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Abstract:  We require all the components of the Kaluza-Klein metric tensor to be generally-
covariant across all five dimensions by deconstructing the metric tensor into Dirac-type square 
root operators.  This decouples the fifth dimension from the Kaluza-Klein scalar, makes this 
dimension timelike not spacelike, makes the metric tensor inverse non-singular, covariantly 
reveals the quantum fields of the photon, makes Kaluza-Klein fully compatible with Dirac theory, 
and roots this fifth dimension in the physical reality of the chiral, pseudo-scalar and pseudo-vector 
particles abundantly observed in particle physics based on Dirac’s gamma-5 operator, thereby 
“fixing” all of the most perplexing problem in Kaluza-Klein theory.  Albeit with additional new 
dynamics expected, all of the benefits of Kaluza-Klein theory are retained, insofar as providing a 
geometrodynamic foundation for Maxwell’s equations, the Lorentz Force motion and the Maxwell-
Stress energy tensor, and insofar as supporting the viewpoint that the fifth dimension is, at bottom, 
the matter dimension. 
 

Contents 

1.  Introduction ................................................................................................................................ 1 

2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional Spacetime, and the 

Covariant Fixing of Gauge Fields to the Photon ............................................................................ 3 

3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Metric Tensor ................................................ 8 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor ................................................ 11 

5.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced by Kaluza-Klein 

without Diminishing the Kaluza “Miracle,” and Grounds the Now-Timelike Fifth Dimension in 

Manifestly-Observed Physical Reality ......................................................................................... 18 

References ..................................................................................................................................... 21 

 



Jay R. Yablon, June 6, 2018 

1 

 

1.  Introduction 
 

About a century ago, with the 1920s approaching, much of the physics community was 

trying to understand the quantum reality that Planck had first uncovered almost two decades prior 

[1].  But with the General Theory of Relativity [2] having recently placed gravitation and the 

dynamical behavior of gravitating objects onto an entirely geometric and geodesic foundation 

(which several decades later Wheeler would dub “geometrodynamics” [3]), a few scientists were 

moving on to try to scale the next logical hill, which – with weak and strong interactions not yet 

known – was to obtain a geometrodynamic theory of electromagnetism.  Besides Einstein’s own 

work on this which continued for the rest of his life [4], the two most notable efforts were those of 

Hermann Weyl [5], [6]  who was just starting to develop his U(1) gauge theory in four dimensions 

(which turned out to be a theory of “phase” invariance [7] that still retains the original moniker 

“gauge”), and Kaluza [8] then Klein [9], [10] who quite successfully used a fifth dimension to 

geometrize the Lorentz Force motion and the Maxwell Stress-Energy tensor (see, e.g., [11] and 

[12]).  This is a very attractive aspect of Kaluza-Klein theory, and it remains so because even 

today, despite almost a century of efforts to do so, U(1) gauge theory has not yet successfully been 

able to place the Lorentz Force dynamics and the Maxwell Stress Energy on an entirely 

geometrodynamic foundation.  And as will be appreciated by anyone who has studied this problem 

seriously, that it is the inequivalence of electrical mass (a.k.a. charge) and inertial mass which has 

been the prime hindrance to being able to do so. 

 

Notwithstanding these Kaluza “miracles” of geometrizing the Lorentz motion and the 

Maxwell Stress-Energy, this fifth dimension and an associated scalar field known as the 

graviscalar or radion or dilaton, raised its own new challenges, many of which will be reviewed 

later in the present paper.  These have been a legitimate hurdle to the widespread acceptance of 

Kaluza-Klein theory as a theory of what is observed in the natural world.  It is important to keep 

this historical sequencing in mind, because Kaluza’s work in particular predated what we now 

know to be modern gauge theory and so was the “first” geometrodynamic theory of 

electrodynamics, and of special interest in this paper, because Kaluza-Klein also preceded Dirac’s 

seminal Quantum Theory of the Electron [13] which today is the foundation of how we understand 

fermion behavior. 

 

Dirac’s theory in particular, arose from taking an operator square root of the Minkowski 

metric tensor with ( ) ( )diag 1, 1, 1, 1µνη = + − − − , by defining (“ ≡ ” ) a set of four operator matrices 

µγ  according to the anticommutator relation { } { }1 1
2 2

,µ ν µ ν ν µ µνγ γ γ γ γ γ η= + ≡ .  To generalize to 

curved spacetime thus to gravitation which employs the metric tensor gµν  and its inverse g µν  

defined such that g gµα µ
αν νδ≡ , we define a set of µΓ  with a parallel definition { }1

2
, gµ ν µνΓ Γ ≡ .  

We simultaneously define a vierbein a.k.a. tetrad aeµ  with both a superscripted Greek “spacetime 

/ world” index and a subscripted Latin “local / Lorentz / Minkowski” index using the relation 
a

aeµ µγ ≡ Γ .  Consequently, we deduce that { }1
2

a b b a ab
a b a bg e e e eµν µ ν µ νγ γ γ γ η= + = .  So just as the 

metric tensor g µν  transforms in four-dimensional spacetime as a contravariant (upper-indexed) 

tensor, these deconstructed operators µΓ  likewise transform in spacetime as a contravariant vector. 
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Now in Kaluza-Klein theory, the metric tensor which we denote by GΜΝ  and its inverse 

GΜΝ  obtained by G G δΜΑ
ΑΝ

Μ
Ν=  are specified in five dimensions with an index 0,1, 2,3,5Μ = , 

and may be represented in the 2x2 matrix format: 

 
2 2

22 2

2

;
1/

g Ag A A A
G G

A g A AA

k k

k

µν µ
µν µ ν µ

ν α β
αβν

φ φ
φφ φ

ΜΝ
ΜΝ

 − +
= =     − +   

. (1.1) 

 

In the above, 
2 2kg A Aµν µ νφ+  transforms as a 4x4 tensor in spacetime.  The components 

2

5 AkGµ µφ=  and 2

5 kG AνφΝ =  transform as covariant (lower-indexed) vectors in spacetime.  And 

the component 2

55G φ=  transforms as a scalar in spacetime.  If we regard φ  to be a dimensionless 

scalar, then the constant k must have dimensions of charge/energy because the metric tensor is 

dimensionless and because the gauge field Aµ  has dimensions of energy/charge. 

 

It is important to note that when we turn off all electromagnetism by setting 0Aµ =  and 

0φ = , GΜΝ  in (1.1) becomes singular.  This is indicated from the fact that in this situation 

( ) ( )00 11 22 33diag , , , ,0G g g g gΜΝ =  with a determinant 0GΜΝ = , and is seen directly from the fact 

that 
55 2

01/G g A Aα β
αβ φ+ == + ∞ .  Therefore, (1.1) relies upon φ  or g A Aα β

αβ  being non-zero 

to avoid singularity, not to mention that 55 0G =  disappears entirely when 0φ =  and 0Aµ = . 

  

Following identifying the Maxwell tensor in the Kaluza-Klein field equation, this constant 

k is found to be: 

 
2

04 4

2 2
4

2 e

k G G

c c k
π≡ =ε , (1.2) 

 

where 0

2

01/ 4 / 4ek cµπε π= = is Coulomb’s constant and G is Newton’s gravitational constant. 

 

One might presume in view of Dirac theory, that the five-dimensional GΜΝ  and GΜΝ  can 

be likewise deconstructed into square root operators using the anticommutator relations: 

 

{ } { } { } { }1 1 1 1
2 2 2 2

, ; ,G GΜ Ν Μ Ν Ν Μ ΜΝ
Μ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ Γ Γ = Γ Γ + Γ Γ ≡ , (1.3) 

 

where ΜΓ  and ΜΓ  transform as five-dimensional vectors in five-dimensional spacetime.  This 

would presumably include a five-dimensional definition A
Aε γΜ Μ≡ Γ  for a tetrad Aε Μ , where 

0,1,2,3,5Μ =  is a world index and 0,1,2,3,5A =  is a local index, and where 5γ  is a fifth operator 

matrix which may or may not be associated with Dirac’s 5 0 1 2 3iγ γ γ γ γ≡ , depending upon the 

detailed mathematical calculations which determine this 5γ . 
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However, as we shall now demonstrate, the Kaluza-Klein metric tensors in (1.1) cannot be 

deconstructed into ΜΓ  and ΜΓ  in the manner of (1.3) without modification to their 505 0G G=  and 

55G  components, and without imposing certain constraints on the gauge fields Aµ  which remove 

two degrees of freedom and fix the gauge of these fields to that of a photon.  We represent these 

latter constraints by A Aµ µ
γ=  with the subscripted γ  which is not a spacetime index, but which 

rather denotes a photon.  This means that in fact, in view of Dirac theory which was developed 

afterwards, the Kaluza-Klein metric tensors (1.3) are really not generally-covariant in five 

dimensions.  Rather, they only have a four-dimensional spacetime covariance represented in the 

components 
2 2G g Ak Aµν µν µ νφ= +  and G gµν µν= , and in 

2

5 AkGµ µφ=  and 
5G Aµ µ= − , which are 

all patched together with fifth-dimensional components that are not generally-covariant with the 

components in the four spacetime dimensions. 

 

In today’s era when the General Theory of Relativity [2] is now a few years past its 

centenary, and where at least in classical field theory general covariance is firmly-established as a 

required principle for the laws of nature, it would seem essential that any theory of nature which 

purports to operate in five dimensions which include the four dimensions of spacetime, ought to 

manifest general covariance across all five dimensions.  Accordingly, it is necessary to “fix” 

Kaluza-Klein theory to make certain that it adheres to such five-dimensional covariance.  In so 

doing, many of the most nagging, century-old difficulties of Kaluza-Klein theory are immediately 

resolved, including those related to the scalar field in 2

55G φ= .  And of extreme importance, the 

Kaluza-Klein fifth dimension which has spent a century looking for direct observational 

grounding, may be tied directly to the clear observational physics built around the Dirac 5γ , and 

the multitude of observed chiral and pseudoscalar and axial vector particle states that are centered 

about this 5γ .  All this happens without sacrificing the Kaluza “miracle” of placing 

electrodynamics onto a geometrodynamic footing.  This is what will now be demonstrated.  

 

2.  The Kaluza-Klein Tetrad and Dirac Operators in Four Dimensional 

Spacetime, and the Covariant Fixing of Gauge Fields to the Photon 
 

 The first step to ensure that Kaluza-Klein theory is covariant in five dimensions using the 

operator deconstruction (1.3), is to obtain the four-dimensional deconstruction: 

 

{ } { } { }1
2

2 21 1
2 2

, a b b a ab
a b a b G kg A Aµν µµ ν µ ν ν µ µ ν µ ν µν νε ε γ γ γ γ η ε ε φΓ Γ = Γ Γ + Γ Γ = + += ≡ =  (2.1) 

 

using a four-dimensional tetrad aµε  defined by a
aµ µε γ ≡ Γ , where 0,1, 2,3µ =  is a world 

spacetime index raised and lowered with Gµν  and Gµν , and 0,1, 2,3a =  is a local Minkowski 

spacetime index raised and lowered with abη  and abη .  To simplify calculation, we will work in 

“flat” spacetime where gµν µνη= , and later on will generalize back from gµν µνη ֏ .  In the 

circumstance where gµν µνη=  and so 
2 2 A AG kµν µµ νν η φ+= , “flat” spacetime means a spacetime 

that is flat except for the curvature in Gµν  brought about by the electrodynamic terms 
22 Ak Aµ νφ .  
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If we further define an aµε ′  according to a a aµ µ µδ ε ε′+ ≡  to represent the degree to which aµε  differs 

from the unit matrix aµδ , we may now write the salient portion of (2.1) as: 

 

( ) ( )
2 2

ab ab ab ab ab ab
a b a a b b a b b a a b a b

a b a b
a b ab k A A

µ ν µ µ ν ν µ ν ν µ µ ν µ ν

µν ν µ µ ν µ ν µν µ ν

η ε ε η δ ε δ ε η δ δ δ η ε δ η ε η ε ε

η η ε ε ηη ε ε φη

′ ′ ′ ′ ′ ′= + + = + + +

′ ′ ′ +′= + + + =
. (2.2) 

 

Note that when electrodynamics is “turned off” by setting Aµ  and / or by setting 0φ =  this reduces 

to 
ab

a b νµ µνη ε ε η=  which is solved by the tetrad becoming a unit matrix, a aµ µε δ= .  Subtracting 

µνη  from each side, we now need to solve: 

 
22a b a b

a b ab A Akν µ µ ν µ ν µ νη ε η ε η ε ε φ′ ′ ′ ′+ + = . (2.3) 

 

  The above contains sixteen (16) equations for each of 0,1, 2,3µ =  and 0,1, 2,3ν = .  But, 

this is symmetric in µ  and ν  so in fact there are only ten (10) independent equations.  Given that 

( ) ( )diag 1, 1, 1, 1yzη = − − − , the four µ ν=  “diagonal” equations in (2.3) produce the relations: 

 
0 0 0 1 1 2 2 3 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 2 2 3 3 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0

2 2 2 2 2 2 2 2

2

0

1

2

0

2

1

2

2

2

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

k

k

A A

A A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

ε ε

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =
′ ′ ′ ′ ′ ′ ′+ + = − + 1 1 2 2 3 3 2

2 2 2 2 2 2

3 0 0 1 1 2 2 3 3 2

3 3 3 3 3

2

2 2

2

33 3 3 3 3 3 3 3 3 3 32
a b a b

a b ab

k

k

A A

A A

φε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε φ

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + − − − =

. (2.4a) 

 

Likewise, the three 0µ = , 1, 2,3v =  mixed time and space relations in (2.3) are: 

 
1 0 0 0 1 1 2 2 3 3 2

1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2 0 0 0 1 1 2 2 3 3 2

2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2

3

3 0 0 3

2

0 1

0 2

0

2

0 3

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A A

k

k

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε

φ
φ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − + + − − − =
′ ′ ′ ′ ′+ + = − + 0 0 0 1 1 2 2 3 3 2

3 0 3 0 3 0 3

2

0 30 3
A Akε ε ε ε ε ε ε φε ε′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4b) 

 

Finally, the pure-space relations are: 

 
2 1 0 0 1 1 2 2 3 3 2

2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 0 0 1 1 2 2 3 3 2

3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3

1

1 3 3 1

2

1 2

2 3

3

2

3 1

a b a b
a b ab

a b a b
a b ab

a b a b
a b ab

A A

A

k

k A

η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε η ε ε ε ε ε ε ε ε ε ε ε ε
η ε η ε ε ε

φ
η ε

φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + = − − + − − − =
′ ′ ′ ′ ′ ′+ + = − − 3 0 0 1 1 2 2 3 3 2

1 3 1 3 1 3

2

33 1 11
A Akε ε ε ε ε ε ε ε φε′ ′ ′ ′ ′ ′ ′ ′+ − − − =

. (2.4c) 

 

 Now, the right-hand side of all ten of (2.4) have nonlinear products 
22 Ak Aµ νφ  of field terms.  On 

the left of each there is a mix of linear and nonlinear expressions containing the 
a

µε ′ .  Our goal at 

the moment, therefore, is to eliminate all of the linear expressions from the left-hand sides of (2.4) 

to create a structural match between the left and right sides. 
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In (14.3a) the linear appearances are of 
0

0ε′ , 
1

1ε′ , 
2

2ε′  and 
3

3ε′  respectively.  Noting that the 

complete tetrad 
a a a

µ µ µε δ ε′= +  and that 
a a

µ µε δ=  when electrodynamics is turned off, we first 

require that 
a a

µ µε δ=  for the four aµ =  diagonal components, and therefore, that 

0 1 2 3

0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = = .  As a result, the fields in 
22 Ak Aµ νφ  will all appear in off-diagonal 

components of the tetrad.  With this, (2.4a) reduces to: 

 
2

0 0

2

1 1

1 1 2 2 3 3 2

0 0 0 0 0 0

0 0 2 2 3 3 2

1 1 1 1 1 1

0 0 1 1 3 3 2

2

2

22 2 2 2 2

0 0 1 1 2 2 2

3 3 3 3 3 3

2

2

3 3

A A

A A

k

k

k

A A

A A

k

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε

φ

φ
ε

φ

φε

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =
′ ′ ′ ′ ′ ′− − =

. (2.5a) 

 

In (2.4b) we achieve structural match using 1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above, and also by setting 

1 0

0 1ε ε′ ′= , 2 0

0 2ε ε′ ′= , 3 0

0 3ε ε′ ′= , which is symmetric under 0 1, 2,3a↔ =  interchange.  Therefore: 

  
2 2 3 3 2

0 1 0 1

1 1 3 3 2

0 2 0 2

1 1 2 2 2

0 3

2

0

0 1

2

2

3

0 2

0 3

A A

A

Ak

A

k

A

k

φ
φ

ε ε ε ε
ε ε ε ε
ε ε φε ε

′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

. (2.5b) 

 

And in (2.4c) we use 1 2 3

1 2 3 0ε ε ε′ ′ ′= = =  from above and also set 2 1

1 2ε ε′ ′= − , 3 2

2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  

which are antisymmetric under interchange of different space indexes.  Therefore, we now have: 

  
2

1 2

2

2 3

2

3 1

0 0 3 3 2

1 2 1 2

0 0 1 1 2

2 3 2 3

0 0 2 2 2

3 1 3 1

k A

A A

k

A

A A

k

φ
φ
φ

ε ε ε ε
ε ε ε ε
ε ε ε ε

′ ′ ′ ′− =
′ ′ ′ ′− =
′ ′ ′ ′− =

. (2.5c) 

 

In all of (2.5), we now only have matching-structure non-linear terms on both sides. 

 

 For the next step, closely studying the space indexes in all of the above, we now make an 

educated guess at an assignment for the fields in 
22 Ak Aµ νφ .  Specifically, also using 1 0

0 1ε ε′ ′= , 

2 0

0 2ε ε′ ′= , 3 0

0 3ε ε′ ′=  from earlier, we now guess an assignment: 

 
1 0 2 0 3 0

0 1 0 2 2 301 3; ;A Ak k kAε ε ε ε ε εφ φ φ′ ′ ′ ′ ′ ′= = = = = = . (2.6) 

 

Because all expressions in (2.5) contain nonlinear products of the above, it is possible to have also 

tried using a minus sign in all of the above whereby 1 0

0 1 1Akε ε φ′ ′= = − , 2 0

0 2 2Akε ε φ′ ′= = −  and 
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3 0

0 3 3Akε ε φ′ ′= = − .  But absent motivation to the contrary, we employ a plus sign implicit in the 

above.  Substituting (2.6) into all of (2.5) and reducing now yields: 

 

2 2 3 3

1 1 1 1

1 1 3 3

2 2 2 2

1 1 2 2

3

1

3

1 2 2 3 3 0 0

3 3

0

0

0

A A A A A A A A

ε ε ε ε
ε ε ε ε
ε ε ε ε

− − − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

, (2.7a) 

 
2

2 3 0 1

2

1 3

2 3 2

1 1

1 3 2

2 2

1

0 2

2

1

2

2 3

2

3 03

k k k

k k k

A A A A

A A A A

A A A Ak k k

ε ε
ε ε
ε

φ φ φ
φ φ φ
φ φ ε φ

′ ′− − =
′ ′− − =
′ ′− − =

, (2.7b) 

 
3 3 1 1 2 2

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′− = − = − = . (2.7c) 

 

 Now, one way to satisfy the earlier relations 2 1

1 2ε ε′ ′= − , 3 2

2 3ε ε′ ′= − , 1 3

3 1ε ε′ ′= −  used in (2.5c) 

as well as to satisfy (2.7c), is to set all of the pure-space components: 

 
2 1 3 2 1 3

1 2 2 3 3 1 0ε ε ε ε ε ε′ ′ ′ ′ ′ ′= = = = = = . (2.8) 

 

This disposes of (2.7c) and last three relations in (2.7a), leaving only the two constraints: 

 

1 1 2 2 3 3 0 0A A A A A A A A− − − = , (2.9a) 

 
2 22 2 2

0 1 0 2 3

2

00 A A Ak k kA A Aφ φ φ= = = . (2.9b) 

 

These above relations (2.9) are extremely important.  In (2.9b), if any one of 1A , 2A  or 3A  

is not equal to zero, then we must have 0 0A = .  With this, (2.9a) and (2.9b) together become: 

 

0 1 1 2 2 3 30; 0A A A A A A A= + + = , (2.10) 

 

These two constraints have removed two degrees of freedom from the gauge field Aµ , in a 

generally-covariant manner.  Moreover, for the latter constraint in 1 1 2 2 3 3 0A A A A A A+ + =  to be 

satisfied, it is necessary that at least one of the space components be imaginary.  For example, if 

3 0A = , then one way to satisfy the entirety of (2.10) is to have: 

 

( )exp /A A iq xσ
µ µ σε= − ℏ , (2.11a) 

  

with a polarization vector  
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( ) ( ),
ˆ 0 1 0 / 2R L z iµε ≡ ± + , (2.11b) 

 

where A has dimensions of charge / energy to provide dimensional balance given the dimensionless 

,R Lµε .  But the foregoing is instantly-recognizable as the gauge potential A Aµ γ µ=  for an 

individual photon with two helicity states propagating along the z axis, having an energy-

momentum vector: 

 

( ) ( ) ( )ˆ 0 0 0 0zcq z E cq h hµ ν ν= =  (2.11c) 

  

which satisfies 0q qµ
µ =  and so makes this a massless field quantum. 

 

 In short, what we have ascertained in (2.10) and (2.11) is that if the spacetime components 
22G Akg Aµν µ νµν φ+=  of the Kaluza-Klein metric tensor with gµν µνη=  are to produce a set of 

µΓ  satisfying the Dirac anticommutator relation { }1
2

, Gµ ν µνΓ Γ ≡ , the gauge symmetry of Aµ  must 

be broken to correspond with that of the photon, A Aµ γ µ= .  The very act of deconstructing Gµν  

into square root operators covariantly removes two degrees of freedom from the gauge field and 
forces it to become a photon field quantum. 
 

 Also, we now have all of the components of the tetrad 
a a a

µ µ µε δ ε ′= + .  Pulling together all 

of 0 1 2 3

0 1 2 3 0ε ε ε ε′ ′ ′ ′= = = =  together with (2.6) and (2.8), and setting A Aµ γ µ=  to incorporate the 

pivotal finding in (2.10), (2.11), we have now deduced the tetrad to be: 

 

1 2 3

1

2

3

1

1 0 0

0 1 0

0 0 1

a a a

k k k

k

k

A A

Ak

A

A

Aµ µ

γ γ γ

γ

γ

γ

µ

φ φ φ
φ
φ
φ

ε δ ε

 
 
 ′= + =
 
  
 

 (2.12) 

  

 Finally, because a
a

α
µ µ α µε γ ε γ= ≡ Γ , we may use (2.12) to deduce that the Dirac operators: 

 
0 1 2 3

0 0 0 0 0 1 0 2 0 3 0

0 1

1 1 1 0 1 1 1 0

0 2

2 2 2 0

1

2 2 2 0

0

2

3

3 3 3 0 3 33 3 0

jjk

k

A

A

A

A

k

k

α
α

α
α

α
α

α
α

γ

γ

γ

γ

ε γ ε γ ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ γ γ

ε γ ε γ ε γ

φ

γ

φ

γ

φ

φ

Γ = = + + + = +

Γ = = + = +

Γ = = + = +

Γ = = + = +

, (2.13) 

 

which consolidates into: 

 

( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = + + . (2.14) 
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It is a useful exercise to confirm that (2.14) above, inserted into (2.1), will produce 
2 2G k A Aµν µν γ µ γνη φ= + , which may then be generalized from gµν µνη ֏  in the usual way by 

applying the minimal coupling principle.  As a result, we return to the Kaluza-Klein metric tensors 

in (1.1), but apply the foregoing to now rewrite these as: 

 
2 2

2 2 2

2

;
1/

k kg A A A g A
G G

A A g A Ak

µν µ
µν γ µ γν γ µ γ

ν α β
γν γ αβ γ γ

φ φ
φ φ φ

ΜΝ
ΜΝ

   + −
= =      − +   

. (2.15) 

 

The only change we have made is to replace A Aµ γ µ֏ , which is to recognize the remarkable 

result that even in four spacetime dimensions alone, it is not possible to deconstruct 
2 2G k A Aµν µν γ µ γνη φ= +  into a set of Dirac µΓ  defined using (2.1), without fixing the gauge field 

Aµ  to that of a photon Aγ µ .  Now, we extend this general covariance to the fifth dimension. 

 

3.  Derivation of the “Dirac-Kaluza-Klein” (DKK) Metric Tensor 

 

 In order to ensure general covariance at the Dirac level in five-dimensions, its is necessary 

that we first extend (2.1) into all five dimensions as such using the lower-indexed (1.3), namely: 

 

{ } { }1 1
2 2

, GΜ Ν Μ Ν Ν Μ ΜΝΓ Γ = Γ Γ + Γ Γ ≡ . (3.1) 

 

The spacetime components of (3.1) with gµν µνη=  and using (2.14) will already reproduce 

2 2G k A Aµν µν γ µ γνη φ= +  in (2.15).  Now we turn to the fifth-dimensional components. 

 

 We first find it helpful to separate the time and space components of GΜΝ  in (2.15), and 

so rewrite this as: 

 
2 2 2

00 0 05 00 0 0 0 0 0

2 2 2

0 5 0 0

2 2 2

50 5 5

2 2

2 2

5 0

k k k

j jk j j j jk j k j

k k

G G G g A A g A A A

G G G G g A A

k k k

k k k

k k

g A A A

G G G A A

γ γ γ γ γ

γ γ γ γ γ

γ γ

φ φ φ
φ φ φ
φ φ φ

ΜΝ

  + +
 = + + 
 



 =  
 
 

. (3.2) 

 

We know of course that 
0 0Aγ = , which is the constraint that first arose from (2.10).  And if we 

again work with gµν µνη= , then the above simplifies to: 

 

00 0 05

2 2

0 5

2 2

50 5 55

2

1 0 0

0

0

k

j jk j jk j k j

k k

G G G

G G G G A A Ak

G A

k

G G k
γ γ γ

γ

η φ φ
φ φ

ΜΝ

 
 

 
 = + 
 


=

  

 


. (3.3) 
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 Next, let us define a 5Γ  to go along with the remaining µΓ  in (2.14) in such a way as to 

require that 
2

5j jG Ak γφ=  and 
2

5k kG Ak γφ=  in (3.3) remain fully intact without any change.  This 

is important, because these components in particular are largely responsible for the Kaluza 

“miracles” which reproduce Maxwell’s equations and together with the Lorentz Force motion and 

the Maxwell Stress-Energy Tensor.  We impose this requirement though (3.1) by writing: 

 

{ } { } 21 1
52 55 5 52

,j j j jj jG AG k γφΓ Γ = Γ Γ + Γ Γ ≡ = = . (3.4) 

 

Using 0j j jkAγφγ γΓ = +  from (2.14) the above now becomes: 

 

{ } { } { }1 1 1
5 5

2

5 0 52 2 2
0 , ,j j jj jA Ak kγ γ γφ φγ≡ Γ Γ + Γ Γ = Γ + Γ+ , (3.5) 

 

which reduces down to a pair of anticommutation constraints on 5Γ , namely: 

 

{ }
{ }

1
52

1
0 52

,

,

0 j

φ

γ

γ

= Γ

= Γ
. (3.6) 

 

Now let’s examine possible options for 5Γ . 

   

Given that 0 0 jjkAγφγ γΓ = +  and 0j j jkAγφγ γΓ = +  in (2.14), we anticipate the general 

form for 5Γ  to be 5 X YγΓ ≡ +  in which we define two unknowns to be determined using (3.6).  

First, X is one of the indexes 0, 1, 2, 3 or 5 of a Dirac matrix.  Second, Y is a complete unknown 

which we anticipate will also contain a Dirac matrix as do the operators in (2.14).  Using this in 

(3.6) we obtain: 

 

{ } { } { } { }
{ } { } { } { }

1 1 1 1
5 52 2 2 2

1 1 1 1
0 5 5 0 0 0 0 0 0 02 2 2 2

, ,

, ,

0

0

j j j X j X j j j X j

X X X

Y Y Y

Y Y Y

γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γφ γ+

= Γ + Γ = + + + = +

= Γ + Γ = + + + = +
. (3.7) 

 

From the top line, so long as X Yγ ≠ −  which means so long as 5 0Γ ≠ , we must have both the 

anticommutators { }, 0j Xγ γ =  and { }, 0j Yγ = .  This excludes X being a space index 1, 2 or 3 

leaving only 0Xγ γ=  or 5Xγ γ= .  Moreover, whatever Dirac operator is part of Y must likewise 

be either 0γ  or 5γ .  From the bottom line, however, we must have the anticommutators { }0 , 0Xγ γ =  

and { }1
02
,Yγ φ= .  The former means that the only remaining choice is 5Xγ γ= , and the latter 

means that 0Y φγ= .  Therefore, we conclude that 5 5 0γ γφΓ = + .  So, including this in (2.14) gives: 

 

( )0 0 5 0j jj jk kA Aγ γγ γ γ γ γφ φγφΜΓ = + + + . (3.8) 
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With this final operator 5 5 0γ γφΓ ≡ + , we can use all of (3.8) above in (3.1) to precisely reproduce 

2

5j jG Ak γφ=  and 
2

5k kG Ak γφ=  in (3.3).  This leaves the remaining components 05G , 50G  and 55G

to which we now turn. 

 

 If we use 
0 0 jjkAγφγ γΓ = +  and 5 5 0γ γφΓ = +  in (3.1) to ensure that these remaining 

components are also fully covariant over all five dimensions, then we determine that: 

 

{ } { } { } { }1 1 1 1
05 50 0 5 5 0 0 0 0 5 5 02 2 2 2

2, , ,j j jjG G k kA Aγ γγ γ γ γφ φ φγ φγ γ γ= = Γ Γ + Γ Γ = + + + = , (3.9) 

 

( ) ( ) { }2 2

55 5 5 5 0 5 0 5 5 0 0 5 0 0 5 1G γ γ γ γ γ γ φ γ γ φ γ γ γ γφ φφ= Γ Γ = + + = + + + = + . (3.10) 

 

These two components are now different from those in (3.3).  However, in view of Dirac operator 

deconstruction these are required to be so to ensure that the metric tensor is completely generally-

covariant across all five dimensions, just as we were required to set j jA Aγ=  at (2.12) to ensure 

simple spacetime covariance.   

 

Changing (3.3) to incorporate (3.9) and (3.10), we now have:  

 

00 0 05

2 2

0 5

2 2

50 5 55

2

1 0

0

1

k

j jk j jk j k j

k k

G

k k

G G

G G G G A A

k

A

G G G A
γ γ γ

γ

φ
η φ φ

φ φ φ
ΜΝ

 
 = 

 
 = + 
 +






 

. (3.11) 

 

This metric tensor is fully covariant across all five dimensions, and because it is rooted in the Dirac 

operators (3.8), we expect that this can be made fully compatible with Dirac’s theory of the 

multitude of fermions observed in the natural world.  Moreover, in the context of Kaluza-Klein, 

Dirac’s Quantum Theory of the Electron [13] has also forced us to set j jA Aγ=  in the metric tensor, 

and thereby also served up a quantum theory of the photon.  Because of its origins in requiring 

Kaluza-Klein theory to be compatible with Dirac theory, we shall refer to the above as the “Dirac-

Kaluza-Klein” (DKK) metric tensor, and give the same name to the overall theory based on this. 

 

Importantly, when electrodynamics is turned off by setting 0jAγ =  and 0φ =  the signature 

of (3.11) becomes ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − +  with a determinant 1GΜΝ = − , versus 

0GΜΝ =  in (1.1) as reviewed earlier.  This means that the inverse obtained via G G δΜΑ
ΑΝ

Μ
Ν=  

will be non-singular as opposed to that in (1.1), and that there is no reliance whatsoever on having 

0φ ≠  in order to avoid singularity.  This in turn frees 55G  from the energy requirements of φ  

which causes the fifth dimension in (1.1) to have a spacelike signature, and in fact, we see that the 
fifth dimension in (3.11) is a second timelike, not fourth spacelike, dimension.  In turn, because 

(3.10) shows that 2

55

2

5 51G φ γ γ φ= + = +  obtains its signature from 5 5 1γ γ = , it now becomes 

possible to fully associate the Kaluza-Klein fifth dimension with the 5γ  of Dirac theory.  This is 

not possible when a theory based on (1.1) causes 55G  to be spacelike even though 5 5 1γ γ =  is 
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timelike, because of this conflict between timelike and spacelike signatures.  Moreover, having 

only 2

55G φ=  causes 55G  to shrink or expand or even disappear entirely, based on the magnitude 

of φ .  We shall review the physics consequences of all of these matters more closely later, but for 

now, we will conclude this section by condensing (3.11) down to a 2x2 format in the nature of 

(1.1).  Then in the next section we will calculate the non-singular inverse GΜΝ  of (3.11). 

 

To consolidate (3.11) to 2x2 format, we first note that 
0 0Aγ =  for the photon.  So, we can 

restore these zeros to the spacetime components of (3.11) and consolidate these to 
2 2G k A Aµν µν γ µ γνη φ= + .  This is exactly what is in (1.1) when gµν µνη= , but for the fact that the 

gauge symmetry has been broken to force A Aµ γ µ= .  But we also know that 05G  and 
5jG  have 

been constructed so as to form a four-vector in spacetime, likewise for 50G  and 5kG .  Therefore, 

we now define a new four-vector 

 

( )2

jAkµ γφ φΦ ≡ . (3.12) 

 

Moreover, 2

55 5 5 0 0G γ γ φ γ γ= +  in (3.10) teaches that the underlying timelike signature (and the 

metric non-singularity) is rooted in 5 5 1γ γ = , and via 2 2

0 0φ γ γ φ=  that the square of the scalar field 

is rooted in 0 0 1γ γ =  which has two time indexes.  So, may now formally assign 55 1η =  to the fifth 

component of the Minkowski metric signature, and we may assign 2

0 0φ = Φ Φ  to the field in 55G .  

With all of this, and using minimal coupling to generalize gηΜΝ ΜΝ֏  which also means 

accounting for non-zero 
5gµ , 5g ν , (3.11) now may be compacted via (3.12) to the 2x2 form: 

 
2

5 5

5 55 5 5 05

2

0

G G g A A g

G g g

k
G

G
µν µ µν γ µ γν µ

ν ν

µ

ν

φ
ΜΝ

 + Φ 
= =    + Φ Φ Φ  

+

+
. (3.13) 

 

Now, let’s calculate the inverse of (3.13). 

 

4.  Calculation of the Inverse Dirac-Kaluza-Klein Metric Tensor 

 

As already mentioned, the modified Kaluza-Klein metric tensor (3.13) has a non-singular 

inverse GΜΝ  specified in the usual way by G G δΜΑ
ΑΝ

Μ
Ν= .  We already know this because when 

all electromagnetic fields are turned off and g ηΜΝ ΜΝ= , we have a determinant 1GΜΝ = −  which 

is one of the litmus tests that can be used to demonstrate non-singularity.  But because this inverse 

is essential to being able to calculate connections, equations of motion, and the Einstein field 

equation and related energy tensors, next important step – which is entirely mathematical – is to 

explicitly calculate the inverse of (3.13), which we shall now do. 

 

Calculating the inverse of a 5x5 matrix is a very cumbersome task if one employs a brute 

force approach.  But we can take great advantage of the fact that the tangent space Minkowski 
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tensor ( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  has two timelike and three spacelike dimensions when we 

set 0jAγ =  and 0φ =  to turn off the electrodynamic fields, by using the analytic blockwise 

inversion method detailed in [14].  Specifically, we split the 5x5 matrix into 2x2 and 3x3 matrices 

along the “diagonal”, and into 2x3 and 3x2 matrices off the “diagonal.”  It is best to work from 

(3.11) which does not show the time component 
0Aγ  of the gauge vector because this is equal to 

zero for a photon.  We expand this out to show the entire 5x5 matrix, and we move the rows and 

columns so that the ordering of the indexes is not 0,1, 2,3,5Μ = , but rather is 0,5,1, 2,3Μ = .  With 

all of this, (3.11) may be rewritten as: 

 

1 2 3

2 2 2

1 1 1 1 2

00 05 01 02 03

2 2 2 2

50 55 51 52 53

2 2 2 2

10 15 11 12 13 1 3

2 2 2

2 2 1 2

2 2 2 2

20 25 21 22 23

30 35 31 32 33

2

1 0 0 0

1

0 1

0 1

G G G G G

A A AG G G G G

A A A A A A AG G G G G G

A A A A A AG G G G G

G G G G G

k k k

k k k k

k k k k

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

ΜΝ

 
  +
 
  − +
  − + 


=



=




2 3

2 2 2

3 3 1 3 2

2 2 2 2

3 30 1

A

A A A A A A Ak k k k
γ

γ γ γ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 − + 

. (4.1) 

 

Then, we can find the inverse using the blockwise inversion relation: 

 

( ) ( )
( ) ( )

1 1
1 1 1 1 1 11

1 1
1 1 1

− −− − − − − −−

− −− − −

 + − − −   =      − − − 

A A B D CA B CA A B D CA BA B

C D D CA B CA D CA B

 (4.2) 

 

with the matrix block assignments: 

 

1 2 3

2 2 2

1 1 1 1 2 1 3

2 2 2

2 2 1 2 2 2 3

2 2 2

3 3 1 3

2 2 22

2 2

2

2 2

2 2 2 2

2 2

3

2

3

2

0 0 01
; ;

1

0 1

0 ; 1

0 1

A A A

A A A A A A A

A A A A A A A

A A A A A

k k k

k k k k

k k

A

k k

k k k Ak

γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φφ

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ
φ

  
= =   +   

   − +
   = = − +   
   − +   

A B

C D

. (4.3) 

 

 The two inverses we need to calculate are 1−
A  and ( ) 1

1
−−−D CA B .  The former is a 2x2 

matrix which is easily inverted, see [15].  Its determinant 
2 21 1φ φ−= + =A , so its inverse is: 

 
2

1 1

1

φ
φ
φ−  +

=  


−
− 

A . (4.4) 

 

Next, we need to calculate 1−−D CA B , then invert this.  We first calculate: 
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2

2

1 2

2 2 2

2

2 4 4 4

3 3 3

2 4

2 2

1

2

1 2 3

3

2 2 2

1 1 1 1 2 1 3

1 2 3 2

2 2

1 2

2

2 3

3

0
0 0 01

0
1

0

0

0

0

k

k
k k k

k

k k k k
k k k

k k
k k k

k

A

A
A A A

A

A A A A A A A
A A A

A A
A A A

A

γ

γ
γ γ γ

γ

γ γ γ γ γ γ γ
γ γ γ

γ γ
γ γ γ

γ

φ
φφ

φ φ φ
φ

φ φ φ φ
φ

φ
φ

φ φ
φ φ

φ φ φ
φ

−

 
  + − = −    

   
 

 
 − − − = − = −   
  

 

−
−

CA B

2 2

1 2 2 2 3

2 2 2

3 1 3

4

4

3

4

3

4

4

2

A A A A A

A A A A A

k

A

k

k k k
γ γ γ γ γ

γ γ γ γ γ γ

φ φ
φ φ φ

 
 
 
 
 

. (4.5) 

  

Therefore: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

2 2 2

1 1 1 2 1

2 4 2 4 2 4

1 2 4 2 4 2 4

2 4 2

3

2 2 2

2 1 2 2 2 3

2 2 2

3 1 3 2 3 3

2

4 2 4

2 4

1

1

1

jk j k

A A A A A A

A A A A

k k k

k k k

k

A A

A A A A A Ak k

k A A

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

η φ φ

−

 − +
 
 − = − +
 
 − + 

− − −

− − −

−

= +

− −

−

D CA B
. (4.6) 

 

 We can easily invert this using the skeletal mathematical relation ( )( ) 21 1 1x x x+ − = − .  

Specifically, using the result in (4.6) we may write: 

 

( )( ) ( )( )
( ) ( ) ( )

2 4 2 4

2
2 4

2 2

2 42 4

jk kl

jk kl k

j k k l

j kl jk k l j k k l jl

A A A A

A A A A A A A A

k k

k k

γ γ γ γ

γ γ γ γ γ γ γ γ

η φ φ η φ φ

η η φ φ η η φ δφ

+ −

+ −

− −

= − − − =
. (4.7) 

 

The j k k lA A A Aγ γ γ γ  term zeros out because 0k kA Aγ γ =  for the photon gauge vector.   Sampling the 

diagonal 1j l= =  term,  
1 1 1 1 11 1 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  Sampling the off-diagonal 

1j = , 2l =  term, 
2 1 2 2 11 2 1 0k kk kA A A A A A A Aγ γ γ γ γ γ γ γη η− = + =− .  By symmetry, all other terms zero 

as well.  And of course, jk kl jlη η δ= .  So (4.7) taken with (4.6) informs us that: 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
2

2 2 2

1 1 1 2 1 3

2 2

1 2 4

2

2

2

4

1 2 2 2 3

2 2 2

3

2 4 2 4

2 4 2 4 2 4

2 4 2

1 3 2 3 3

4 2 4

1

1

1

jk j kA A

A A A A A A

A A A A A

k

k

A

A A A A A

k k

k k k

k k k A

γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

η φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

− −
− = −

 − − − −
 
 = − −

−

− − −

− −
 
 − − − −

− − −

− − − 

D CA B

. (4.8) 

 

We now have all the inverses we need; the balance of the calculation is matrix multiplication. 

 

 From the lower-left block in (4.2) we use C in (4.3), with (4.4) and (4.8), to calculate: 
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( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2

1 1 1 2 1

1
1 1

2 4 2 4

3
1

2 2 2

2 1 2 2 2 3

2 4
2

2

2 4 2 4 2 4 2

2
2 4 2 4 2 4

3

2

2 2 2 3
3 1 3 2 3 3

1 0
1

1 0
1

01

A A A A A A A

A A A A A A A

AA A A A

k k k k

k k k k

kk k A Ak

γ γ γ γ γ γ
γ

γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ

φ φ φ φ φ φ φ
φφ φ φ φ φ φ φ

φφ φ φ φ φ φ

φ

φ
φ

−− −

− − −
−

=

− −

 +     +  +        

− − −
−

+ 

−

=

− − −

D CA B CA

( ) ( )
( ) ( )
( ) ( )

2 4 3 2 2 43 3

1 1 1 1
1 1

3 3

2 2 2 2 2 2

3 3
3

3 3

2
3 2

3 2 4 3 2 2 4 2 3

3 3

2

3 2
3 2 4 3 2 2 4 2

k k k k

k k k k

k k k k

A A A A A A A A A A

A A A A A

k

A A A A A

A AA A A A A A A A

k k k k k

k k k k k k

k kk k k k

γ γ γ γ γ γ γ γ
γ γ

γ γ γ γ γ γ γ γ γ γ

γ
γ γ γ γ γ γ γ γ

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ

φ φφ φ φ φ φ φ φ φ

 − + − 
 − − + = −
 

− −

− −

− − − − − + 
3γ

 
 
 
 
 

, (4.9) 

 

again using 0k kA Aγ γ = .  We can likewise calculate ( ) 1
1 1

−− −− −A B D CA B  in the upper-right block 

in (4.2), but it is easier and entirely equivalent to simply use the transposition symmetry 

G GΜΝ ΝΜ=  of the metric tensor and the result in (4.9) to deduce: 

 

( )
3 3 3

1
1 1 1 2 3

2 2

2

2

1 3

k k k

k k

A A A

A A Ak
γ γ γ

γ γ γ

φ φ φ
φ φ φ

−− − − − −
− −

 
=   
 

A B D CA B , (4.10) 

 

 For the upper left block in (4.2) we use B in (4.3), with (4.4) and (4.9) to calculate: 

 

( )
1 1

2 2

1

1
1 1 1 1

3 2

2 2

3 2

2

2 3

3 3

2

2 2

3 2

2 2 2

5 4 2

0 0 01 1

1 1

0 01 1 1

1 1 1k k k k

A A

A A
A

k k

k k
k k k

k k

k k

A A
A A

A A A A

γ γ

γ γ
γ γ γ

γ γ

γ γ γ γ

φ φ
φ φ φ φφ φ
φ φ

φ φ φ
φ φ φ

φ φ φ
φ φ

φ φ φ
φ φ

−− − − −+ −

 −
    + +  + −      

     − 

    + +

− −
=

− −

− − −+
+ =     −   − −

=
−

A A B D CA B CA

 
 
 

, (4.11) 

 

again using 0k kA Aγ γ = .  And (4.8) already has the complete lower-right block in (4.2). 

 

 So, we now reassemble (4.8) through (4.11) into (4.2) to obtain the complete inverse: 

 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 3

1 2 3

2 2 2

1 1 1 1 1

2 3 3 3

2 2 2

1
3 2 2 4 2 4 2 4

3 2 2 4 2 4 2 4

3 2 2 4

2 1 3

2 2 2

2 2 2 1 2 2 2 3

2

3 3 3

1

1

1

1

A A A

A A A

A A A A A A A A

A A A A A A A A

A A A

k k k

k k k

k k k k k

k k k k k

k k k A

γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ

φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

φ
φ

−

−
−

− − −

− − −

+ − − −

  − − − − −= 
  − − − − −

− − −

A B

C D

( ) ( )2 22 4 2

1

4

3 2 3 31A A Ak k Aγ γ γ γ γφ φ φ φ

 
 
 
 
 
 
 
 − − − − −

 (4.12) 
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Then we reorder rows and columns back to the 0,1, 2,3,5Μ =  sequence and connect this to the 

contravariant (inverse) metric tensor to write: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 3 3 3

3 2 4 2 4 2 4 2

3 2 4

1 2 3

2 2 2

1 1 1 1 2 1 3 1

2 2 2

2 2 1 2 2 2 3 2

2 2 2

3

2 4 2 4 2

3 2 4 2 4 2 4

3 1 3 2 3 3

2

1

1

1

1

A A A

A A A A A A A A

A A A A A A A AG

A A A

k k k

k k k k k

k k

A A

k k k

Ak k kAk Ak

γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ

φ

φ φ φ φ φ

φ φ φ φ φ φ φ φ

ΜΝ

+ −

− − − − − − −

− − − − − − −

− − − − − − −

− − −

−

−=

− 3

1 2 3

2 2 2 1A A kAk k

γ

γ γ γφ φ φφ

 

−

 
 
 
 
 
 
  
 

. (4.13) 

 

In a vitally-important contrast to the usual Kaluza-Klein GΜΝ  in (1.1), this is manifestly 

not singular.  This reverts to ( ) ( ) ( )diag diag 1, 1, 1, 1, 1G ηΜΝ ΜΝ= = + − − − +  when 0Aγ µ =  and 

0φ =  which is exactly the same signature as GΜΝ  in (3.11).  Then we consolidate to the 3x3 form: 

 

( )
2 300 0 05

0 5 3 2 4 2

50 5 55

2

2

1

1

k

j j k j

k

k

j jk j jk

k

AG G G

G G G G A A A A

G G G A

k

k k k

k

γ

γ γ γ γ

γ

φ

φ

φ φ
φ η φ φ φ

φ

ΜΝ

− 
  = − − 
  −

 + −
 

= −





 

. (4.14) 

 

 Now, the photon gauge vectors jAγ  in (4.14) still have lower indexes, and with good 

reason:  We cannot simply raise these indexes of objects inside the metric tensor at will as we 

might for any other tensor.  Rather, we must use the metric tensor (4.14) itself to raise and lower 

indexes, by calculating A G Aγ γ
Μ ΜΝ

Ν= .  Nonetheless, it would be desirable to rewrite (4.14) with 

all upper indexes inside, which will simplify downstream calculations.  Given that 
0 0Aγ =  for the 

photon and 
5 0Aγ = , and raising indexes for 

0Aγ  and 
5Aγ  while sampling 

1Aγ  we may calculate: 

 

( )
0 0 01 02 03 3

1 2 3

1 1 11 12 13 2 4

1 2 3 1 1

5 5 51 52 53 2

1 2

2

1

3

0

0k

k

k

k

k

k

A G A G A G A G A A A

A G A G A G A G A A A A A A

A G A G A G A G A A A

k

k

k

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

φ

φ φ

φ

Ν
Ν

Ν
Ν

Ν
Ν

= = + + = − =

= = − −+ ++ = =

= = + + = − =

− , (4.15) 

 

once again employing 0kkA Aγ γ = .  The middle result applies to other space indexes, so that:  

 
j jk

kA Aγ γη= , (4.16) 

 

which is the usual way of raising indexes in flat spacetime.  As a result, with g µν µνη=  we may 

raise the index in (3.12) to obtain:  

 

( ) ( )2 2j
jAk kAµ

γ γφ φφ φΦ = = − . (4.17) 
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And we may then use (4.17) to write (4.14) as: 

 

( )
2 3 000 0 05

0 5 3 2 4

50 5 5

2

5 0

1

1

k

j j

k

j jk j jk j

k

k

k

AG G G

G G G G A A A

G

k

k k

G G

γ

γ γ γ

φ φ
φ η φ φΜΝ

− 
  = − − 
  −

 + − Φ
 

= − −Φ 
  Φ −Φ 

. (4.18) 

 

 Now we focus on the middle term which is expanded to 
2 42 2

j
j

k
k

k jA A Ak Ak γ γ γ γη φ φ+− .  

Working from (4.17) we calculate: 

 
0 0 2 0 3 0 4 23; ; ;k j j k

k j j jA A A Ak k kγ γ γ γφ φ φ φΦ Φ = Φ Φ = − Φ Φ = − Φ Φ = . (4.19) 

 

Therefore, we may use (4.19) in (4.18) to write: 

 
00 0 05 0 0 0 0

0 5 0 2

50 5 55 0

2

1

1

k k

j jk j j jk j k
k

j

k

j

k

G G G

G G G G A A

G G G

k γ γη φΜΝ

 + Φ Φ Φ Φ Φ  −
  = + 
  −

 = Φ Φ − Φ Φ −Φ




 Φ −Φ 

. (4.20) 

 

Finally, again taking advantage of the fact that 
0 0Aγ =  and again using (4.16) to raise the indexes 

in k
j

j
kA A A Aγ γ γ γ= , while using 55

551 η η= = , we may consolidate this into the 2x2 format: 

    
5 2

5

2

5555

kG G A A
G

G G

µν µ µν µ µ ν µ
γ γ

ν

ν ν

η φ
η

ΜΝ    − Φ Φ −Φ
= =   −Φ   

+
. (4.21) 

 

This is the inverse of (3.13), and it is a good exercise to check and confirm that in fact, 

G G δΜΑ Μ
ΑΝ Ν=  . 

 

 The final step is to apply minimal coupling to generalize gη ΜΝ ΜΝ
֏ , with possible non-

zero 
5gµ , 5g ν , 5g µ  and 5g ν .  Finally, with all this, (3.13) and (4.21) become: 

 
2 2 5

5 55

0 0

2 2

5

5 55

;
k k g

g

g A A g g A A
G G

g gg

ν µµν µ µ ν µ
µν γ µ γν µ γµ

ν
γ

ν ν
ν

φ φΜΝ
ΜΝ

 + − + Φ +
=  + Φ Φ Φ

Φ Φ − Φ
=  + − Φ 

. (4.22) 

  

These are the direct counterparts to the Kaluza-Klein metric tensors (1.1).  This inverse, in contrast 

to that of (1.1), is manifestly non-singular. 

 

Finally, we commented after (2.6) that it would have been possible to choose minus rather 

than plus signs in the tetrad / field assignments.  We make a note that had we done so, this would 

have carried through to a sign flip in all the 0

kε  and 
0

kε  tetrad components in (2.12), it would have 
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changed (2.14) to ( )0 0j jj jkA Akγ γµ γ γ γφγφΓ = − − , and it would have changed (3.8) to include 

5 5 0
γ γφΓ = − .  Finally, for the metric tensors (4.22), all would be exactly the same, except that we 

would have had 
5 5 5G G gµ µ µµ= = − Φ  and 5 5 5G G gµ µ µµ= = + Φ , with the vectors in (3.12) and 

(4.17) instead given by ( )2

jAkµ γφφΦ = −  and ( )2 jAkµ
γφφΦ = − .  We note this because in a 

related preprint by the author at [16], this latter sign choice was required at [14.5] in a similar 

circumstance to ensure limiting-case solutions identical to those of Dirac’s equation, as reviewed 

following [19.13] therein.  Whether a similar choice may be required here cannot be known for 

certain without calculating detailed correspondences with Dirac theory based on the ΜΓ  in (3.8). 

 

 Before we conclude this section, it is illustrative to rewrite the new vector (4.17) as: 

 

( )2 0 2 jA kAkµ
γ γφ φφΦ = + , (4.23) 

 

taking advantage of 0 0Aγ =  to explicitly display the spacetime covariance of A µ
γ  notwithstanding 

that the gauge symmetry has been broken to that of a photon.  We then calculate the antisymmetric 

tensor defined by the bivector µν µ ν ν µΡ ≡ ∂ Φ − ∂ Φ  in two separate parts as follows: 

 

( ) ( )
( )

( )

0 0 0 0 2 2 0

2 0 0 0 0

2 0 0 0

2

22

2

k k k k k

k k

k

k k k

k k k

A A

A A A A

A A

k k

k k k

kF k k

γ γ

γ γ

γγ

γ γ

γ

φ φ

φ

φ φφ φ

φ

φ

+

− −

Ρ =

−

∂ Φ − ∂ Φ = ∂ − ∂

= ∂ ∂ + ∂ ∂ − ∂

= + ∂ ∂ − ∂

, (4.24a) 

  

( ) ( )
( )

( )

2 2

2

2

2 2

2 2

jk j k k j j k k

j

j

j k k j j k k j

k j kk j

k kA A

A Ak k kA A

F kAk kA

γ γ

γ γ γ γ

γγ γ

φ φ

φ φ φ

φ φ

Ρ = ∂ Φ − ∂ Φ = ∂ − ∂

= ∂ − ∂ + ∂ − ∂

= + ∂ − ∂

. (4.24b) 

  

We see the emergence of the field strength tensor 2 jkkFγφ  in its usual Kaluza-Klein form, modified 

merely to indicate that this arises from taking AF Aµ ν ν µ
γ

µν
γγ ∂= − ∂  for a photon.  The only term 

which bars immediately merging both of (4.24) is the gradient kφ−∂  in (4.24a).  For this, we now 

define a vector ( )1I µ ≡ 0  and use this to form the covariant expression: 

 

( ) ( ) ( )0 1
1 0 k

j
I I I I I Iµ ν ν µ µ ν ν µ µ ν ν µφ φ φ φ φ φ

φ
   

− ∂ = ∂ − ∂ = − ∂ ∂ − ∂ ∂   ∂   
+ = −0

0
. (4.25) 

 

We then use this to combine both of (4.24) into: 
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( ) ( )
( ) ( )( )

2

2

2

2

2

2

kF k k

k

A A I I

I A IF k Ak

µν µ ν ν µ µ ν ν µ µµν
γ

µν

ν ν µ
γ γ

µ µ ν ν ν µ
γγ γ

φφ

φ

φ

φ

Ρ = ∂ Φ − ∂ Φ = − ∂ − ∂ ∂ ∂

= − + ∂

−

− + ∂

−
 (4.26) 

 

The newly-appearing vector 2I kAµ µ
γ+  is itself of interest, because the breaking of the gauge 

symmetry has removed 0 0Aγ γφ= =  from the photon gauge vector.  But 2I kAµ µ
γ+  with 

( )1I µ ≡ 0  replaces the removed 0 0Aγ =  by the number 1, then adds this to the rest of  jAγ  

multiplied by the constant factor 2k  with dimensions of charge/energy. 

 

 But the main reason we have obtained (4.26), is to make clear that the field strength F µν
γ  

which is needed for the Lorentz Force motion and the Maxwell tensor, does emerge from (4.22) 

in the exact same form as it does from the usual Kaluza-Klein metric tensor (1.1), so that the 

Kaluza “miracle” is undiminished.  But there is one wrinkle: F µν
γ  is the field strength of a photon, 

not a general materially-sourced F µν .  Keeping in kind Heaviside’s intuitions a generation before 

gauge theory in formulating Maxwell’s original theory without gauge fields, this is where gauge 

symmetry comes into play:  even though the gauge symmetry is broken for A µ
γ  and we are 

therefore prohibited from turning the luminous A µ
γ  in (4.22) back into a classical materially-

sourced potential ( )Aµ φ= A  which can be transformed to a rest frame, the same prohibition 

does not apply to F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  obtained from this A µ

γ , because the antisymmetry of F µν
γ  

is nevertheless invariant under gauge transformations.  So irrespective of this A Aµ µ
γ=  symmetry 

breaking, any luminous photon fields F µν
γ  emerging from applying the five-dimensional Einstein 

equation to (4.22) can always be gauge-transformed using F Fµν µν
γ →  into those of a classical 

materially-sourced potential ( )Aµ φ= A .  From this, the Lorentz motion and the Maxwell tensor 

become embedded in the five-dimensional theory just as in the usual Kaluza-Klein theory based 

on (1.1), without diminution.  This is exactly what the author did in Section 21 of [16] to obtain 

the empirically-observed lepton magnetic moments at [23.5] and [23.6] of that same paper. 

 

5.  How the Dirac-Kaluza-Klein Metric Tensor Resolves the Challenges faced 

by Kaluza-Klein without Diminishing the Kaluza “Miracle,” and Grounds the 

Now-Timelike Fifth Dimension in Manifestly-Observed Physical Reality 
 

 As has been previously pointed out, in the circumstance where all electrodynamic 

interactions are turned off by setting 0jAγ =  and what is now 0µΦ = , then (4.22) reduces when 

gµν µνη=  to ( ) ( )diag 1, 1, 1, 1, 1GΜΝ = + − − − + .  But in the same situation the usual Kaluza-Klein 

metric tensor (1.1) reduces to ( ) ( )diag 1, 1, 1, 1,0GΜΝ = + − − −  with a determinant 0GΜΝ = .  This 

of course means the Kaluza-Klein metric tensor is not-invertible and therefore becomes singular 

when electrodynamic interactions are turned off.  Again, this may be seen directly from the fact 

that when we set 0jAγ =  and 0φ = , in (1.1) we get 
55 2 01/G g A Aα β

αβ φ+ == + ∞ .  This 
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degeneracy leads to a number of interrelated ills which have hobbled Kaluza-Klein as a viable 

theory of the natural world for a year shy of a century. 

 

First, the scalar field φ  carries a much heavier burden than it should, because Kaluza-Klein 

relies upon this field being non-zero to ensure that the five-dimensional spacetime geometry is 

non-singular.  This imposes constraints upon φ  which would not exist if φ  was not doing “double 

duty” as both a scalar field and as a structural element required to maintain the non-degeneracy of 

Minkowski spacetime extended to five dimensions.  Second, this makes it next-to-impossible to 

account for the fifth dimension in the observed physical world.  After all, the space and time of 

real physical experience have a flat spacetime signature ( ) ( )diag 1, 1, 1, 1µνη = + − − −  which is 

structurally sound even in the absence of any fields whatsoever.  But what is one to make of a 

signature which, when gµν µνη=  and 0kAγ =  is given by ( ) ( )2diag 1, 1, 1, 1,η φΜΝ = + − − −  with 

2η φΜΝ = − ?  How is one to explain the physicality of a fifth dimension which contributes a 

2

55G φ=  to the Minkowski signature that is based upon a field, rather than being either a timelike 

+1 or a spacelike –1 Pythagorean metric component?  The Minkowski signature defines the 

tangent spacetime at each event, absent curvature.  How can a tangent space which by definition 

is not curved, be dependent upon a field φ  which if it has even the slightest modicum of energy, 

will cause curvature?  This is an internal logical contradiction of the Kaluza-Klein metric tensor 

(1.1) that had persisted for a full century, and it leads to such hard-to-justify oddities as a fifth 

dimension and a 2η φΜΝ = −  which dilates or contracts (hence the sometime-used name “dilaton”) 

in accordance with the behavior of 2φ . 

 

Third, (4.22) is obtained by requiring that it be possible to deconstruct the Kaluza-Klein 

metric tensor into a set of Dirac matrices obeying (3.1), with full five-dimensional general 

covariance.  What we have found is that it is not possible to have 5-dimensional general covariance 

symmetry if 
05 50

0G G= =  and 2

55G φ=  as in (1.1).  Rather, general 5-dimensional covariance 

requires that 
05 50

G G φ= =  and 2

55 1G φ= +  in (4.22).  Further, even spacetime covariance in four 

dimensions, requires that we gauge the electromagnetic potential to that of the photon.  Without 

these changes to the metric tensor components, it is simply not possible to make Kaluza-Klein 

theory compatible with Dirac theory to have general 5-covariance.  This means that there is no 

consistent way of using the usual (1.1) to account for the fermions which are at the heart of 

observed matter in the material universe.  Such an omission – even without any of its other known 

ills – most-assuredly renders the KK metric (1.1) “unphysical.”  Finally, there is the century-old 

demand which remains unmet to this date: “show me the fifth dimension!”  There is no 

observational evidence at all to support the fifth dimension, at least in the form specified by (1.1), 

and in the efforts undertaken to date to remedy these problems. 

 

But (4.22) leads to a whole other picture.  First, by definition Dirac-type equations can be 

formed using the ΜΓ  in (3.8), so there is no problem of incompatibility with Dirac theory.  Thus, 

all aspects of fermion physics may be fully accounted for.  Second, it should be obvious to anyone 

familiar with the Dirac µγ  and 
5 0 1 32

iγ γ γ γ γ≡ −  that one may easily form a five-dimensional 
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Minkowski tensor using the commutator { }1
2

,η γ γΜΝ Μ Ν≡  to obtain a five-dimensional 

( ) ( )diag 1, 1, 1, 1, 1ηΜΝ = + − − − +  which has a Minkowski signature with two timelike and three 

spacelike dimensions.  But it is not at all obvious how one might proceed to regard
5

γ  as the 

generator of a truly-physical fifth dimension which is on an absolute par with the generators µγ  of 

the four truly-physical dimensions which are time and space.  This is true, notwithstanding the 

clear observational evidence that 
5

γ  has a multitude of observable physical impacts.  The reality 

of 
5

γ  is most notable in the elementary fermions that contain the factor ( )1
52

1 γ±  for right- and 

left-chirality; in the one particle and interaction namely neutrinos acting weakly that are always 

left-chiral; and in the many observed pseudo-scalar mesons ( 0PCJ −+= ) and pseudo-vector mesons 

( 1PCJ ++=  and 1PCJ +−= ) laid out in [17], all of which require the use of 
5

γ  to underpin their 

theoretical origins.  So 
5

γ  is real and physical, as would therefore be any fifth dimension which 

can be properly-connected with 
5

γ . 

 

But the immediate problem as pointed out in toward the end of [11], is that because 
2

55G φ=  in the Kaluza-Klein metric tensor (1.1), if we require electromagnetic energy densities to 

be positive, the fifth-dimension must have a spacelike signature.  And this directly contradicts 

making 
5

γ  the generator of the fifth dimension because 
5 5

1γ γ =  produces a timelike signature.  

So, as physically-real and pervasive as are the observable consequences of the 
5

γ  matrix, the 

Kaluza-Klein metric tensor (1.1) does not furnish a theoretical basis for associating 
5

γ  with a fifth 

dimension, at the very least because of this timelike-versus-spacelike contradiction.  This is yet 

another problem stemming from having φ  carry the burden of maintaining the fifth-dimensional 

signature and the fundamental character of the Minkowski tangent space. 

 

So, to summarize, on the one hand, Kaluza-Klein theory has a fifth physical dimension on 

a par with space and time, but it has been impossible to connect that dimension with actual 

observations in the material, physical universe, or to make credible sense of the dilation and 

contraction of that dimension based on the behavior of a scalar field.  On the other hand, Dirac 

theory has an eminently-physical 
5

γ  with pervasive observational manifestations on an equal 

footing with µγ , but it has been impossible to connect this 
5

γ  with a true physical fifth dimension 

(or at least, with the Kaluza-Klein metric tensor (1.1) in five dimensions), at minimum because the 

metric tensor signatures conflict.  Kaluza-Klein has a fifth-dimension unable to connect to physical 
reality, while Dirac theory has a physically-real 

5
γ  unable to connect to a fifth dimension.  And 

the origin of this disconnect on both hands, is that the Kaluza-Klein metric tensor (1.1) cannot be 

deconstructed into Dirac-type matrices while maintaining five-dimensional general covariance 

according to (3.1).  To maintain general covariance and achieve a Dirac-type square root operator 
deconstruction of the metric tensor, (1.1) must be replaced by (4.22). 
 

Once we use (4.22), all of these problems evaporate.  Kaluza-Klein theory becomes fully 

capable of describing fermions, because the matrices (3.8) are merely Dirac operator square roots 

of the metric tensor.  With 2

55 1G φ= +  the metric signature is decoupled from the energy 
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requirements for φ .  Most importantly, when 0jAγ =  and 0φ =  and g ηΜΝ ΜΝ= , because 

( ) ( ) { }( ) ( )1
2

diag 1, 1, 1, 1, 1 diag d, iagG γ ηγΜ ΝΜΝ ΜΝ= + − − − + = = , and because of this decoupling 

of φ  from the metric signature, we now have a timelike 
555 5

1γ γη = = +  which is directly generated 

by 
5

γ .  As a consequence, the fifth dimension of Kaluza-Klein theory which has heretofore been 

disconnected from physical reality, can now be identified with a true physical dimension that has 

5
γ  as its generator, just as 

0
γ  is the generator of a truly-physical time dimension and jγ  are the 

generators of a truly-physical space dimensions.  And again, 
5

γ  has a wealth of empirical evidence 

to support its reality. 

 

Further, with (14.22) we now have two timelike and three spacelike dimensions, with 

matching tangent-space signatures between Dirac theory and the Dirac-Kaluza-Klein theory.  With 

the fifth-dimension now being timelike not spacelike, the notion of “curling up” the fifth dimension 

into a tiny “cylinder” comes off the table completely, while the Feynman-Wheeler concept of 

“many-fingered time” returns to the table, providing a possible avenue to study future probabilities 

which congeal into past certainties as the arrow of time progresses forward with entropic increases.  

And because 
5

γ  is connected to a multitude of confirmed observed phenomena in the physical 

universe, the physical reality of the fifth dimension in the metric tensor (4.22) is now supported 

by every single observation ever made of the reality of 
5

γ  in particle physics, regardless of any 

other epistemological interpretations one may also arrive at for this fifth dimension. 

 

Moreover, although the field equations obtained from (4.22) rather than (1.1) will change 

somewhat because now 
05 50

G G φ= =  and 2

55 1G φ= +  and the gauge fields are fixed to the photon 

A Aµ γ µ=  with only two degrees of freedom, there is no reason to suspect that the many good 

benefits of Kaluza-Klein theory will be sacrificed because of these changes which eliminate the 

foregoing problems.   Rather, we simply expect some extra terms (and so expect some additional 

phenomenology) to emerge in the equations of motion and the field equations because of these 

modifications.  But the Kaluza-Klein benefits having of Maxwell’s equations, the Lorentz Force 

motion and the Maxwell-stress energy embedded in the field equations should remain fully intact 

when using (4.22) in lieu of (1.1), as illustrated by the derivation and discussion of (4.26). 

 

Finally, given all of the foregoing, beyond the manifold observed impacts of 
5

γ  in particle 

physics, there is every reason to believe that using the five-dimensional Einstein equation with 

(4.22) will fully enable us to understand this fifth dimension, at bottom, as a matter dimension, 

along the lines long-advocated by the 5D Space-Time-Matter Consortium [18].  This may thereby 

bring us ever-closer to uncovering the truly-geometrodynamic theoretical foundation at the heart 

of all of nature. 
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