we shall return momentarily.  The only term which bars immediately merging 

both of (7.9) in a generally-covariant manner is the gradient kφ−∂  in the 0k components of (7.9a).  

For this, noting that with reversed indexes 
00j j∂ − ∂Φ Φ  (7.9a) will produce a gradient jφ+∂  in the 

j0 components, we define a four-component ( )1Iµ ≡ 0  and use this to form: 

 

( ) ( ) ( )00 1
1 0

k

k
j j

I I I Iµ ν µ ν µ ν ν µ

φ
φ φ φ φφ φ

−∂     
= − ∂ = ∂ − ∂ = − ∂ − ∂     ∂ ∂     

0
0 0

. (7.10) 

 

We then use this to covariantly combine both of (7.9) into: 

 

( ) ( )
( ) ( )( )

2

2

2

2 2

v

v

kF A A Ik

k

I

kF I A I kA

ν ν νµ µ γ µ γ µ γ µ µ ν ν µν

γ µ µ γ µ ν ν γ µν

φ φ φ

φ φ

φ

φ φ

∂ − ∂ ∂ − ∂ − ∂ − ∂

− + ∂ −= +

= −

∂

Φ Φ
 (7.11) 

 

The newly-appearing vector ( )2 1 2 jkA AkIµ γ µ γφ φ+ =  which we represent by now removing 

0 0Aγ = , is itself of interest, because the breaking of the gauge symmetry in section 2 caused 

0 0Aγ =  to come out of the photon gauge vector which only has two transverse degrees of freedom.  
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But in this new vector ( )1 2 jkAγφ , the removed 
0 0Aγ =  is naturally replaced by the number 1, 

which is then included along with the remaining photon components jAγ  multiplied by 2 kφ .  

Again, the very small constant k which Kaluza-Klein theory fixes to (1.2) has dimensions of 

charge/energy, φ  is taken to be dimensionless, and so 2 jkAγφ  is dimensionless as well.  Compare 

also ( )2

jAkµ γφ φΦ = , then observe that ( )2 2 AkIkAµ γ µ µ γ µφ φ φΦ ++ = . 

 

 Most importantly, we now see in (7.11) that the field strength vFγ µ  which is needed for the 

Lorentz Force motion and the Maxwell tensor, does indeed emerge inside of 
5

µ
αΓɶ  as seen in (7.7) 

just as it does from the usual Kaluza-Klein metric tensor (1.1), with the identical coefficients.  But 

there is one wrinkle:  F µν
γ  is the field strength of a single photon, not a general classical F µν  

sourced by a material current density ( )Jν ρ= J  with a gauge potential ( )Aµ φ= A  which can 

always be Lorentz-transformed into a rest frame with ( )0Aµ φ= 0  with  0φ being the proper 

potential (note: this is a different φ  from the Kaluza-Klein φ ).  In contrast, the photon A µ
γ  in 

(2.11) can never be placed at rest because the photon is a luminous, massless field quantum. 

 

 However, this can be surmounted using gauge symmetry, while making note of Heaviside’s 

intuitions half a century before gauge theory which led him to formulate Maxwell’s original theory 

without what would later be understood as a gauge potential.  Specifically, even though the gauge 

symmetry is broken for A µ
γ  and it is therefore impossible to Lorentz transform the luminous A µ

γ  

into a classical potential ( )Aµ φ= A  which can be placed at rest, or even to gauge transform 

A Aµ µ
γ →  from a luminous to a material potential because its gauge has already been fixed, the 

same impossibility does not apply to gauge transformations of F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  obtained 

from this A µ
γ .  This is because F A Aγ µν µ γν ν γ µ= ∂ − ∂  is an antisymmetric tensor which, as is well-

known, is invariant under gauge transformations qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ , where q is an 

electric charge and ( ),tΛ x  is an unobservable scalar gauge parameter.  To review, if we gauge 

transform some 
] ;;[ ] ;[ ;

,qF q A q q cF A qFµν µ ν µν µ ν νµ µν′  = ∂ = ∂ ∂ → + ∂ Λ =ℏ , the gauge 

transformation washes out because the commutator 
;;

0, νµ ∂ ∂ Λ =  even in curved spacetime.  

This is because the covariant derivative of a scalar is the same as its ordinary derivative, so that 

the covariant derivative ; ; ;

σ
µ ν µ ν µ ν µν σ∂ ∂ Λ = ∂ ∂ Λ = ∂ ∂ Λ − Γ ∂ Λ , with a similar expression under 

µ ν↔  interchange, and because 
σ σ
µν νµΓ = Γ  is symmetric under such interchange. 

 

So even though we cannot Lorentz transform A µ
γ  into Aµ , and even though the gauge of 

A µ
γ  is fixed so we cannot even gauge transform A µ

γ  into Aµ , we may perform a gauge 

transformation F Fγ µν µν→  precisely because the field strength (which was central to Heaviside’s 

formulation of Maxwell in terms of its bivectors E and B) is invariant with respect to the gauge 
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that was fixed to the photon in (2.11) as a result of (2.10).  Another way of saying this is that 

F A Aγ µν µ γν ν γ µ= ∂ − ∂  for a photon has the exact same form as F A Aµν µ ν ν µ= ∂ − ∂  for a materially-

sourced potential which can be placed at rest, and that Fγ µν  enters into Maxwell’s equations in 

exactly the same form as Fµν .  The difference is that Fγ µν  emerges in source-free electrodynamics 

where the source current 0Jν =  while Fµν  emerges when there is a non-zero 0Jν ≠ . 

 

So irrespective of this A Aµ µ
γ=  symmetry breaking which arose from (2.10) to ensure 

Dirac-level covariance of the Kaluza-Klein metric tensor, the luminous photon fields Fγ µν  

emerging in (7.7) via (7.11) can always be gauge-transformed using F Fµν µν
γ →  into the classical 

field strength of a classical materially-sourced potential ( )Aµ φ= A .  Moreover, once we gauge 

transform F Fµν µν
γ → , the classical field strength F µν  will contain innumerably-large numbers 

of photons mediating electromagnetic interactions, and so will entirely swamp out the individual 

A µ
γ  which represent individual photons.  This transformation of F Fµν µν

γ →  by taking advantage 

of gauge symmetry, following by drowning out the impacts of individual photons as against 

classical fields, is exactly what the author did in Sections 21 and 23 of [16] to obtain the 

empirically-observed lepton magnetic moments at [23.5] and [23.6] of that same paper.   

 

So, we now substitute (7.11) with a gauge-transformed v vF Fγ µ µ→  into (7.7), to find that: 

 

( )
( ) ( )
( ) ( ) ( )( )

( )

0 0 2

0 0 2 2

21
5 2

1

0 0 2

0 0

5 0 02

1
2

1
2

2 2

A A F

A A A A

A

k k

k

A I A

k

I Ak k k

µ µσ µ µ σ
α γ γ ασ

µσ µ µ σ
γ γ γ σ γ α

µσ µ µ σ
γ γ α γ α σ σ γ σ α

µ

σ

σ

σ

α

η φ

η

η φ φ φ

Γ = − Φ Φ Φ Φ

+ − Φ Φ Φ Φ ∂ Φ Φ

− − Φ Φ Φ Φ + ∂ − + ∂

− Φ ∂

+

+

+

Φ Φ

ɶ

. (7.12) 

 

From here, further mathematical reductions are possible.  First, we noted earlier that 

i A q Aα γ µ α γ µ∂ =ℏ  for the photon field in (2.11), which we extend to five dimensions as 

i A q Aγ µ γ µΑ Α∂ =ℏ  by appending a fifth dimension in the Fourier kernel in (2.11a) just as we did for 

the fermion wavefunction following (5.6).  Thus, we find 5 5 0Ai A q AAσ σ
γ σ γ γ σγ ∂ = =ℏ  and so may 

set 5 0AAγ
σ

γ σ∂ = .  For similar reasons, see (4.17) and recall that 
0 0Aγ = , we set 5 0Aσ

γ σΦ ∂ = .  

We also clear any remaining 0A Aγ
σ

γ σ =  and 0Aσ
γ σΦ = , and use 0A Iγ

σ
σ =  because 

0 0Aγ = .  

Next, because 
0 0Aγ = , wherever there is a remaining Aγ σ  summed with an object with an upper 

σ  index, we set 1, 2,3kσ = =  to the space indexes only.  We also use 00

0 1I Iµσ
ση η= = .  And we 

substitute 0

0 φΦ = Φ =  throughout.  Again mindful that i A q Aγ µ γ µΑ Α∂ =ℏ , we also use 

j jk
kA Aγ γη=  from (4.16) to raise some indexes.  Finally, we apply all remaining derivatives, 
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separate out time and space components for any summed indexes still left except for in Fασ , and 

reconsolidate.  The result is that strictly mathematically, (7.12) reduces to: 

 

( )
( )
( )( )
( )( )

2 21
5 2

01
2

01
02

2 21
2

2 21 1
5

2

2

2 2 2

5 52 2

2

2

2

k
k

k k
k

k

k k

k

k

k

A A F

A

I A

A A Ak k

k k

I A

A A kA A A A

µ µσ µ µ σ
α γ γ ασ

µ µ µ
γ α

µ µ
α γ α

µ µ µ
γ γ γ α γ α

µ µ µ
γ γ α γ

σ

γ α γ γ α

η φ φ

η η φ

η φ

η φ φ φ

φ φ φ

φ φ

φ φ

φ

φ

Γ = − Φ Φ

+ + − Φ ∂

− + Φ + ∂

− − + Φ + ∂

+ ∂ ∂ ∂

+

+ +

ɶ

. (7.13) 

 

 Now, it is the upper µ  index in 
5

µ
αΓɶ  which, when used in the equation of motion (7.4), 

will determine the coordinate against which the acceleration is specified in relation to the proper 

time interval dτ .  So, we now separate (7.13) into its time and space components, as such: 

 

( )
( ) ( )( ) ( )

0 0 21
5 2

31 1 1
02 2 2

2 21 1 2 2k
k

F

I A A

k

Ak k kI

σ σ
α ασ

α α γ α γ α γ α

η φ φ

φ φ φφ φ φ φ φ

Γ = Φ

+ − ∂ − + + ∂ − + ∂

+ɶ

, (7.14a) 

 

( )
( )

( )
( )( )( )

2 2 21
5 2

21
2

21
02

2 41
2

2 21 1
5 5 52

2 2

2

2

2

2

1

2

2

j j j j

j

j

jk j k
k

j j j

k k k

k

A A A F

A

A I A

A A I A

A A A

k k

k k

k k kA A A

σ σ
α γ γ γ ασ

γ α

γ α γ α

γ γ α γ α

γ γ α γ α γ γ γ

σ

α

η φ φ φ

φ

φ φ

η φ φ φ

φ φ φ φ

φ φ

φ φ

φ

Γ = − Φ

+ − ∂

− + ∂

− − + ∂

+ ∂ ∂ ∂

+

−

+ +

ɶ

. (7.14b) 

 

It is noteworthy that all terms in (7.13) containing the fifth dimensional derivative 
5 5

5 / /x c t∂ = ∂ ∂ = ∂ ∂  also contain A µ
γ  and so drop out entirely from (7.14a) because 

0
0Aγ = . 

 

 Now, as previewed prior to (7.12), Aγ α  is the field for a single photon, which is 

inconsequential in physical effect compared to Fασ  which has now been gauge-transformed to a 

classical electric and magnetic field bivector consisting of innumerable photons.  This is to say, if 

there is some interaction occurring in a classical electromagnetic field, a single photon more, or a 

single photon less, will be entirely undetectable for that interaction, akin to a single drop of water 

in an ocean.  Moreover, the constant k is very small, so that the dimensionless kAγ α  will be very 

small in relation to the numbers 1±  contained in µνη .  With this in mind, we may set 0Aγ α ≅  as 

an extraordinarily-close approximation to zero all terms which contain Aγ α  in (7.14).  This 

includes for (7.14a), only retaining 0 φΦ =  in 2 0 2

0k kF Fσ
ασ αφ φ φ φΦ = Φ .  And in (7.14b) we further 

use 
jk

k jη ∂ = −∂ .  So now, both of (7.14) reduce to: 
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( ) ( ) ( )0 2 21 1 1
5 0 02 2

2 2

2
1 11 F Ikα α α αφφ φ φ φ φΓ = + − ∂ − + ∂+ɶ , (7.15a) 

 
21 1

5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.15b) 

 

 Contrasting, we see that the former contains 0Fα  while the latter contains jFα  with a raised 

index.  To properly compare we need to carefully raise the time index in (7.15a).  To do this, we 

recall from after (2.11) that i A q Aα µ α µ∂ =ℏ , 0A qγ
α

α = , and 0j
jA q = , which also means that 

0Aγ
α

α∂ =  and 0j
jAγ ∂ = , thus 0j

jΦ ∂ =  when α∂  operates on Aγ µ .  Recall as well that 

0A Aσ
γ γ σ =  and 0Aσ

γ σΦ = .  So, working from F A Aγ σν σ γν ν γ σ= ∂ − ∂  for an individual photon and 

using (4.22) with g µν µνη= , we first obtain, without yet fully reducing: 

 

( ) ( )F G F G A G A A Aµ µσ µσ µσ
γ ν γ σν σ γν ν γ σ σ γν

µσ µ σ µσ µ σ
ν γ ση η= = ∂ − ∂ = + ∂ − Φ ∂Φ+Φ Φ . (7.16) 

 

Then, extracting the electric field bivector we obtain the field strength with a raised time index: 

 

( ) ( )
( ) ( )
( )( ) ( )

0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

2

0

21 1

F A A A A

A A A A

A A F

σ σ σ σ
γ ν σ γν σ γν ν γ σ ν γ σ

γν γν ν γ ν γ

γν ν γ γ ν

η η

φ φ

Φ Φ Φ Φ

Φ

= ∂ + ∂ − ∂ + ∂

= ∂ + ∂ − ∂ + ∂

= + ∂ +

Φ

−

Φ

=

Φ

∂

. (7.17) 

 

Using the gauge transformation v vF Fγ µ µ→  discussed prior to (7.12) to write this as 

( ) 0

20 1F Fα αφ= + , then using this in (7.15a), now reduces the equation pair (7.15) to: 

 

( ) ( )0 21 1 1
5 02

0 2

2 2

21 1 IkFα α αα φ φ φ φφΓ = + − ∂ − + ∂ɶ , (7.18a) 

 
21 1

5 2 2

j j
jFk Iα α α φφΓ = + ∂ɶ . (7.18b) 

 

These clearly manifest general spacetime covariance between the 1
2

02kFαφ  and 21
2

jkFαφ  terms.   

 

At this point we are ready to use the above in the equation of motion (7.4).  Focusing on 

the motion contribution from the 
5α

ΜΓɶ  term, we first write (7.4) as: 

 
2 5

52 2
2 ...

d dx dx

c d cd c

x

d

α

ατ τ τ

Μ
ΜΓ= +− ɶ  (7.19) 

 

with a reminder that we are focusing on this particular term out of the three terms in (7.4).  We 

then separate this into time and space components and use (7.18) with F Fµ µ
α α= −  and 

( )1Iα = 0 .  Importantly, we also use the differential chain rule on the φ  terms.  We thus obtain: 
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( ) ( )( )0 2
2 0 5 5

0 2

5 02 2

5
2

2

0
5

2

... ...

2

2 1 1

...

d dx dx dx dx
I

c d cd cd cd cd

dx dx dx d

cd cd cd cd

x
kF

k F

α α

α α

α

α

α

αφ φ φφ
τ τ τ τ τ

φ
τ τ τ τ

φ

φφ

− Γ − + − ∂ − + ∂= + = +

= + +

ɶ

 (7.20a) 

 

( )
2 5 5

2

52 2

5 5 0
2

...

.

2

..

j
j j

j

j

j

d dx dx dx dx
F I

c d cd cd cd cd

dx dx dx dx d
F

cd cd cd d

x

k
d

k

x c

α α α

α

α α

α

φ
τ τ τ τ τ

φ
τ τ τ τ

φ

φ

= + =− Γ − + ∂

= +−

ɶ

 (7.20b) 

 

In both of the above, for the scalar we find a derivative along the curve, /d cdφ τ .  Note further 

that in (7.20b) this is multiplied by the inverse of 0/ /j jdx v cdx =  where 0/j jv dx dt=  is an 

ordinary space velocity with reference to the ordinary time 0t  (versus the fifth-dimensional 5t ).  

In contrast, in (7.20a) the objects covariant with this velocity term simply turned into the number 

1 via the chain rule.  Given its context, we understand jv  to be the space velocity of the scalar φ .  

 

 This raises an important question and gives us our first piece of solid information about the 

physical nature of the Kaluza-Klein scalar φ :  Without the /d cdφ τ  term (7.20) consolidate into 

( )2 2 2 2 5 //d c d dxx k Fcd dx cdµµ α
ατ φ τ τ=  following which we can make the usual “Kaluza 

miracle” association with the Lorentz Force law.  However, with this term, if φ  is a material field 

or particle which can be Lorentz transformed to a rest frame with 0jv = , then we have a problem, 

because the latter term in (7.20b) will become infinite, causing the space acceleration to likewise 

become infinite.  The only way to avoid this problem, is to understand the scalar φ  as a luminous 

entity which travels at the speed of light and which can never be Lorentz transformed to a rest 

frame, just like the photon.  More to the point in terms of scientific method: we know from 

observation that the Lorentz force does not become infinite nor does it exhibit any observable 

deviations from the form ( )2 2 2 2 5 //d c d dxx k Fcd dx cdµµ α
ατ φ τ τ= .  Therefore, we use this 

observational evidence in view of (7.20b) to deduce that φ  must be luminous. 

 

 To implement this luminosity, we first write the four-dimensional spacetime metric for a 

luminous particle such as the photon, and now also the scalar φ , using mixed indexes, as 
2 0

00
j

jd dx dx dx dxτ= = + .  This easily is rewritten as 
0

0

j
jdx dx dx dx= −  and then again as: 

 
0

0

j

j

dxdx

dx dx
= − . (7.21) 

 

This is the term of interest in (7.20b).  Now, we want to raise indexes on the right side of (7.21) 

but must do so with (3.13).  Using 0 φΦ =  and gµν µνη=  as well as 
0 0Aγ =  and A Aµ µν

γ γνη=  

from (4.16), we find: 

 



Jay R. Yablon, June 27, 2018 

31 

 

( )
( )

2

0 0 0

2

2 0

0 0

2 22j
j

k k
j j j

j

dx G dx k dx dx dx

dx G

A

dx k dx dx k dx

A

A A A A

ν γ γν ν

ν γ

ν ν ν
ν

ν ν
ν γν γ γ

η φ η

η φ φ

+

+

= = =

= +

=

= = −
. (7.22) 

 

Using the above in (7.21) then yields the luminous particle relation: 

 
0

2 2 2

0

2

0
ˆ ˆ

j k
j k

j

j k j kdx dx dx
k u k u

dx x
A A

x
A

d
A

d
γ γ γ γφφ= − = − . (7.23) 

 

Above, we also introduce a unit vector 0ˆ /j ju dx dx=  with ˆ ˆ 1j ju u =  pointing in the direction of 

the luminous propagation of φ . 

 

 Inserting (7.23) for a luminous scalar into (7.20b) then produces: 

 
2 5 5 5

2

2

2 2

2
ˆ ˆ

j
j j kj kd dx dx dx d dx d

F A A
c d cd cd cd

x
k u k u

cd cd cd

α

α γ γφ
τ τ τ τ τ τ τ

φ φφ−= +  (7.24) 

 

As we did starting at (7.15) we then set 0Aγ α ≅  because the gauge vector for a single photon will 

be swamped by the innumerable photons contained in the classical field strength jF α .  As a result, 

using (7.24), we find that (7.20) together now become: 

 
2 0 5 5

2

2 2

0 22
d dx dx dx d

c d cd cd

x
k F

cd cd

α

αφ
τ τ

φ
τ τ

φ
τ

= +  (7.25a) 

 
2 5 5

2

2 2
ˆ

j
j jd dx dx dx d

F
c d c

x
k

cd cd cd
u

d
α

α

φ
τ τ τ τ

φ
τ

−=  (7.25b) 

 

In (7.25b), φ  has now been made luminous. 

 

 Finally, we are ready to connect this to the Lorentz Force motion, which we write as: 

 
2

2 2 2

d x q dx
F

c d mc cdt

µ α
µ

ατ
= . (7.26) 

 

We start with the space components in (7.25b) combined with jµ =  in (7.26) and use these to 

define the association: 

 
2 5 5

2

2 2 2
ˆ j

j
j jd x dx dx dx d q dx

F F
c d cd cd cd cd mc d

k u
c t

α

α

α

αφ
τ τ τ τ

φ
τ

− ≡= . (7.27) 
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For the moment, let us ignore the term /d dφ τ  to which we shall shortly return, and focus on the 

term with jF α .  If this is to represent Lorentz motion insofar as the jF α  terms, then factoring out 

common terms from both sides, we obtain the following relation and its inverse: 

 
5 5 5 5

2 2

2 2 2
;

dx dt q dx dt q

cd d mc c
k k

d ckd m
φ φ

τ τ τ τ φ
= = = = . (7.28) 

 

This is why electric charge – and to be precise, the charge-to-mass ratio – is interpreted as “motion” 

through the fifth dimension.  However, because of the timelike fifth dimension in the metric tensor 

(3.13), the charge-to-energy ratio of a charged material body is no longer interpreted as spatial 
motion through an unseen fourth space dimension.  Rather, it is understood as a rate of time flow 
in a second time dimension. 

 

 Next, we substitute the above for 5 /dx cdτ  in each of (7.25) and reduce to obtain: 

 
2 0

2 2

0

2 2
2

d q dx q d

c d mc c

x
F

d mc cdk

α

ατ τ
φ
τ

= +  (7.29a) 

 
2

2 2 2 2 2

ˆj
j

jd q dx q d
F

c d mc cd c c

u

km

x

d

α

ατ τ φ
φ
τ

−=  (7.29b) 

 

This does indeed reproduce the Lorentz motion, except for the /d dφ τ  term in each.  Now, because 

there is no observed deviation for the Lorentz motion, in order to minimize the physical impact of 

these final terms, one might suppose that the luminous φ  is an extremely small field 0φ ≅  with 

/ 0d dφ τ ≅ , but this is problematic for two reasons:  First, if k turns out to be the extremely small 

ratio ( )22 / / ek c G k=  given by (1.2) as it is in Kaluza-Klein theory – and there is no reason to 

believe that k will turn out otherwise here – then the 1/k in both of (7.29) is an extremely large 

coefficient, which means that /d dφ τ  would have to be even more extraordinarily small.  Second, 

even if / 0d dφ τ ≅  in part because we make φ  extremely small, the presence of 21/ φ  in (7.29b) 

still causes a problem, because an extremely small 0φ →  implies an extremely large 21/ φ → ∞ .  

Ironically, the 21/ φ  which causes GΜΝ → ∞  in the usual Kaluza-Klein metric tensor (1.1) – which 

problem was solved by the non-singular (4.22) – nevertheless still persists, because of its 

appearance in (7.29b).  And it persists in the form of a very large yet unobserved impact on the 

physical, observable Lorentz motion.  The only apparent way to resolve this, is to require that 

/ 0d dφ τ = .  If that is the case, then (7.29) both condense precisely into the Lorentz Force motion.   

 

Now, on first appearance, the thought that / 0d dφ τ =  seems to suggest that φ  must be a 

constant field with no gradient, which as pointed out in [11] imposes unwarranted constraints on 

the electromagnetic field, and which also defeats the purpose of a “field” if that field has to be 

constant.  But in (7.29), /d dφ τ  is not a gradient nor is it a time derivative.  Rather, it is a derivative 

along the curve with curvature specified by the metric tensor (2.15), and it is related to the four-
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gradient µφ∂  by the chain rule ( ) ( )/ // x dd udxd µ µ µ
µφ φ φτ τ= ∂ = ∂∂  with /u dx dµ µ τ≡ .   

Moreover, we have now learned at (7.20) that φ  must be a luminous field, which requirement has 

been embedded in (7.29b).  So, this derivative along the curve will be taken in frames of reference 
which travel with the luminous field, which luminous reference frames cannot ever be transformed 

into the rest frame – or even into a relatively-moving frame – of a material observer.  As a result, 

it is indeed possible to have a zero /d dφ τ  in the luminous reference frame “along the curve” 

simultaneously with a non-zero gradient 0µφ∂ ≠  taken with reference to coordinates defined by a 

material observer.  As we now shall elaborate, this solves the “constant field / zero gradient” 

problems which have long plagued Kaluza-Klein theory, and teaches a great deal of new intriguing 

information about the physical properties of the scalar field φ . 

 

8.  Luminosity and Internal Second-Rank Dirac Symmetry of the Dirac-

Kaluza-Klein Scalar Field 
 

 Let us take the final step of connecting (7.29) to the observed Lorentz Force motion with 

nothing else in the way, by formally setting the derivative along the curve for φ  to zero, thus: 

 

0
dx

x

d

cd cd

µ

µτ τ
φ φ∂

∂
= = . (8.1) 

 

With this, both of (7.29) immediately become synonymous with the Lorentz Force motion (7.26).  

From the standpoint of scientific method, we can take (7.29) together with (7.26) as empirical 

evidence that (8.1) must be true.  Now, let’s explore what (8.1) – if it really is true – teaches us 

about the physical properties of φ . 

 

 To start, let us square (8.1) and so write this as: 

 
2

0
dx dx dx dx

x x

d

cd cd cd cd cd

µ ν µ ν

µ ν µ ντ τ
φ

τ
φ

τ
φ φ

τ
φ∂ 

  ∂ ∂
= ∂



∂ = ∂ = . (8.2) 

 

Next, let’s write the four-dimensional spacetime metric (7.5) for a luminous particle using (3.13) 

with gµν µνη=  and 0 φΦ =  as: 

 
2 2 2 2

0 c d G dx dx dx dx k x xA dA dµ ν µ ν µ ν
µν µν γ µ γντ η φ= = = + . (8.3) 

 

We already used a variant of this to obtain (7.23).  Then, also appending a 2φ  and using an overall 

minus sign which will become useful momentarily, we restructure this to: 

 

( )2 2 2 0
dx dx

k
c

A
d

A
cd

µ ν

γ µ γνµνη φ φ
τ τ

− + = . (8.4) 
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 The above (8.4) describes a luminous particle in a five-dimensional spacetime with the 

metric tensor (3.13).  So, we can use this luminosity to supply the zero for the squared derivative 

along the curve in (8.2) if, comparing (8.2) and (8.4), we define the relation: 

 

( )2 2 2 2/ 0k A Aµ ν γ µ γνµνφ φ η φ φ≡∂ ∂ − + ≠Ż , (8.5) 

 

where / 2λ π≡Ż  is a reduced wavelength of the scalar, needed and therefore introduced to balance 

the 21/ length  dimension of µ νφ φ∂ ∂  with the dimensionless 
2 2G k A Aµν γµ µ νν γη φ= + .  Now, all we 

need to do is determine the first-order µφ∂  which satisfies (8.5). 

 

  What becomes apparent on close study of (8.5) is that there is no way to isolate a first-

order µφ∂  unless we make use of the Dirac gamma operators in a manner very similar to what 

Dirac originally used in [13] to take the operator “square root” of the Klein-Gordon equation.  And 

in fact, the operator square root we need to take to separate out a linear µφ∂  from (8.5) is precisely 

the ( )0 0j j j jA kAk γ γµ γ γ γ γΓ = + +  we found in (2.14) which satisfy (2.1) with gµν µνη= , that 

is, which satisfy { } 21
2

2, Ak Aµν µ νµ ν η φΓ Γ = + .  Therefore, we may now use these µΓ  to take the 

square root of (8.5), where we also use 1i− = −  choosing i−  rather than i+  for reasons which 

will momentarily become apparent, to obtain: 

 

i µµφ φ= − Γ∂Ż . (8.6) 

 

 Now, just as the photon gauge field (2.11a) contains a Fourier kernel ( )exp /iq xσ
σ− ℏ  

where qµ  is the photon energy-momentum, and the fermion wavefunction used in (5.6) contains 

a Fourier kernel ( )exp /ip xΣ
Σ− ℏ  with a fermion five-momentum pΜ  (and we anticipate (5.6) will 

be used to inform us regarding 5p ), let us specify a Fourier kernel ( )exp /is xΣ
Σ− ℏ  with a five-

dimensional sΜ  which we regard as the five-momentum of the luminous scalar φ .  Moreover, 

because φ  is dimensionless and so too is ( )exp /is xΣ
Σ− ℏ , let us simply define: 

 

( )exp /is xφ Σ
Σ≡ − ℏ  (8.7) 

 

to be a Fourier kernel in five dimensions, for which /isµµφ φ= −∂ ℏ .  Our goal is to now learn as 

much as we can about sΣ  and especially its spacetime components sµ . 

 

 Substituting /isµµφ φ= −∂ ℏ  based on (8.7) into (8.6) we first obtain: 

 

/i s iµ µφ φ− = − ΓŻ ℏ . (8.8) 
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Then stripping off all φ , and following some algebraic rearrangement including multiplying 

through by c, then using /c hfω= =ℏ Ż ℏ for the energy magnitude of the scalar, we arrive at: 

 

( )0 0/ j jj jcs c hf k k

I k Ik

k I

A

I

A

k

γ γ

γ γ

γ γ

µ µ µ µω ω γ γ γ γ

ω

= Γ = Γ = Γ = + +

 −    
=      − − −   ⋅ 

⋅A A

A A

ℏ Ż ℏ ℏ

ℏ
σ σ

σ σ
, (8.9) 

  

using the Dirac representation.  So, we now see that the reason we used 1i− = −  at (8.6) was to 

ensure that the component ( )0 0 jjcs Ahf k γγ γ= +  for the energy of the scalar is positive for the 

upper components of ( ) ( )0diag ,I Iγ = + −  in the Dirac representation. 

 

Then, if csµ µω= Γℏ  in four dimensions, the natural five-dimensional covariant extension 

of (8.9) is cs ωΜ Μ= Γℏ , and with (8.9) so-extended, the scalar wavefunction in (8.7) becomes: 

 

exp cos sinAB

AB AB AB

i x x i x
c c c

ω ω ωφ Σ Σ Σ
Σ Σ Σ

     ≡ − Γ = Γ − Γ     
     

. (8.10) 

 

Because the magnitude of the energy (8.9) for the scalar is E hf=  just as it is for a single photon, 

we now must interpret φ  as an individual scalar particle quantum, just as at (2.11) we were required 

to regard A Aµ γ µ=  and an individual photon quantum.   

 

 In (8.10) above, to emphasize a very significant new finding, we have made explicit the 

Dirac spinor indexes 1, 2,3, 4A =  and 1, 2,3, 4B = .  Specifically, what we now learn from (8.10), 

and from (8.9) written with Dirac indexes explicit as AB ABcs ωΜ Μ= Γℏ , is that if / 0d cdφ τ =  in 

(8.1) is to be true, which enables (7.29) to consolidate precisely into the Lorentz Force law with 

no other problematic terms, then the energy momentum AB ABcs ωΜ Μ= Γℏ  scalar field must in fact 

be a second rank 4x4 Dirac object with implied Dirac indexes, and a total of 4x4x5=80 components 

when this is taken over the five space dimensions.  Moreover, when calculated out using the 

McLaurin series ( ) 2 3 4exp 1 / 2! / 3! / 4! ...i i iθ θ θ θ θ− = − − + + +  including taking square, cubes, etc. 

of ΣΓ , we realize that the Kaluza-Klein scalar in physical reality, must not only be luminous, but 

must also be a 4x4=16 component second rank Dirac-based object ABφ  with indexes explicit. 

 

This solves the Kaluza-Klein problem of how to make the scalar field “constant” to remove 

what are otherwise some very large terms, while not unduly constraining the electromagnetic 

fields:  The gradient can be non-zero, while the derivative along the curve can be zero, so long as 

the scalar is a luminous particle which also has a second rank Dirac structure.  In turn, if we then 

return to the metric tensor GΜΝ  in the form of, say, (3.11), we find that this too must also have 

implied Dirac indexes, that is, ABG GΜΝ ΜΝ=  owing to the structure (8.10) of the scalar fields which 
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sit in its fifth dimensional components.  So (8.10) gives a second rank Dirac structure to the metric 

tensor, alongside of its already second-rank, five dimensional spacetime structure. 

 

And so, the Kaluza-Klein fifth dimension, taken together with using Dirac theory to enforce 

general covariance across all five dimensions, has turned a metric tensor (1.1) with an entirely 

classical character, into a quantum field theory metric tensor with luminous photons and luminous 

scalar field quanta.  If this is all in accord with physical reality, this means that nature actually has 

three spin types of massless, luminous field quanta: spin-2 gravitons, spin-1 photons and gluons, 

and spin-0 scalars with an internal second rank Dirac-tensor symmetry.  This also means that the 

Kaluza-Klein scalar is not the same scalar as the Higgs, because the latter is massive and material.  

Finally, one must a least consider the prospect that these scalars (8.10) contribute additional energy 

content to the universe which may not have previously been accounted for. 

 

9.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced 

by Kaluza-Klein Theory without Diminishing the Kaluza “Miracle,” and 

Grounds the Now-Timelike Fifth Dimension in Manifestly-Observed Physical 

Reality 
 

 Now let’s review the physics implications of everything that has been developed here so 

far.  As has been previously pointed out, in the circumstance where all electrodynamic interactions 

are turned off by setting 0jAγ =  and what is now 0µΦ = , then (3.13) reduces when gµν µνη=  to 

( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with 1GΜΝ = − .  And we saw at (6.3) that this result does not 

change at all, even when 0jAγ ≠  and 0µΦ ≠ .  But in the same situation the usual Kaluza-Klein 

metric tensor (1.1) reduces to ( ) ( )diag 1, 1, 1, 1,0GΜΝ = + − − −  with a determinant 0GΜΝ = .  This 

of course means the Kaluza-Klein metric tensor is not-invertible and therefore becomes singular 

when electrodynamic interactions are turned off.  Again, this may be seen directly from the fact 

that when we set 0jAγ =  and 0φ = , in (1.1) we get 
55 2 01/G g A Aα β

αβ φ+ == + ∞ .  This 

degeneracy leads to a number of interrelated ills which have hobbled Kaluza-Klein as a viable 

theory of the natural world for a year shy of a century. 

 

First, the scalar field φ  carries a much heavier burden than it should, because Kaluza-Klein 

theory relies upon this field being non-zero to ensure that the five-dimensional spacetime geometry 

is non-singular.  This imposes constraints upon φ  which would not exist if it was not doing “double 

duty” as both a scalar field and as a structural element required to maintain the non-degeneracy of 

Minkowski spacetime extended to five dimensions.   

 

Second, this makes it next-to-impossible to account for the fifth dimension in the observed 

physical world.  After all, the space and time of real physical experience have a flat spacetime 

signature ( ) ( )diag 1, 1, 1, 1µνη = + − − −  which is structurally sound even in the absence of any fields 

whatsoever.  But what is one to make of a signature which, when gµν µνη=  and 0kAγ = , is given 

by ( ) ( )2diag 1, 1, 1, 1,η φΜΝ = + − − −  with 2η φΜΝ = − ?  How is one to explain the physicality of a 
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2

55G φ=  in the Minkowski signature which is based upon a field, rather than being either a timelike 

+1 or a spacelike –1 Pythagorean metric component?  The Minkowski signature defines the flat 
tangent spacetime at each event, absent curvature.  How can a tangent space which by definition 

should not be curved, be dependent upon a field φ  which if it has even the slightest modicum of 

energy will cause curvature?  This is an internal logical contradiction of the Kaluza-Klein metric 

tensor (1.1) that had persisted for a full century, and it leads to such hard-to-justify oddities as a 

fifth dimensional metric component 
2

55G φ=  and determinant 2η φΜΝ = −  which dilates or 

contracts (hence the sometime-used name “dilaton”) in accordance with the behavior of 2φ . 

 

Third, the DKK metric tensor (3.13) is obtained by requiring that it be possible to 

deconstruct the Kaluza-Klein metric tensor into a set of Dirac matrices obeying (3.1), with the 

symmetry of full five-dimensional general covariance.  What we have found is that it is not 

possible to have 5-dimensional general covariance if 05 50 0G G= =  and 2

55G φ=  as in (1.1).  

Rather, general 5-dimensional covariance requires that 05 50G G φ= =  and 2

55 1G φ= +  in (3.13).  

Further, even to have spacetime covariance in four dimensions alone, we are required to gauge the 

electromagnetic potential to that of the photon.  Without these changes to the metric tensor 

components, it is simply not possible to make Kaluza-Klein theory compatible with Dirac theory 

and to have 5-dimensional general covariance.  This means that there is no consistent way of using 

the usual (1.1) to account for the fermions which are at the heart of observed matter in the material 

universe.  Such an omission – even without any of its other known ills – most-assuredly renders 

the KK metric (1.1) “unphysical.”   

 

Finally, there is the century-old demand which remains unmet to this date: “show me the 

fifth dimension!”  There is no observational evidence at all to support the fifth dimension, at least 

in the form specified by (1.1), or in the efforts undertaken to date to remedy these problems. 

 

But the metric tensors (3.13) and (4.22) lead to a whole other picture.  First, by definition, 

a 5-covariant Dirac equation (5.6) can be formed, so there is no problem of incompatibility with 

Dirac theory.  Thus, all aspects of fermion physics may be fully accounted for.  Second, it should 

be obvious to anyone familiar with the µγ  and 5 0 1 32iγ γ γ γ γ≡ −  that one may easily use an 

anticommutator { }1
2

,η γ γΜΝ Μ Ν≡  to form a five-dimensional Minkowski tensor with 

( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − + , which has a Minkowski signature with two timelike and three 

spacelike dimensions.  But it is not at all obvious how one might proceed to regard 5γ  as the 

generator of a truly-physical fifth dimension which is on an absolute par with the generators µγ  of 

the four truly-physical dimensions which are time and space.  This is true, notwithstanding the 

clear observational evidence that 5γ  has a multitude of observable physical impacts.  The reality 

of 5γ  is most notable in the elementary fermions that contain the factor ( )1
52

1 γ±  for right- and 

left-chirality; in the one particle and interaction namely neutrinos acting weakly that are always 

left-chiral; and in the many observed pseudo-scalar mesons ( 0PCJ −+= ) and pseudo-vector mesons 

( 1PCJ ++=  and 1PCJ +−= ) laid out in [20], all of which require the use of 5γ  to underpin their 
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theoretical origins.  So 5γ  is real and physical, as would therefore be any fifth dimension which 

can be properly-connected with 5γ . 

 

But the immediate problem as pointed out in toward the end of [11], is that because 
2

55G φ=  in the Kaluza-Klein metric tensor (1.1), if we require electromagnetic energy densities to 

be positive, the fifth-dimension must have a spacelike signature.  And this directly contradicts 

making 5γ  the generator of the fifth dimension because 5 5 1γ γ =  produces a timelike signature.  

So, as physically-real and pervasive as are the observable consequences of the 5γ  matrix, the 

Kaluza-Klein metric tensor (1.1) does not furnish a theoretical basis for associating 5γ  with a fifth 

dimension, at the very least because of this timelike-versus-spacelike contradiction.  This is yet 

another problem stemming from having φ  carry the burden of maintaining the fifth-dimensional 

signature and the fundamental Pythagorean character of the Minkowski tangent space. 

 

So, to summarize, on the one hand, Kaluza-Klein theory has a fifth physical dimension on 

a par with space and time, but it has been impossible to connect that dimension with actual 

observations in the material, physical universe, or to make credible sense of the dilation and 

contraction of that dimension based on the behavior of a scalar field.  On the other hand, Dirac 

theory has an eminently-physical 5γ  with pervasive observational manifestations on an equal 

footing with µγ , but it has been impossible to connect this 5γ  with a true physical fifth dimension 

(or at least, with the Kaluza-Klein metric tensor (1.1) in five dimensions).  At minimum this is 

because the metric tensor signatures conflict.  Kaluza-Klein has a fifth-dimension unable to 
connect to physical reality, while Dirac theory has a physically-real 5γ  unable to connect to a fifth 

dimension.  And the origin of this disconnect on both hands, is that the Kaluza-Klein metric tensor 

(1.1) cannot be deconstructed into Dirac-type matrices while maintaining five-dimensional general 

covariance according to (3.1).  To maintain general covariance and achieve a Dirac-type square 
root operator deconstruction of the metric tensor, (1.1) must be replaced by (3.13) and (4.22). 
 

Once we use (3.13) and (4.22) all these problems evaporate.  Kaluza-Klein theory becomes 

fully capable of describing fermions as shown in (5.6).  With 2

55 1G φ= +  the metric signature is 

decoupled from the energy requirements for φ , and with G gΜΝ ΜΝ=  from (6.3) the metric tensor 

determinant is entirely independent of both Aγ µ  and φ .  Most importantly, when 0jAγ =  and 

0φ =  and g ηΜΝ ΜΝ= , because ( ) ( ) { }( ) ( )1
2

diag 1, 1, 1, 1, 1 diag d, iagG γ ηγΜ ΝΜΝ ΜΝ= + − − − + = = , 

and because of this decoupling of φ  from the metric signature, we now have a timelike 

555 5 1γ γη = = +  which is directly generated by 5γ .  As a consequence, the fifth dimension of 

Kaluza-Klein theory which has heretofore been disconnected from physical reality, can now be 

identified with a true physical dimension that has 5γ  as its generator, just as 0γ  is the generator of 

a truly-physical time dimension and jγ  are the generators of a truly-physical space dimensions.  

And again, 5γ  has a wealth of empirical evidence to support its reality. 
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Further, with a tangent space ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  we now have two timelike 

and three spacelike dimensions, with matching tangent-space signatures between Dirac theory and 

the Dirac-Kaluza-Klein theory.  With the fifth-dimension now being timelike not spacelike, the 

notion of “curling up” the fifth dimension into a tiny “cylinder” comes off the table completely, 

while the Feynman-Wheeler concept of “many-fingered time” returns to the table, providing a 

possible avenue to study future probabilities which congeal into past certainties as the arrow of 

time progresses forward with entropic increases.  And because 5γ  is connected to a multitude of 

confirmed observational phenomena in the physical universe, the physical reality of the fifth 

dimension in the metric tensors (3.13) and (4.22) is now supported by every single observation 

ever made of the reality of 5γ  in particle physics, regardless of any other epistemological 

interpretations one may also arrive at for this fifth dimension. 

 

Moreover, although the field equations obtained from (3.13) and (4.22) rather than (1.1) 

will change somewhat because now 05 50G G φ= =  and 2

55 1G φ= +  and the gauge fields are fixed 

to the photon A Aµ γ µ=  with only two degrees of freedom, there is no reason to suspect that the 

many good benefits of Kaluza-Klein theory will be sacrificed because of these changes which 

eliminate the foregoing problems.  Indeed, we have already seen in sections 7 and 8 how the 

Lorentz force motion is faithfully reproduced.  Rather, we simply expect some extra terms (and so 

expect some additional phenomenology) to emerge in the equations of motion and the field 

equations because of these modifications.  But the Kaluza-Klein benefits having of Maxwell’s 

equations, the Lorentz Force motion and the Maxwell-stress energy embedded, should remain fully 

intact when using (3.13) and (4.22) in lieu of (1.1), as illustrated in sections 7 and 8. 

 

Finally, given all of the foregoing, beyond the manifold observed impacts of 5γ  in particle 

physics, there is every reason to believe that using the five-dimensional Einstein equation with the 

DKK metric tensors will fully enable us to understand this fifth dimension, at bottom, as a matter 
dimension, along the lines long-advocated by the 5D Space-Time-Matter Consortium [18].  This 

will be further examined in the final section to follow, and may thereby bring us ever-closer to 

uncovering the truly-geometrodynamic theoretical foundation at the heart of all of nature. 

 

10.  Conclusion – Pathways for Continued Exploration: The Einstein 

Equation, the “Matter Dimension,” Quantum Field Path Integration, 

Epistemology of a Second Time Dimension, and All-Interaction Unification 
 

 Starting at (7.6) we obtained the connection 
5α

ΜΓɶ  in order to study the 
5α

ΜΓɶ  term in the 

equation of motion (7.4), because this is the term which provides the Lorentz Force motion which 

becomes (7.29) once φ  is understood to be a luminous field with / 0d dφ τ =  as in (8.1).  The 

reason this was developed in detail here, is to demonstrate that the DKK metric tensors (3.13) and 

(4.22) in lieu of the usual (1.1) of Kaluza-Klein do not in any way forego the Kaluza miracle, at 

least as regards the Lorentz Force equation of electrodynamic motion.  But there are a number of 

further steps which can and should be taken to further develop the downstream implications of 

using the DKK metric tensors (3.13) and (4.22) in lieu of the usual (1.1) of Kaluza-Klein. 
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First, it is necessary to calculate all of the other connections Μ
ΑΒΓɶ  using (7.3) and the metric 

tensors (3.13) and (4.22) similarly to what was done in section 7, then to fully develop the 

remaining terms in the equations of motion (7.2), (7.4) which have not yet been elaborated here, 

and also to obtain the five-dimensional Riemann and Ricci tensors, and the Ricci scalar: 

 

ˆ

ˆ ˆ

ˆ ˆ ˆ

R

R R

R R G R G G G G

Α Α Α Α Σ Α Σ
ΒΜΝ Μ ΝΒ Ν ΜΒ ΜΣ ΝΒ ΝΣ ΜΒ

Τ Τ Τ Τ Σ Τ Σ
ΒΜ ΒΜΤ Μ ΤΒ Τ ΜΒ ΜΣ ΤΒ ΤΣ ΜΒ

Σ ΒΜ ΒΜ Τ ΒΜ Τ ΒΜ Τ Σ ΒΜ Τ Σ
Σ ΒΜ Μ ΤΒ Τ ΜΒ ΜΣ ΤΒ ΤΣ ΜΒ

= ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

= = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

= = = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ

. (10.1) 

 

Once these are obtained, these may then be placed into a fifth-dimensional Einstein field equation: 

 
1
2

ˆ ˆ ˆT G RRΜΝ ΜΝ ΜΝ−Κ = −  (10.2) 

 

with a suitably-dimensioned constant Κ  related to the usual κ  to be discussed momentarily.  This 

provides the basis for studying the field dynamics and energy tensors of the DKK geometry. 

 

The development already presented here, should make plain that the Kaluza miracle will 

also be undiminished when the DKK metric tensors (3.13) and (4.22) are used in (10.2) in lieu of 

the usual Kaluza-Klein (1.1).  Because 
5

µ
αΓɶ  which we write as 21

5 2
...kFµ µσ

α αση φΓ = +ɶ  contains the 

electromagnetic field strength as first established at (7.13), we may be comfortable that the terms 

needed in the Maxwell tensor will be embedded in the (10.1) terms housed originally in 
Α Σ Α Σ

ΜΣ ΝΒ ΝΣ ΜΒΓ Γ − Γ Γ .  Moreover, because the electromagnetic source current density 

0 J Fµ σµ
σµ = ∂ , we may also be comfortable that Maxwell’s source equation will be embedded in 

the terms housed originally in Α Α
Μ ΝΒ Ν ΜΒ∂ Γ − ∂ Γ .  Moreover, because ( )1

2
;

ˆ ˆ 0R G RΜΝ ΜΝ

Μ
=−  

which via (10.2) ensures a locally-conserved energy ;
ˆ 0T ΜΝ

Μ =  is contracted from the second 

Bianchi identity ; ; ;
ˆ ˆ ˆ 0R R RΑ Α Α

ΒΜΝ Ρ ΒΝΡ Μ ΒΡΜ Ν+ + = , we may also be comfortable that Maxwell’s 

magnetic charge equation 
; ; ; 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  will likewise be embedded.  In short, we 

may be comfortable based on what has already been developed here, that the Kaluza miracle will 

remain intact once field equations are calculated.  But we should expect some additional terms and 

information emerging from the field equation which do not appear when we use the usual (1.1). 

 

 Second, the Ricci scalar R̂  is especially important because of the role it plays in the 

Einstein-Hilbert Action.  This action provides a very direct understanding of the view that the fifth 

dimension is a matter dimension [18], and because this action can be used to calculate five-

dimensional gravitational path integrals which may be of assistance in better understanding the 

nature of the second time dimension 5t .  Let us briefly preview these development paths. 

 

 The Einstein-Hilbert action reviewed for example in [21], in four dimensions, is given by: 

 

( )( ) 4

M
d1/ 2S R g xκ= + − L  . (10.3) 
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The derivation of the four-dimensional (10.2) from this is well-known, where R Rσ
σ= .  So, in 

five dimensions, we immediately expect that (10.2) will emerge from extending (10.3) to: 

 

( )( ) ( ) ( )( )5 5 5

M 5 M1/ 2 1/ 2 1/ 2ˆ ˆ ˆˆ ˆ ˆd dS R G x R R G xσ
σΚ Κ= + − = + + −Κ L L  , (10.4) 

 

using 
5

5
ˆ ˆ ˆR R Rσ

σ= +  from (10.1) and the G already obtained in (6.3), and where λκΚ ≡  contains 

some suitable length λ  to balance the extra space dimensionality in 5d x  versus 4d x .  In Kaluza-

Klein theory based on (1.1) λ  is normally the radius of the compactified fourth space dimension 

and is very small.  Here, because there is a second time dimension, this should become associated 

with some equally-suitable period of time=length/c, but it may not necessarily be small if it is 

associated, for example, with the reduced wavelength /c ω=Ż  of the scalar deduced in (8.10), 

and if that wavelength is fairly large which is likely because these scalars φ  have not exactly 

overwhelmed the detectors in anybody’s particle accelerators or cosmological observatories.   

 

However, the energy tensor T µν  in four dimensions is placed into the Einstein equation by 

hand.  This is why Einstein characterized the 1
2

g RRµν µν−  side of his field equation as “marble” 

and the T µνκ− side as “wood.”  And this T µν  is defined from the Lagrangian density of matter by: 

 

M
M2T g

g
µν µνµν

δ
δ

≡ − +L
L  . (10.5) 

 

Therefore, in the Five-Dimensional Space-Time-Matter view of [18], and referring to (10.4), the 

“wood” of ML̂  is discarded entirely, and rather, we associate 

 

( ) 5

M 51/ 2ˆ R̂≡ ΚL  (10.6) 

 

with the matter Lagrangian density.  As a result, this is now also made of “marble.” 

 

Then (10.4) may be simplified to the 5-dimensional “vacuum” equation (see [22] at 428 

and 429): 

 

( ) 5ˆ ˆ d1/ 2S R G x= −Κ , (10.7) 

 

and the field equation (10.2) derived from varying (10.7) becomes the vacuum equation: 

 
1
2

ˆ0 ˆR G RΜΝ ΜΝ= − . (10.8) 

 

And we anticipate that the variation itself will produce the usual relation: 
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5

5
ˆ ˆˆ

ˆ R RR
R

g g g

σ
σδ δδ

δ δ δΜΝ ΜΝ ΜΝ ΜΝ= = +  (10.9) 

 

for the Ricci tensor, but now in five dimensions. 

 

 So, in view of (10.5) and (10.6), what we ordinarily think of as the energy tensor – which 

is now made of entirely geometric “marble,” – is contained in those components of (10.8) which, 

also in view of (10.9) and 
5

5
ˆ ˆ ˆR R Rσ

σ= + , and given the zero of the vacuum in (10.8), are in: 

 
5

55
5

ˆ ˆ ˆ1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
2 2 2 2

R R R
T G R R G R G R G R

G g g

σ σ
σ σσ σ

σ σ
δ δ δ
δ δ δΜΝ ΜΝ ΜΝ ΜΝ ΜΝΜ Μ ΜΝ Ν Ν ΜΝ− = − = +−− =− +Κ . (10.10) 

 

In four dimensions, the salient part of the above now becomes (note sign flip): 

 

ˆ 1ˆ ˆ
2

R
T G R

g
µ

σ
σσ

µν σνν µ
δ
δ

= −Κ . (10.11) 

 

We then look for geometrically-rooted energy tensors that emerge in (10.8) and (10.11) using 

(10.1) which contain field configurations which up to multiplicative coefficients, resemble the 

Maxwell tensor, the tensors for dust, perfect fluids, and the like, which is all part of the Kaluza 

miracle.  And because 00T  is an energy-density, and because the integral of this over a three-

dimensional space volume is an energy which divided by 2c  is a mass, from this view we see how 

the fifth dimension really is responsible for creating matter out of geometric “marble” rather than 

hand-introduced “wood.”   

 

In a similar regard, one of the most important outstanding problems in particle physics, is 

how to introduce fermion rest masses theoretically rather than by hand, and hopefully thereby 

explain why the fermions have the observed masses that they do.  Here, just as the five spacetime 

dimensions introduce a “marble” energy tensor (10.11), we may anticipate that when the five-

dimensional Dirac equation (5.6) is fully developed, there will appear amidst its Lagrangian 

density terms a fermion rest energy term 
2m c′ ΨΨ  in which the 2mc  in (5.6) is occupied, not by a 

hand-added “wood” mass, but by some energy-dimensioned scalar number which emerges entirely 

from the five dimensional geometry.  In this event, just as we discarded ML̂  in (10.4) and replaced 

it with ( ) 5

51/ 2 R̂Κ  at (10.6) to arrive at (10.7) and (10.8), we would discard the 2mc  in (5.6), 

change (5.6) to 0i c Μ
ΜΓ ∂ Ψ =ℏ  without any hand-added “wood” mass, and in its place use the 

2m c′  emergent from the geometry in the 
2m c′ ΨΨ  terms. 

 

 Third, the action ( ) 5ˆ ˆ1 / 2 dS R G xκ= − , like any action, is directly used in the quantum 

field path integral, which using (10.7) is: 

 

( ) ( ) ( )( )5ˆ dˆexp / exp / 1/ 2Z DG iS D R xG i GΜΝ ΜΝ= = Κ −  ℏ ℏ  . (10.12) 
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Here, the only field over which the integration needs to take place is GΜΝ , because this contains 

not only the usual gµν , but also the photon Aγ µ  and the scalar φ .  But aside from the direct value 

of (10.12) in finally quantizing gravity, one of the deeply-interesting epistemological issues raised 

by path integration, relates to the meaning of the fifth time dimension – not only as the matter 

dimension just reviewed – but also as an actual second dimension of time.   

 

For example, Feynman’s original formulation of path integration considers the multiple 

paths that an individual field quantum might take to get from a source point A to a detection point 

B, in a given time.  And starting with Feynman-Stueckelberg it became understood that negative 

energy particles traversing forward in time may be interpreted as positive energy antiparticles 

moving backward through time.  But with a second time dimension 5t , the path integral must now 

take into account all of the possible paths through time that the particle may have taken, which are 

no longer just forward and backward, but also sideways through what is now a time plane.  Now, 

the time 0t  that we actually observe may well become associated with the actual path taken 
through time from amidst multiple time travel possibilities each with their own probability 

amplitudes, and 5t  may become associated with alternative paths not taken.  If one has a 

deterministic view of nature, then of course the only reality rests with events which did occur, 

while events which may have occurred but did not have no meaning.  But if one has a non-

deterministic view of nature, then having a second time dimension to account for all the paths 

through time which were not taken makes eminent sense, and certainly makes much more intuitive 

and experiential sense than curling up a space dimension into a tiny loop.  And if path integral 

calculations should end up providing a scientific foundation for the physical reality of time paths 

which could have occurred but never did, this could deeply affect human viewpoints of life and 

nature.  So, while the thoughts just stated are highly preliminary, one would anticipate that a 

detailed analysis of path integration when there is a second time dimension may help us gain 

further insight into the physical nature of the fifth dimension as a time dimension, in addition to 

how this dimension may be utilized to turn the energy tensor from “wood” into “marble.” 

 

Finally, Kaluza-Klein theory only unifies gravitation and electromagnetism.  As noted in 

the introduction, weak and strong interactions, and electroweak unification, were barely a glimmer 

a century ago when Kaluza first passed his new theory along to Einstein in 1919.  This raises the 

question whether Kaluza-Klein theory “repaired” to be compatible with Dirac theory using the 

DKK metric tensor (3.13) and its inverse (4.22) might also provide the foundation for all-

interaction unification to include the weak and strong interactions in addition to gravitation and 

electromagnetism. 

 

In ordinary four-dimensional gravitational theory, the metric tensor only contains 

gravitational fields gµν . The addition of a Kaluza Klein fifth dimension adds a spin one vector 

gauge potential Aµ  as well as a spin 0 scaler φ  to the metric tensor as seen in (1.1).  The former 

becomes the luminous Aγ µ  of (2.11) and the latter becomes the luminous ABφ  of (8.10) for the 

DKK metric tensor (3.13) and inverse (4.22).   So, it may be thought that if adding an extra 

dimension can unify gravitation with electromagnetism, adding additional dimensions beyond the 

fifth might bring in the other interactions as well.  This has been one of the motivations for string 
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theory in higher dimensions, which are then compactified down to the observed four space 

dimensions.  But these higher-dimensional theories invariably regard the extra dimensions to be 

spacelike dimensions curled up into tiny loops just like the spacelike fifth dimension in Kaluza 

Klein.  And as we have shown here, the spacelike character of this fifth dimension is needed to 

compensate for the singularity of the metric tensor when 0φ →  which is one of the most serious 

KK problems repaired by DKK.  Specifically, when Kaluza-Klein is repaired by being made 

compatible with Dirac theory, the fifth dimension instead becomes a second timelike rather than a 

fourth spacelike dimension.  So, if the curled-up spacelike dimension is actually a flaw in the 

original Kaluza-Klein theory because it is based on a metric degeneracy which can be and is cured 

by enforcing compatibility with Dirac theory over all five dimensions, it appears to make little 

sense to replicate this flaw into additional spacelike dimensions. 

 

Perhaps the more fruitful path is to recognize, as is well-established, that weak and strong 

interactions are very similar to electromagnetic interactions insofar as all three are all mediated by 

spin-1 bosons in contrast to gravitation which is mediated by spin-2 gravitons.  The only salient 

difference among the three spin-1 mediated interactions is that weak and strong interactions 

employ SU(2) and SU(3) Yang-Mills [23] internal symmetry gauge groups in which the gauge 

fields are non-commuting and may gain an extra degree of freedom and thus a rest mass by 

symmetry breaking, versus the commuting U(1) group of electromagnetism. Moreover, Yang-

Mills theories have been extraordinarily successful describing observed particle and interaction 

phenomenology.  So, it would appear more likely than not that once we have a U(1) gauge field 

with only the two photon degrees of freedom integrated into the metric tensor in five dimensions 

as is the case for the DKK metric tensors (3.13) and inverse (4.22), it is unnecessary to add any 

additional dimensions in order to pick up the phenomenology of weak and strong interactions.  

Rather, one simply generalizes abelian electromagnetic gauge theory to non-abelian Yang-Mills 

gauge theory in the usual way, all within the context of the DKK metric tensors (3.13) and inverse 

(4.22) and the geodesic equation of motion and Einstein equation machinery that goes along with 

them.  Then the trick is to pick the right gauge group, the right particle representations, and the 

right method of symmetry breaking. 

 

So from this line of approach, it seems as though one would first regard the U(1) gauge 

fields Aγ µ  which are already part of the five dimensional DKK metric tensor (3.13), as non-abelian 

SU(N) gauge fields 
i iG T Gµ µ=  with internal symmetry established by the group generators iT

which have a commutation relation ,i j ijk kT T if T  =   with group structure constants ijkf .  Prior 

to any symmetry breaking each gauge field would have only two degrees of freedom and so be 

massless and luminous just like the photon because this constraint naturally emerges from (2.10).  

Then, starting with the metric tensor (3.13), one would replace 
i iA G T Gγ µ γ µ γ µ=֏  everywhere 

this field appears (with γ  now understood to denote, not a photon, but another luminous field 

quantum), then re-symmetrize the metric tensor by replacing { }1
2

,G G G Gγ µ γν γ µ γν֏  because 

these fields are now non-commuting.  Then – at the risk of understating what is still a highly 

nontrivial problem – all we need do is discover the correct Yang-Mills GUT gauge group to use 

for these Gγ µ , discover what particles are associated with various representations of this group, 

discover the particular way or ways in which the symmetry of this GUT group is broken and at 
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what energy stages including how to add an extra degree of freedom to some of these Gγ µ  or 

combinations of them to give them a mass such as is required for the weak W and Z bosons, 

discover the origin of the chiral asymmetries observed in nature such as those of the weak 

interactions, discover how the observed fermion phenomenology becomes replicated into three 

fermion generations, discover how to produce the observed (3) (2) (1)C W emG SU SU U⊃ × ×  

phenomenology observed at low energies, and discover the emergence during symmetry breaking 

of the observed baryons and mesons of hadronic physics, including protons and neutrons with 

three confined quarks.  How do we do this? 

 

 There have been many GUT theories proposed since 1954 when Yang-Mills theory was 

first developed, and the correct choice amongst these theories is still on open question.  As an 

example, in an earlier paper [24] the author did address these questions using a (8)G SU=  GUT 

group in which the up and down quarks with three colors each and the electron and neutrino leptons 

form the 8 components of an octuplet ( ) ( )( ), , , , , , ,R G B R G Bu d d e d u uν  in the fundamental 

representation of SU(8), with ( ), ,R G Bu d d  having the quark content of a neutron and ( ), ,R G Bd u u  

the quark content of a proton.  Through three stages of symmetry breaking at the Planck energy, 

at a GUT energy, and at the Fermi vev energy, this was shown to settle into the observed 

(3) (2) (1)C W emSU SU U× ×  low-energy phenomenology including the condensing of the quark 

triplets into protons and neutrons, the replication of fermions into three generations, the chiral 

asymmetry of weak interactions, and the Cabibbo mixing of the left-chiral projections of those 

generations.  As precursor to this SU(8) GUT group, in [25] and [26], based on [27], it was shown 

that the nuclear binding energies of fifteen distinct nuclides, namely 2H, 3H, 3He, 4He, 6Li, 7Li, 
7Be, 8Be, 10B, 9Be, 10Be, 11B, 11C, 12C and 14N, are genomic “fingerprints” which can be used to 

establish “current quark” masses for the up and down quarks to better than 1 part in 105 and in 

some cases 106 for all fifteen nuclides, entirely independently of the renormalization scheme that 

one might otherwise use to characterize current quark masses.  This is because one does not need 

to probe the nucleus at all to ascertain quark masses, but merely needs to decode the mass defects, 

alternatively nuclide weights, which are well-known with great precision and are independent of 

observational methodology.  Then, in [7.6] of [28], the quark masses so-established by decoding 

the fingerprints of the light nucleon mass defects, in turn, were used to retrodict the observed 

masses of the proton and neutron as a function of only these up and down quark masses and the 

Fermi vev and a determinant of the CKM mixing matrix, within all experimental errors for all of 

these input and output parameters, based directly on the SU(8) GUT group and particle 
representation and symmetry breaking cascade of [24].  So if one were to utilize the author’s 

example of a GUT, the 
i iA G T Gγ µ γ µ γ µ=֏  in the DKK metric (3.13) would be regarded to have 

an SU(8) symmetry with the foregoing octuplet in its fundamental representation.  Then one would 

work through the same symmetry breaking cascade, but now also having available the equation of 

motion (7.2) and the Einstein equation (10.8) so that the motion for all interactions is strictly 

geodesic motion and the field dynamics and energy tensors are at bottom strictly geometrodynamic 

and fully gravitational. 

 

 In 2019, the scientific community will celebrate the centennial of Kaluza-Klein theory.  

Throughout this entire century, Kaluza-Klein theory has been hotly debated and has had its staunch 

supporters and its highly-critical detractors.  And both are entirely justified.  The miracle of 
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geometrizing Maxwell’s electrodynamics and the Lorentz motion and the Maxwell stress-energy 

tensors in a theory which is unified with gravitation and turns Einstein’s “wood” tensor into the 

“marble” of geometry is tremendously attractive.  But a theory which is rooted in a degenerate 

metric tensor with a singular inverse and a scalar field which carries the entire new dimension on 

its shoulders and which contains an impossible-to-observe curled up fourth space dimension, not 

to mention a structural incompatibility with Dirac theory and thus no ability to account for fermion 

phenomenology, is deeply troubling.   

 

By using Dirac theory itself to force five-dimensional general covariance upon Kaluza-

Klein theory and cure all of these troubles while retaining all the Kaluza miracles and naturally 

and covariantly breaking the symmetry of the gauge fields by removing two degrees of freedom 

and thereby turning classical fields into quantum fields, to uncover additional new knowledge 

about our physical universe in the process, and to possibly lay the foundation for all-interaction 

unification, we deeply honor the work and aspirations of our physicist forebears toward a unified 

geometrodynamic understanding of nature as the Kaluza-Klein centennial approaches. 
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