
CSP Solver and Capacitated Vehile Routing Problem

Thinh D. Nguyen

Abstract

In this paper, we present several models for Capacitated Vehicle Routing
Problem (CVRP) using Choco solver. A concise introduction to the con-
straint programming methods is included. Then, we construct two models
for CVRP. Experimental results for each model are given in details.

Keywords: CSP, CVRP, models

1. Introduction

Constraint programming is an efficient tool to solve combinatorial opti-
mization problems, it integrates many results in a wide range of disciplines
such as artificial intelligence, operation research, algorithms, graph theory,
etc. The basic idea is to state a model (including variables, constraints) that
can be read by a constraint programming problem (CSP) solver. After that,
the CSP solver can read input data and process to produce output for the
problem. A constraint is a relation among the variables, a CSP is a set of
constaints that needs to be satisfied by an assignment to variables. In partic-
ular, a CSP includes a set of variables each of which can take value from its
domain, a set of constraints each of which can be a relation on some subset
of variables. For examples, in the exam scheduling problem for a university,
the variables could be time and place of different subjects, constraints should
be capacity of each exam room (number of student in each room must not
exceed the capacity of that room). There should be also constraints stating
that two subjects with the same time share no student. A CSP solver can
read a model for a practical problem as this one and search for an assignment
that assigns values to all variables to satisfy all the constraints satated in the
model.

A solver systematically searches the solution space using well-known tech-
niques such as backtracking, branch and bound, local search heuristics or
some variants of these. In some cases, it may fail to produce a solution.

Preprint submitted to arXiv archive June 6, 2018

Some frequent solvers integrates both search methods and inference meth-
ods. Among inference techniques, propagation ones are the most commonly
used. In practice, inference helps narrow down the search space a lot.

While most of CSP problems are NP -complete, some sub-classes pos-
sesses polynomial-time algorithms. These sub-classes are characterized by
their structure connecting common variables shared by two or more con-
straints or by languages defining those constraints. Typical examples are
tree-based CSP in graph theory.

A good model can not be obtained straightforwardly by intuitive view of
the problem at hand. In this paper, we want to emphasize the importance of
carefully built models for a CSP through CVRP - a problem in combinatorial
optimization with extensive research. [1] is a nice textbook of constraint
programming.

2. Choco solver

In this section, we will introduce readers to the Choco solver through a
simple example.

n-queen problem
In this problem, we will try to place n queens in a generalized nxn chess-

board. A queen can attack other queens in the same row, column, diagonals.
The problem asks whether it is possible to place n queens in such a way that
no two queens can attack each other.

In the framework of CSP, we can model this problem as follows:
Variables: X = {xi|1 ≤ i ≤ n}
Domains: Each variable xi has its domain Di = {1, 2, ..., n}
Constraints: Set of constraints can be grouped into two categories

• No two queens are allowed on the same row: {xi 6= xj|i 6= j}

• No two queens are allowed on the same diagonal: {xi 6= xj + i− j|i, j ∈
[1, n], i 6= j}, {xi 6= xj + j − i|i, j ∈ [1, n], i 6= j}

Choco program for n-queen problem:

int nbQueen = 8;

CPModel m = new CPModel();

2

IntegerVariable[] queens = Choco.makeIntVarArray("Q", nbQueen, 1,

nbQueen);

for (int i = 0; i < nbQueen; i++) {

for (int j = i + 1; j < nbQueen; j++) {

int k = j - i;

m.addConstraint(Choco.neq(queens[i], queens[j]));

m.addConstraint(Choco.neq(queens[i], Choco.plus(queens[j],

k)));

m.addConstraint(Choco.neq(queens[i], Choco.minus(queens[j],

k)));

}

}

CPSolver s = new CPSolver();

s.read(m);

s.solveAll();

System.out.println("Number of solutions

found:"+s.getSolutionCount());

For a user manual of Choco solver, the reader is addressed to [2].

3. Using Choco to solve CVRP

3.1. Problem formulation

In this problems, there are n customers on the 2D plane. Everyday, a
delivery company has to serve these customers. Each customer i informs
the company about its location (xi, yi), its demand demandi of goods in
kilograms. The company has a depot also located on the plane at (x0, y0).
There are totally K vehicles in company’s fleet, each with the maximum
capacity of C kilograms. Starting at the depot, each vehicle is loaded with
goods before it goes out on a tour to serve the customers on that tour before
getting back to the depot.

Given these information, the company has to use some of their vehicles,
and assigns each vehicle to a tour on the plane. A feasible solution is one
that serves all the customers while conforms to the capacity constraint put on
each vehicle. The problem asks for an optimal solution where the objective
function is the total distance traveled by the fleet.

3

3.2. Two models for CVRP

Model 1
Variables:
For each k, i, j: flow [k] [i] [j] decides if on its assigned tour, vehicle k

visits customer j after customer i
For each k, i: cumulativeDemand [k] [i] represents the cumulative sum

of customers’ demands up to customer i on the tour of vehicle k
Domains: Every flow variable has its domain as {0, 1}. Others have

[0, C] as their domains.

Constraints:
Each tour is a cycle: for each k,∑N

j=0 flow [k] [i] [j] =
∑N

j=0 flow [k] [j] [i], for each i∑N
i=0 flow [k] [0] [i] = 1

All the fleet start at depot: for each k,
cumulativeDemand [k] [i] = 0

These constraints requires the values of the cumulative variables to be
according to the tours: for each k,

For every i 6= j where j 6= 0, if flow [k] [i] [j] = 1, then cumulativeDemand [k] [j] =
cumulativeDemand [k] [i] + demand [j]

Each customer is visited by exactly one vehicle:∑K−1
k=0

∑N
j=0 flow [k] [i] [j] = 1

Model 2
To improve on the number of variables, this model uses two-dimensional

array of variables in stead of three-dimensional array as in previous model.
In particular, we place all the tour into one two-dimensional flow. In the
previous model, the inefficiency comes from allocating for each tour a separate
2D flow. The flow property for each customer stays the same. But, instead
of K constraints each of which stating that the out-flow of the depot w.r.t
to each vehicle does not exceed 1, we now have only one constraint stating
that the out-flow of the depot, in total, does not exceed K.

4

3.3. Choco program for CVRP

We only provide the program corresponding the more efficient model 2:

1. import java.io.File;

2. import java.io.FileNotFoundException;

3. import java.util.Scanner;

4.

5. import choco.Choco;

6. import choco.Options;

7. import choco.cp.model.CPModel;

8. import choco.cp.solver.CPSolver;

9. import

choco.kernel.model.variables.integer.IntegerExpressionVariable;

10. import choco.kernel.model.variables.integer.IntegerVariable;

11. //import

choco.kernel.model.variables.real.RealExpressionVariable;

12. //import choco.kernel.model.variables.real.RealVariable;

13.

14. public class ChocoCVRPFast {

15. static int n, k, capacity;

16. static int[] x, y, demand;

17. static final int INF = 1000000;

18.

19. static CPModel m;

20. static IntegerVariable[][] flow;

21. static IntegerVariable distSum;

22.

23. public static void readData() throws FileNotFoundException

{

24. Scanner sc = new Scanner(new File("cvrp9.txt"));

25.

26. // Number of customers

27. n = sc.nextInt();

28. System.out.println("Number of customers: "+n);

29. // Number of vehicles

30. k = sc.nextInt();

31. System.out.println("Number of vehicles: "+k);

32. // Capacity

33. capacity = sc.nextInt();

34. System.out.println("Capacity: "+capacity);

5

35.

36. // Read coordinates and demand of each customer

37. x = new int [n + 1];

38. y = new int [n + 1];

39. demand = new int [n + 1];

40. for (int i = 0; i <= n; i++) {

41. System.out.print("Customer "+i+" ");

42. int ii = sc.nextInt(); if (ii != i)

System.out.println("Input file "+i+"th customer");

43. x[i] = sc.nextInt();

44. System.out.print(x[i]+" ");

45. y[i] = sc.nextInt();

46. System.out.print(y[i]+" ");

47. demand[i] = sc.nextInt();

48. System.out.println(demand[i]+" ");

49. }

50.

51. sc.close();

52. }

53.

54. public static int dist(int i, int j) {

55. return (int) (Math.round(1000 *

Math.sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]))));

56. }

57.

58. public static void stateModel() {

59. // Create the model

60. m = new CPModel();

61.

62. // Create the variables

63. flow = new IntegerVariable [n + 1] [n + 1];

64. for (int i = 0; i < n + 1; i++) {

65. for (int j = 0; j < n + 1; j++) {

66. flow[i][j] = Choco.makeIntVar("flow_"+i+"_"+j, 0,

1);

67. }

68. }

69.

70. // Transpose of flow

71. IntegerVariable[][] flowCol = new IntegerVariable [n +

6

1] [n + 1];

72. for (int i = 0; i < n + 1; i++) {

73. for (int j = 0; j < n + 1; j++) {

74. flowCol[i][j] = flow[j][i];

75. }

76. }

77.

78. IntegerVariable[] cumulativeDemand = new IntegerVariable

[n + 1];

79. for (int i = 0; i < n + 1; i++)

80. cumulativeDemand[i] =

Choco.makeIntVar("cumulativeDemand_"+i, 0, capacity);

81.

82. // Post constraints

83. // Each route is a cycle

84. for (int i = 0; i < n + 1; i++) {

85. m.addConstraint(Choco.eq(Choco.sum(flow[i]),

Choco.sum(flowCol[i])));

86. }

87. m.addConstraint(Choco.leq(Choco.sum(flow[0]), k));

88.

89. // Start at depot

90. m.addConstraint(Choco.eq(cumulativeDemand[0], 0));

91.

92. // Each customer visited by one vehicle

93. for (int i = 1; i < n + 1; i++) {

94. m.addConstraint(Choco.eq(Choco.sum(flow[i]), 1));

95. }

96.

97. // Cumulative sum according to route

98. for (int i = 0; i < n + 1; i++)

99. for (int j = 1; j < n + 1; j++)

100. m.addConstraint(Choco.implies(Choco.eq(flow[i][j],

1), Choco.eq(cumulativeDemand[j],

Choco.plus(cumulativeDemand[i], demand[j]))));

101.

102. // Objective function

103. distSum = Choco.makeIntVar("distSum", 0, INF,

Options.V_OBJECTIVE);

104. IntegerExpressionVariable[] distSumI = new

7

IntegerExpressionVariable [n + 1];

105. for (int i = 0; i < n + 1; i++) {

106. IntegerExpressionVariable[] coeff = new

IntegerExpressionVariable [n + 1];

107. for (int j = 0; j < n + 1; j++)

108. coeff[j] = Choco.mult(dist(i, j), flow[i][j]);

109.

110. distSumI[i] = Choco.sum(coeff);

111. }

112. m.addConstraint(Choco.eq(distSum, Choco.sum(distSumI)));

113. }

114.

115. public static void solve() {

116. // Create the solver

117. CPSolver s = new CPSolver();

118. s.read(m);

119. //s.setTimeLimit(1000000);

120. s.minimize(s.getVar(distSum), true);

121.

122. // Print the solution found

123. boolean[] visited = new boolean[n + 1]; visited[0] =

true;

124. for (int kk = 0; kk < k; kk++) {

125. System.out.print("Route "+kk+": ");

126.

127. int currentVertex = 0;

128. System.out.print(currentVertex+" ");

129. do {

130. for (int i = 0; i < n + 1; i++)

131. if (s.getVar(flow[currentVertex][i]).getVal()

== 1 && ((i == 0) || visited[i] == false)) {

132. System.out.print(i+" ");

133. currentVertex = i; visited[i] = true;

134. break;

135. }

136. } while (currentVertex != 0);

137.

138. System.out.println();

139. }

140.

8

141. for (int i = 0; i < n + 1; i++) {

142. for (int j = 0; j < n + 1; j++) {

143. System.out.print(s.getVar(flow[i][j]).getVal()+"

");

144. }

145. System.out.println();

146. }

147.

148. System.out.println(s.isFeasible());

149. System.out.println(s.getVar(flow[0][0]).getVal());

150. System.out.println(s.getVar(distSum).getVal()*0.001);

151. }

152.

153. public static void main(String[] args) throws

FileNotFoundException {

154. readData();

155. stateModel();

156. solve();

157. }

158. }

4. Experimental results

The author has tested the two Choco programs on 9 instances with in-
creasing difficulty. The running time ranges from seconds to hours, according
to the instance’s difficulty. If one only considers whether a model to be inef-
ficient on an instance, then, only with instance 9, model 1 can not produce
output in reasonable time. For that instance, one has to use model 2.

The input data of the smallest instance is provided here:

Input 1:

6 2 13

0 0 0 0

1 4 6 4

2 6 7 2

3 8 5 5

4 10 10 7

5 3 10 3

6 2 1 2

9

In this instance, we have 6 customers, 2 vehicles each with capacity of
13. The remaining information is related to customers’ co-ordinates and
demands.

5. Conclusion

There have been intensive ongoing research on combinatorial optimization
problems. These works yield numerous solvers ranging from linear program-
ming, interger linear programming, constraint programming, hybrid solvers,
etc. In this paper, we only consider the CSP ones and use Choco as a realistic
tool to cope with CVRP.

References

[1] Francesca Rossi, Peter van Beek, Toby Walsh. Handbook of Constraint
Programming, 1st ed., 2006

[2] Charles Prud’homme, Jean-Guillaume Fages, Xavier Lorca. Choco Doc-
umentation, 2017

10

