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Phenomenology

There are two aspects to the presentation of tblelgm — conceptualandtechnological Here we
will not touch upon the technological aspects oéparation and implementation of the technique of
execution of experiments (for example, the A. A$peaexperiment ), focusing on the conceptual ppies of
guantum theory.

In physics, topologically separable objects aigaily distinguishable. Because of this, topotai
properties, we always have the opportunity to caahbijects to assign them a sequence number and be
addressed to the objects by the assigned numbers.

1. Using this circumstance and considering photonsgngiglly distinguishable particles (in the
classical sense, although as we will see, it wild us to a significant adjustment of this viewe, will talk
about two photons propagating in two opposite tiives. In this case, the photon propagating toléfteis
assigned the number 1, and the photon propagatitigetright is the number 2. The separability oftpohs is
demonstrated by the fact that one photon can bisteegd on the left and the second on the rights th
illustrating the spatial distinctiveness and thesgiaility of their numbering. Instead of numberitige
photons, it may be more convenient to use the aggmbols <" and "—>", indicating the direction of
movement. The separability of photons is demoresdraly the fact that one photon can be registeretthen
left and the second on the right, thus illustratthg spatial distinctiveness and the possibilitytiogir
numbering. Instead of numbering the photons, it maynore convenient to use the arrow symbet$ and
"—" indicating the direction of movement.

In the classical presentation, we will consider ftspect's two-photon setting as a working model:
two photons are born and propagated in opposigxtittns. We will consider another characteristichaf
photon, except for the numbering of 1 and-2 its polarization, which can take two values {t"land
"right", and in the spin notatios- " T " and" | ".

So, photon 1 flies to the left), photon 2— to the right ). Symbolically, we can consider the
following situations:

1) |T,«<) =|T), — thefirst photon is in the "spin up" state, with any information about the second photon;
2) ,-) = |I), — the second photon is in the "spin down" statehevuit any information about the first
photon;

)Ty, -=) =T ® [I), — the joint state of two photons: the first photsiin the "spin up" state, the

second photon is in the "spin down" state;

DN, )R |T,—-) = 1)1 ®[T), — the joint state of two photons: the first photerin the "spin down" state, the

second photon is in the "spin up" state.

Casesl) and 2) are descriptions of single-particle systems, tfigimal solutions (without initial
conditions) coincide, and there is no need forigarindexing.

Cases 3) and 4) are descriptions of two-partigktesns, and indices specify the states of each
particle.

In principle, for all these States, we can give ¢brresponding analogs of the description of ark-a
two-photon systems in classical physics. Howevwemrjuantum physics, there is a fundamentally new and
important point, non-reproducible in classical pbygsExplain this.
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2.
2. The wave equation of quantum mechanics can desdvilo-photon States g$); ® [I), u
1)1 & |T),, so and superpositidfh); @ 1), + [{); ® |T),. Let's pay attention to the chain

I @ N2+ 1 @MY= {1« L= ={T)} @

In the last equalityT, «; |,—) = |T,!) the connection between the spin projection anddttection of the
particle motion or between the spin and the unigqumber of the particle is erased. This procedurebza
called a procedure of symmetrization on the indafabe particles.

It can be seen that the result of following in thevalues along the given chain is a descripticthe
non-index constructioflT, )}, which we can say that it represents pléh-tangledor "spin”-tangledsystem
of two photons. This construction is a kindintfegrity, which is described by a single state vector oveva
function, that is, is a single quantum object. Tlogiwal separability of photons disappears. Andoifnehow
we manage to assign numbers to the photons of alieap their birth, we can not to know which of the
photons (first or second) will be registered onlditor right. This is what was mentioned at tlegilbning of
the article. Due to the integrity of a two-photohjext, correlations can be observed between slyatial
separated points that are in the sphere of infleierichis object. Indeed, when this integrity waserved
from two spatially separated points in the expeninwd the Aspect, the existence of a correlatiofvben the
ends of this integrity was confirmed.

3. It is further. The state of the quantum system larexpressed in a General formyas: Ae'?,
which allows us to represent the left part (1) as

Th {lT; l)} = lIJ = Alei‘pl + Azei(pz (2)
en

Y= Ajei? 4+ 4,02 = {A; + Ayele'?r = {Aje70 + 4, e'?z, ©)

whereA;u A, — real numbers andl = ¢, — ¢;. Let us pay attention to the fragment of the edqué8):

{Al + Azeia}ei('ol = {Ale_i6 + Az}ei(pz, (4)

Here on the left is the phage of the left part of the quantum object, on théntig the phase, of the right
part, and in brackets- the phased, characterizing the integral construction of theamfum object.
Measurements are made by left and right detecfospect's device. Moreover, in the quantum desiorip
of the whole object exponential multipliers withgske ¢, and ¢, outside of the braces can be omitted,
because gquantum mechanics describes the statbsaagiiracy up to an arbitrary multiplier modulegual

to 1, i.e{A; + A,e'} and{A e + A,} describe the same condition of two-photon quargystem.

And here— the most important thing: changing, while preservingd we inevitably, according to
(4), should get the changg. From the point of view of the technology of thepg&ct's experiment, it looks
like this: by changing the phage of a pair of photons (phase constaidcy by the polarizer, we should
observe the phase changg Since the phases,, ¢,, § do not contain dependences onzkexis coordinate
and timet, the spatiotemporal dependengg on ¢, will not be deterministic, i.e. functional, andeth
observations can show only the statistical depet@len(e,) under an unknown mechanism of interaction
between parts of coherent integfityThe state of the integral object while presendnig referred to as the
coherentstates of the "particle¥'of the pair.

?) The determination of the dependericéz) can give an opportunity to describe the sigmapagation through the
modulation of this phase (for example, by the tgpépilot wave" de Broglie-Bohm). This is to the dwal (4) of the
computational algorithm.

3 ) Realizing that the concept phirticlein quantum mechanics is rather conventional, wé wsié this term for brevity
in quotes. However, in the process of decoheresee Ijelow) the notion of a particle acquires ctatsiertainty
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Formalism

When understanding the results of the Aspect'smxgnt, it is necessary to speak the language of
guantum mechanics, not the language of some Argjghits. The subject of one of these representaions
the concept of "quantum entanglement”. MeanwHile language of quantum mechanics makes it pogsible
clearly and unambiguously fill the issues raisedhis regard with concrete content. For the analyise
elementary model used in [1, 2] is offered.

We consider two particles and mark them with indexa = 1, 2). Each of them can be in onef
two stateqi = 1,2), often indicated by arrows (in the spin notatidnfor (i = 1) and! for (i = 2).

We introduce a two-index designatiaff, where the upper index denotes a particle, the lower
indexi — its state(a,i = 1,2). Then the state of each of the two particles aamnelpresented by the vector
|x) of a single-particle space. For example, the veatd represents the first particle in the sthtex2) is
the second particle in state and so on. These vectors are obtained as amobftthe one-particlequation
of guantum mechanics.

We also introduce four-index expressigyf, which will determine the vectdw}?) is already two-

particle space using a direct product of one-garipacesx!) and|xZ). If the Hamiltonian of a two-particle
system assumes the possibility of separating thiablas of the wave equation, then at least theroofithe

solution of the wave equation is known and allomesriepresentation of the solutipi?) in the form:
lxit) = 1xi) @ |xk), (5)
that is, the vectojx}2) is obtained as a composition of solutions of siFgrticle wave equations.

Integrating upon continuous variables and summnpon all quantum numbers of one particle in (5),
of course, as a convolution with complex conjugzdeameters, we will obtain a wave vector (functifor)
another particle. It should be noted that plssibility of performing the convolution operatianil allow us
to talk about the particles as some separable iestfin this case, as two particles).

In the case of particles of the same fypee are interested in two possible solutions fqrai of
particles according to the particle identity prplei symmetric (for bosons) and antisymmetric (for
fermions). According to the superposition princjgleese solutions can be represented as:

%) = |xi1k2> * |xi2k1 ) (6)
where the upper sign corresponds to the case @&-Badicles, the lower sign corresponds to Fermiiges.
Let select the phases andg, in |x}2) and|x3!):

[xie) = [|xf2pets, x5y = [|xfi ez, 7)
and (6) we will rewrite in the form
%0} = |Ixi e & |Ixi > = {I|xial1) & |Ixi e e, 8)

where § = ¢, — ;.

*) The case of the same type particles is considéuedo the fact that the pair of photons (bosons) jpair of fermions
(in the EPR version) is used in the interpretabbthe Aspect's experiments. The conclusions optieéiminary results
become more transparent. This particular can becowee by considering the separation and symmewizabf
variables of not all particle parameters, but augrof identical properties. Then "entanglementaasrgo-concept gets
its certainty for different particles of micro- amesoscales, although there is no reason for deffismd macroscales.
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4.
Note the arbitrariness of the phaggsande, is a property solutionpc}), |x2) and|x}?), defined
accurate to an arbitrary phases. These solutigmesenipure quantum mechanical states as described by the
state vectorsix}) and|xZ) in the single-particle space apg?) — in the two-particle space.

Locking the phase differenée= ¢, — ¢,, we transform the two-particle systefiy,) in the holistic
object of the coherent coexistence of quantum objeg?) and |x3l). Actually this is the essence of
manifestation of the phenomenonesitanglement of states of two quantum obj&tdreeing the phases,
ande,, we give quantum objects the possibility of fred independent coexistence for each of them.

In this regardthe principle of identity of quantum particlean be considered as a static aspect of
entanglement and the correlation in the Aspecpiegmental results as a dynamic aspect of exchange
interaction.

It should be noted that the procedure of projecfassociated with the reduction) of the symmedrize
vector of a two-particle spade€;,) onto a one-particle subspace will no longer beesgnted by a unitary
transformation, which is necessary to describeutiol according to the Schrédinger's equation, ianah
important feature of thdecoherenc@henomenon. This projection will not represepuaeone-particle state
because the corresponding particle will alreadynbihe environment of the other. Because of thgssiate
can not be described by the state vector, it mestdscribed by thdensity matrix Decoherence as a

phenomenon allows describing the transition fronamjum mechanics to classical mechanics ( see, for
example, [4]).

Appendix 1

Single-particle density matrix in 2-space

In the basis of the one-patrticle state space

m=(g):19=_;) (nL.)

X L.
the statdx) = (;:) can be represented as a superposition
2

) = ¢ () + x5 (0) =81 1)+ x§1 0, (n1.2)

where x{ and x5 are probability amplitudes for the state®) and|l) of the first(a = 1) or second
(a = 2) particles.

From the condition of normalization of the vedtnt.2) follows
|x%)% + |x)? = 1. (nl.3)
Matrix elementd$, of the density matri#® take the formi:

lxf1? xf *f5‘>

ik | l>( kl (xil *xéz |x£z|2 (Hl 4]

>) The tilde sigd"™" here denotes the complex conjugate quantities.
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Using (11.4) taking into accountil.3), we obtain:
Zw—az e s A W AN S R AN
e T \& exg xg? ) \&Fxexf x5
n

1P P o XS e XY * xS e |2 % xxff o« X2+ X * xF|12\ -
& xd x| xF)% + x5 * XF * x§ T ok xf x xF o« XF + x5 * [x5|?

(m1.5)

a
ik

Notation 1
]2 s oo ]2 + xff o+ 5« XE o xf = [ |2 * [xf |2 4 612 # [xF 12 = [xf]? * ({12 + [x512) = |x§[?
|2 % xff + X5 Haf « 25 * x5 |? = xff * X5+ (|xf > + |xF|*) = x§ « X5
X xg o x| + x5 |2« 2+ xf = 20 8 « (X2 + x5 ]%) = % * x5
ZExxf w ol %5 4 |x512 ¢ |x5)% = (x5 12 * (x5 + x5 = |x5]?

Thus,
(M*? = M¢, (1.6)

a density matrix %, determined byi(1.4), describes theurestate as well as the vectorl(2)®.

Two-particle density matrix in 4-space

In the basis of the two-particle states space
1 0

1y =(g]: 1=

0

| T1) = ;W) = (nl.7)

o RO O
=A==

0].
0 )
0

12
X21
12

12\

X .

the statdxf,‘f y=| 12/ can be represented as a superposition
X22

il ) = xi% + xi3 + 237 + X33 = xif| M)+ 23| W) + o3| ) + 233 W), (nl.8)

S OO
S O O
oS rOoO o
ek =N=]

wherexi?, xi2,x32, x12 the probability amplitudes for the states of a pdiparticles| 1), | Ti),| 1), ] 1)
the first and the second, respectively.

Matrix elementsflik of the density matrid/ take the fornf :

2 Operators that have the idempotence prop#rty= M, are called projection operators. Thus, the ptate density
matrices are represented by projection operators.

7) see Appendix 2
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2
12 12, ~12 12, ~12 12, ~12
|x11| X171 * X172 | X171 * X1 | X1 * X33
12 , ~12 122 12, %12 12, =12
= X172 * X11 |x12| Xiz * X1 | Xi2 * X33
My, = 12, ~12 12 ~12 122 12712 (n1.9)
X21 *X11 | X21X12 |X21| X21%X22
12 , ~12 12 , ~12 12 , ~12 1212
X22 *Xq11 | X2 *Xq2 | X2 * X271 |X22|
Using (11.9) taking into account the normalization of tleetor (11.8), we obtain:
E MinMyy = (m1.10)
n
2 2
12 12, ~12 12, ~12 12, ~12 12 12, ~12 12, ~12 12, ~12
|x11| Xi1 * X1 | Xi1 * X1 | Xq1 * X2 X171 X11 ¥ Xq2 | Xq1 * X271 | Xq1 * X2
12, ~12 1212 12, ~12 12, ~12 12, ~12 1212 12, ~12 12, ~12
X12 * X11 |x12| X12 * X321 | Xi2 * X33 X12 * X11 |x12| Xi2 * Xp1 | Xi2 * X33
* =
12, ~12 12 ~12 1212 1212 12 ~12 12 ~12 1212 1212
X21 * X11 | X21X12 |x21| X21X22 X21 * X11 | X21%12 |x21| X21X22
12, ~12 12, ~12 12, ~12 1212 12, ~12 12, ~12 12, ~12 1212
X2 ¥ Xq1 | Xo2 * X132 | X33 * X371 |x22| X22 ¥ X11 | X2 * X1 | X33 * X271 |x22

i

The first line of the multiplication resultul.10) of the density matrix itself is presented in
Notation 2. Similarly, the results can be obtaif@dthe following lines. Thus, as in the case dfirgle-
particle vector space, in the two-particle spaodd true the equality:

M? = (nl.11

I

)

and a density matrid defined by (1.9) describes the pure state as and the vact®)(

Notation 2

512

~12
X11

~12
X22

~12
X11

%17 + x1112 * X21

~12
X11

122 122 12 12 12 12 12
|17 1% * |17 ]% + xi7 * X3 * x15 * * X1 ¥ +Xxq1 * * X2 *

12

X1+ xg1 + X35 +x33) = i P(1f? + 1xag|? + gl

2
l331%) = |xdf

leif 12 (et + 213+ xi3 +

712

~12 12 , =12 ~12
Xi2 =

X153 * |x15 |7 + X0 * X35 * x37 * X5 + x1 * %35
* (12 1? + [xi2 12 + |37 + 1x33]) = 1% » %15

~12
X12

2P 5l extf
~12
X12

i 1% xif

12

=12
X21

~12 12 , 512 , 12 , =12 12 , =12 122 12
Xor + X101 * Xqz * Xq3 * X1 + X471 * X1 * |1 | + x4 * X33
12, ~12

xif x %1« (It + a2 1? + g1 + 223 1%) = x1 » %51

1212, ,12 12
i | xq 1 * *Xa2 ¥

(importan) Note 1

Consideration of wave equations for a two-partsyistem in 4-space of state in representatidri/{
with corresponding Hamiltonians allows for chaifisalutions of the type

1T = (af] )+ xiZ| ) + 237 41 + 233 | L)),
Cetf] T + xiF| M) + 228 ] ) + x23| W) = xa3l W),

that will allow to obtain equivalent to the evolutary (using Schrodinger equations) descriptiorthef
change of states and "transfer” of the first pkertic the opposite state):

&M e xailin (n1.12
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7.
The main property of this method of describing ¢welution of a quantum mechanical two-particle
system is the representation of the solution ag gtateswith full preservation of information about the
individual behavior of each of the particlesthe system.

Reduction: 4=2

Let us now consider the possibility of describigparticle of a two-particle system in a single-
particle space.

The first and most important questiazan we describe the behavior of one patrticle in Iasis
(n1.1)?

Using wave functions, the equality (5) can be espnted as:

Y X, Y) = @; (Xx (V), (n1.17)
whereg andy are functions obtained by separating variablgbénsolution of the wave equation. In general
case, they are represented by functions of diffeygres. We will identify the particles by the paueters:
(i, X) — for the first particle(k,Y) — for the second particle, and the previous reteiSopresented 8s

PRXY) = o XxE(), (n1.17)

By folding this equality by variablesX,i) or (Y, k) of one particle (upper indices), we can obtainwaee
function of another. This operation allows you & gd of information about one particle, providitdean"
information about another. The information abd particle itself is contained in the propertiesatibed
by variableqX, i) or (Y, k).

Given that the permutation of particles, each igartchanges only its interface with “internal
content”, but not the environment of their stay,hage:

VIEXY) > UR (X, Y) = k(Y. K), (r1.14)
and the condition of symmetry takes the form:
Vi X Y) = P (7, X). (m1.15)

Given that, we have for the symmetrized funclfq;g(X, Y):
Y (X, Y) = @;(XDx (V) £ @ (V)x; (X). (n1.16)

The symmetrization procedurel(16) records the fact of identity of particles the selected group of
properties.

It follows from the relationi{1.16) that convolution operation on the statealdds of one particle
was possible, for example, in the cases (5) anidlB), 5, but cannot be performed for the expressio
(m1.16), since here as a result of symmetrizatioe, ¢ntanglement between the particles parameters
occurred. The latter means that in this case, the desoripif a particle in a one-particle state spacdién t
medium of another particle as a certain separabtiéyeis unrealizable, and to present its stateaas
superposition of base stated (1) impossible.

® We will assume the possibility of some freedom gtablishing the correspondence allowed by the phaee of
solving the wave equation by the method of sepagatariables: 1 « (i,X),2 < (k,Y), which will be used in the
procedure of symmetrization.

°) It should be noted that it is possible to talk @ththe entanglement of not all the properties afigias, that is, about
the complete entanglement, and only about theirrscommon properties.
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Since it is impossible to describe a particle ofwa-particle system in a vector 2-space as a
superposition of basic Statesl(1), a different method is used, known in quantoethanics as a method of
describing using density matrices.

The standard approach here is to solve the ewvolty equation for the density matrix of the
guantum system described by the Hamiltonian [3)weleer, if the previous approach in the solutiorthef
Schrddinger equation with subsequent symmetry,ngaith entanglement of particles and their Statese
the main problem is the fragmentation of the syst#gmcomponent parts and factorization of the dpson
of a single patrticle.

In the end, the second question arisesw to describe the behavior of one particle in the
environment of another using a single-particle dgnesatrix @1.4)?

In such a situation, when measuring the charatitsiof one of the two patrticles, it is necessary
provide first the possibility of choosing both thirst and the second particles.

In this case, to describe a single particle, firsd necessary to establish the possibility sfchoice in
a two-particle system characterized by a combinatfopure stated/*(a = 1,2). We define this capability
by the corresponding probabilitipg. Then the expression for the density maiiof the particle will take
the form:

M= Z P, (n1.17)
a

where Y., P, =1 ,p, = 0,a =1,2. The equalityf1.17) will be to determine thaixture of pure states of
two particles, each of which being described indhe-particle space of states. The density matritsMf is
also an element of thene-particle space of states and, therefore, allavone-particle description of a
particle in the medium of the another. This is hmwe can describe entanglement as a physical phewome

It is not difficult to show that for a matrix dfi¢ form (1.17) in general, the equality
MZ =M, (m1.18)
is not fulfilled, which is the criterion that theicle is in a pure state. However, this equattpossible if
the condition of the probability unit, for one particle and zero for another is met.

Notation 3
Let us consider a system consisting of two pasiocbach of whiclva (¢=1,2) being in the pure
state of 2-space, and is described by its densatyixV,, satisfying the condition

(Ma)z = Ma
Theholistic two-particle system of the same 2- space is demttiily the density matrix
M = p, M, + p, M, (11.19)
0<p <1,(0<p, <1),(p; +p, = D).
The square of this matrix
M? = piMF + piM 5+ pip, (MM, + M, M,)
by virtue of identities

MM, + MyM, = Mf + M3 — (M, — M,)?
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and

. Pi+pip =pi(P1+P2) =P, DI+ PP =D2
can be written as

M? = p M + p, M3 — p1p,(My — My)?
Since the matricesV; and M,, each separately, satisfy the condititfé = M, we find
M — M? = pyp,(M; — M,)? (n1.20)
The right part represents positive matrix; heitas equal M2 only if (M; — M,)? = 0. The
square of the hermitian matrix vanishes only whigrelaments are zero. One of the necessary
conditions for the implementation of the equality = M is the equalityi, = M,. The same
result is achieved when onemgfandp, is equal to zero.

It follows from the relationr(1.20) that a two-particle system with particledifierent states af
p1 > 0 andp, > 0 behaves as a mixture of particled (19), each particle being described |in
anisolatedform by its density matriM; or M,.MecTo /151 GOpPMYJIbI.

Whenp; =0 orp, = 0, the particlex with p, = 1 will be described as being in the pure stgte.
However, atp, > 0 andp, > 0 , the state of any of the particles cannot be clamsd pure,
which means that it will be described by densitytninas for which the equalitgM )2 = M is not
satisfied , which is a criterion of the pure state.

The determinant of the density matrix construdtedh the pure state vector as it is easy to verify
from (ml.2) and (1.4) is always zero. It follows that the mixture sihtes if1.17) in general cannot be
described by the state vector.

Notation 4

Using @l.17) in the form
M = py* My + py x My,
for the determinant of the matrix M we obtain:

{1 #1117 4+ p2 # [y1]2) * (01 * %212 + D2+ [y2|D)} = {01 %1 * X2 + P21 # ¥2) * (D1 * X0 * X + P2 * Y1 ¥ F2)} =
{p1 * 121 [? * Dy # 13212 4 o * [ [P % 02 #1321 + P2 * |y |? # Dy * |21 + 2 * [y1]? * Dy * [y21%) =
—{D1X1 * Xy * Py x Xy *x Xy +P1Xy *xXp ¥ Dy * Y1 *k T DoV F Yo kD1 R Xk Xy FDoV1 Yy x Dy ¥ Yy ¥ P} =
={pf* 1xl? * %212 + Py * g * X117 * [y2 1% + p1o# o2 * ya 2 # |22 |2 4 05 * |1 % * |y,12} —

—{0F * X012 * |xa |2+ Py * Dy * By * Xp x Y1 % Fo + Dy * P x Ty * Yo x Xy * Xy + g |yil? x|y, |} =
=py e pa{lxn |2 % |ya 2 4+ a2+ a1+ 20 % Xy Frxyp + Xy %X % yp % 5}

Since the determinant of the two-row pure statesify matrix is zero, its rank is one. This means
that the matrix itself can be represented in adineensional linear subspace, and the state by @wat
two-dimensional space. This vector may be is decm®g into basis vectorsil(1), that is, it can be
represented by a superposition, and thus repragaunte state.

In general, if the rank of a two-row matrix is nequal to one, then the matrix itself cannot be
represented in a one-dimensional subspace, sing@dtually a two-dimensional object. That is, thatrix
itself is representable only a mixtur€l(17) of two 1-objects. These objects will be iatding particles, that
is, one particle in the environment of another. SEhebjects will represent interacting particlest fils, one
particle in the environment of another. There isemmson to demand the uniqueness of such a reaean
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10.
(importan) Note 2

The reduction procedure>2 describes the" dissolution " of the individualdfy one patrticle in the
environment of another particle, accompanied byltiss of information about the individuality of thei
behavior while maintaining, however, the holistic. The jgab of the reduction procedure description is the
decoherence theoryvhich aims to formalize the transition from quantmechanics to classical mechanics.
Important feature:ithis procedure is not described by unitary transfations, that is— solutions of
Schrddinger equations.

Appendix 2

Let consider the experimental installation of Agtp&Ve introduce the most transparent symbols (as
far as possible) and use the results of Appendix 1.

To identify individual configurations, 4-index smminf,‘f, will be used, where the subscript refers
to the state of the particles, and the upper-erie the ends of the installation of Aspect: leftlaight. The
correspondence between the observer and the $tigeparticle is established "vertically" in thgpeession

xf,‘f . Here the statecorresponds to the observerthe staté corresponds to the obseryer

As it is often done, we place on the left sidahaf installation of Aspect Alice (A), on the right
side— Bob (B). Since their presence is not necessaryyilelenote the left and right ends of the ingttn
by upper indices: 1 - (A) and 2 - (B). Since thaition of observers is fixed by our condition, thesignation
of the upper indices not changing and will corregpto the representation of "12" or "AB", that Is/ays
a=1, =2

For clarity, the possible States of the Alice &8ub particle vectors are also denoted by the spin
symbolism— T and!, and for compactness by the lower indices. With the index designatidre statd T)
will receive the value of the lower index 1, ane tstate| ) — the value of the lower index 2. In the
representation of the states of the two-particltesy with arrows, in the first place (left) will bepresented
by the state of the particle of the left end of itgtallation (A), in the second place (right) etstate of the
particle of the right end of the installation (Bhen, for example, the statdT) will correspond to such a
configuration, in which the particles of Alice afdbb are in a state with spins "up”, this situatien
associated with the parametgf; the statg LT) will correspond to the configuration, when the juetof
Alice has a spin "down", and Bebspin "up", this situation corresponds to the patamciZ, etc.

System of vectors

; €4 =

ol
[N
I
o O

1 0
0 = 0
0 0

1

0 0 0

it is an orthonormal basis in a linear 4-space. &¥sociate the possible configurations of a twoigart
system with this basis as follows:

[ 11) = | 1)y = ;AN = ;W) = (n2.1)

Sor o
Sroo
oo o

1
0].
0 )
0
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Then an arbitrary state vect¢x) of a two-particle system of 4-space state can Xmessed by a
superposition:

1 0 0 0
) =22 0|+ 22| o |+ 232 3]+ B[ 0 | =AM+ AR W BN+ R L), (m22)
0 0 0 1

wherexf,‘f , Will correspond to the components of vectorshim tepresentation of the two-particle state in the
basise,, €,,€3,€,, Which are the amplitudes of the probabilitiesinding the system in one
of the basis states.

To illustrate the definition of the elements o€ thensity matrix, we introduce new notation of the
"coordinates” of the 4-vector and present the 4erga2.2) in the form

X2 + xfZ2] T + 222 I +x35| W) = &)+ & M)+ &[N+ & L), (n2.3)

Then the elements of the density matrix can beesgad by the formula
My = & (n2.4)
and the matrix itself takes the form

|51|2~ 51*52 51*5:3 51*5:4
&y x 5:1 |fz|f $r * &3 o * 5:4 (n2.5)
&3 % &y $3% &, |53|i &3 % &y

54*51 54*52 4 * &3 |f4|2

=i
E
Il

Returning to the variableq‘;f we get finally:

SR A

P BT T w26
dpenlt | i i i
ea e ik | |

From the representationd.6) it is possible to see the full configuratidrttte probability amplitudes
of the pair of particles at both ends of the experital setup, emitted by the source. Here, ascireated,
the upper indices refer to the observers: at tfigAdice) and right (Bob) ends of the installatioand the
lower indices refer to the states of the particl&he valuesci?, x1Z,x12,x12 represent the probability
amplitudes for the States of the pair of particledl),| Ti),|1T),] ) — the first and the second,
respectively. It is in this configuration of entéement represented by the coherent superposifictates
(m2.2) or the density matrixiR.6) of 2-system of for subsequent measurememisaa

Let the state of the particle with its spin up, + T, be recorded as a result of measurement at the
right end of the installation (B). This means tthegt system is in a state:

X210 + 22 )+ x22] W) + 22| L) = 22| TT) + 0% | 1LY+ x22[ I + 0+ | LI, (n2.7)

with amplitudescl? = 0 x12 = 0 and the density matrix took the form:
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3 ~
|3 0 x12 « %32 0
P 0 9 0 (12.8)
0 0 0 0

Further. There is a correlation between the fagithe connection established by the Aspect.
Therefore, it is reasonable to expect a changedrstate of the particle at the left end of thesiltetion, after
changing the state of the particle at its right.€Flak relationship between the states of the pestiis not
functional, but correlation, which means that thegmeters of one particle can influence only thrampaters
of the probability distribution for another paréclin a single measurement, this relationship naywork".

In this case, we cannot judge the speed of thedgfaone particle on another. This speed can tggd
only statistically and on average, taking into agtddhe arising noise suppressing the real valubetpeed
of influence.

The further development of events after the particeasurement at the right end of the installation
should be considered as the process of evolutiorglaxation of the system with a real Hamiltonian,
described by the wave equation for the density imét2.8). Since this relaxation mechanism is unknown
today, the quantum mechanical prediction (probstiil of matrix elementsn@.8) it is not possible.
However, A. Aspects of his experimental results/ptbthe reality of the existence of such a mechanis

Summary

1. There are two ways to describe quantum objeatsing state vectors and density matrices. Botihouakst
give equivalent descriptions of non-interactinghatihe external environment, i.e. closed quantunegys.
The states described in these cases are qallecstates.

2. The quantum mechanical description of a cloaedparticle system requires consideration of atsmiun
the 4-space of quantum States. It can be realiattviith the help of 4-vectors and 4-matrix density

3. When describing a pair of particles, one pagticl always in the medium of another. Although each
isolated particle of the pair can be described para state, however, in the two-particle des@iptone of
them will always be in the environment of the ofheamd the system after the symmetry procedure ef th
equation solution will be a mixture of two partieldn this case, each of them can be describedatehaby

its density matrix, through which the mixture ddtsts is determined. A mixture of state turns inpuee state

in the "disappearance" of a single particle, tlatwhenp; = 0 or p, = 0. This circumstance is fully
consistent with the fact that a quantum systemtéocan the external environment, can't be descrilitial
vector of states, as it cannot be in pure state.

4. The reduction proceduré.= 2 ,allows you to switch from two-particle 4-dimens& description to a
one-particle 2-dimensional description, as iflgtig together the history of the evolutions of tparts: the
unitary and the post unitary. The result of nortanyireduction is the boundary of these stories.

5. It is the procedure of symmetrization in theadiggion of quantum mechanical systems that catises
phenomenon of entanglement of particle Statess@etion 1).

6. The concept of entanglement can arise only vaexeral quantum objects (particles) are considdred.
this case, we can talk about the entanglement dfclea states. The entanglement of the states ef on
guantum object is nothing but a superposition ef states of a single object. When the characesist
several objects are entangled, a new integrityacese, that is, a new quantum object.

Once More About Quantum "Entanglement"
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The mixture of states of different objects caneaid to the emergence of a new object, becausegrasimn
operation is not identical to the superpositiorstates. However, a mixture of states admits a faettion of
the description and simulation of the fragmentatibthe system into two interacting subsystemshtiuld
be emphasized that the considered model of state$7), which is a mixture of states, becomes fmi# if
the experiment in principle cannot obtain optinrdbimation about the subsystems (particles) ofethtire
object.

Q&A

According to results of previous on-line dialoguesn the author's seminar a number of questions whichequire
clarification

The description of the phenomenon of entangleroeiddéntical particles by means of the operatiorsyinmetrization
in general convinces. The concept of coherenctatésalso arises here. More or less, it's underdédle. But how to
imagine the mechanism of decoherence is not strittclear?

The coherency is strictly formalized concept in fitsenework of the phase dependences of the waaifuns.
Information on these issues can be found on thmpbeaof a two-particle quantum system in the preaditle [see
(2,3,4)].

Violation of phase dependencies between the elarafrthe whole is decoherence. Decoherence asreoptenon is
described on the basis of density matrices.

The emergence of many coherences of the objectthiittenvironment, that is, "dissolution" of its owhase on the
elements of the environment - this can also beidersd as decoherence, but already known to berdiif... and this
is a common problem solved by the "theory of decemee" as a discipline.

As for the experimental and technological mechasisfithe realization of coherence and decoherehteeapresent
time — they are at the stage of experimental work wiffedént results."

| would like to hear briefly about Neumann's "Presd." and his non-unitarily.

General
There are two possibilities for the construction qpfantum mechanics: the use of thite vectorsapparatus
(Schrodinger wave functions) and ttensity matrixapparatus (hermitian operators), [Landau, 1927].

Representations using state vectors and densityicestare formally equivalent when consideritigsed quantum
systems. These systems are exhaustively describgattalledpure states.

The evolution of closed quantum systems or theirpigral dynamics for both descriptions is repregiritg unitary
transformations with Hamiltonian as a generatorirginitesimal shifts in time (solutions of the Sédinger-type
equation with initial data). Density matrices ofcBusolutions, as well as any operators of the oeskones, are
represented byhermitian operators. Hermitian matrices, in turn, can be ceduto a diagonal form by unitary
transformations by choosing the corresponding sepri&tion basis. Unitary transformations leaverifemation status
of the quantum system unchanged. It is the findihgnitary transformations (solutions of Schrodingguations) in
both cases that make up the essence of solutidreditional problems of quantum mechanics.

However, quantum subsystems immersed in the extermdronment cannot be considered closed. Suctemsgsare
represented by so-calledixturesof states. The fact is that mixtures of Statemoame described by vectors of pure
States and their superpositions. Of the two pdggisi the description of the mixture of states te realized only with
the help of density matrices. This circumstance wssd by von Neumann to clarify the Bohr's inteligiien of
guantum mechanics in terms of the interpretatiomeéasurement procedures, that is, in terms ofrtfegaction of the
measured system with the measuring device or, ineg with the external environment. Consideratioh
transformations of quantum systems thitlate unitary evolutioneads to the necessity of consideration of issues
related to changes in the information status ofr#seilting states. The same approach is used idgbeription of the
transition from quantum systems to classical systenthe theory of decoherence, since the tramsitimm the quantum
description to the classical one is associated thighinevitable loss of phase information aboutnquia states.

In particular

1. Consider a specific example of a two-particlamum system, for example, in an Aspect's expetinigns system
must be described in Hilbert's 4-space. Descriptibrone of the particles is possible in a singleipke 2-space.
However, in our case - in the case when one paiiticin the environment of anotherit is impossible to describe this
particle by means of the apparatus of the puatest This is where the need arises to considetrémsformation
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associated with the transition from Hilbert's 4ep#o 2-space. Suakductioncannot be realized by means of unitary
(evolutionary) transformation, because it is assted with the loss of information about the stdtéhe system, while
all unitary transformations leave the system inep8tates with entropy equal to zero, that is, with maximum
information status. The loss of information and itherease in entropy during this transition is @wg. This is the first
aspect of non-unitary reduction.

2. The second aspect of reduction is related tdabe of information on phase coherence, whichbiseat in classical
manifestations.

The essence of the matter is as follows. Infornmatiout phase dependencies and hence quantumatomneglis
contained in nondiagonal elements of the densityirias already mentioned, with the help of unjtéransformations,
it is possible to bring the density matrix to thagbnal form, which would allow to give a probastic interpretation of
diagonal elements without phase correlations. Widse transformations, the information status efghantum system
will not change. This means that information abthé correlations do not disappear which means litlvei obliged
anyway to show itself that is contradict experient@croexperiments. Thus, unitary transformatiomsotrealize the
transition from quantum description to classicak.oiNon-unitary operation of the density matrix diaglization
(reduction) is the process that led von Neumanm @eacessary element for matching quantum mechémitsquantum
correlations) with classical (without quantum ctatiens).

The loss of information and the increase of entriopthe reduction in both cases is quite obvionsl these processes
cannot be described in the framework of unitaryleien.

Von Neumann introduceBrocess 1to ensure the integrity of the consideration @& tlansition from closed quantum
systems to systems interacting with the environment

The first aspect is presented in detail in thisgoafhe seconé- in the article:

https://www.dropbox.com/s/x3dtk8w4vv9kv3n/ZurekEafpdI=0 (original),
https://www.dropbox.com/s/w6ewl825x8m01nh/Zurek7atk0 (translation into Russign

Does this mean that the collapse of wave functitwasild be described by non-unitary transformatidhat is, outside
the framework of traditional quantum mechanicsgohs of Shrodinger equations)?

That's right. Moreover, there is a radical viewttinathis area (the famou&WT-theorem" Conway and Cohen, which is
called "Free Will Theorem") do not work cause-effetationships and it is confirmed experimentafiy. elementary
demonstration of the absence of a functional camrebetween the perturbation and the respondeeispin system is
the Cohen-Specker paradox described in the wotlkeo§ame authors. This paradox has stirred thegaiysorld.

Unlike von Neumann, Zurek diagonalized the demsdyrix using a unitary transformation and" closethé dynamics
of the system under consideration to its HamiltaniBut you needed a non-unitary transformation rinaaticle about
entanglement!

Zurek

It is known from quantum mechanics that any "quantistory" develops due to two types of indepengeotesses -
free evolution and measurement procedures thatelefinew branch of evolution. Both processes areeuuicible to
one another. Bohr proposed such an interpretafidheointegrity of "quantum history" (Copenhagetempretation): to
consider the evolution of quantum systems using@lihger equations, and measurements over quasystems
using classical devices. Despite the striking ¢ifecess of such a construction, there is a natqredstion of
reducibility of one (quantum) description languagéh another (classical) and this question, firkialy, concerns the
coherence of States at the quantum level and demodes that is, the loss of this coherence at therotevel. It is the
decision of this problem article is dedicated byeku

Zurek's article considers the interaction of th2dpin§ subsystem with th®detector. The detector can only respond
to the following statest and !. As closed, this composite system is describeal pyre state, which can be represented
by both a vector and a density matrix in a Hillsedt'space. Actually, Zurek uses the density malrit in contrast to
von Neumann, considering the unitary transformatieading to the matrix diagonal form, but in tiedested basis.

In our article on quantum entanglement, we consider the degmripf an holistic integral two - particle system4-
space, those wholeness that is due to the coheddrthe States of the components. The transitiomfa two-particle
description in 4-space to a one-particle descriptio 2-space, that is, thaestructionof the wholeness of the system
during observation, it is the subject of our adicl
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One thing in common is a discussion of the nonauitit of the transformation called in one word refilon. Zurek
managed to link the integrity of the joint systenthwut the non-unitary transformation of von Neumalm our case, it
is impossible. Just the tasks we consider arerdifite

Read more about the Zurek's reasons "scattering afoherence” in the environment.

The density matrix in general contains nondiag@iaments responsible for the correlation interactibetween the
subsystems that make up the integrity of the oaigiystem. This form of the matrix clearly did fiibtinto the picture

of classical measurements. To bring it to the umtated form required for the classical interpietatof the

measurement procedure, von Neumann proposed tmlite a non-unitary matrix diagonalization proced{ihat is,

beyond the limits of quantum mechanics), whoseatiagelements could then be interpreted as cldgsiohabilities

(without quantum correlations). Why not unitary?

Just because the Unitary evolution condemns every closed quantustesy to 'purity.” (p. 9)%, preserving the
guantum correlations, which cannot be deduced & dlassical manner. In addition, unitary transfdioms are
equivalent in terms of the evolution of the systesth respect to the coherence of phase relatiossrdmg to the
Schrédinger equations. This was the reason fointheduction of non-unitary transformation. Von Neann developed
his idea by moving from (6) to (7 and called this procedure@eductionof the density matrix with a special emphasis
on its non-unitary character, which correspondsi¢atransition to the classical measurement praeedu

Zurek, in contrast to von Neumann, introduced tkieraal environmeng as the third unclosed component of the
general system, allowing to implement a completgcdption of the measurement procedure, while ramgiwithin
the framework of quantum mechanic§he final state of the combinggD€ “von Neumann chain” of correlated
systems extends the correlation beyonds® pair' 1%, 3xeck: S — cucrema, D — nerexrop. Thus, it represents an
element of the mechanism of coherence scatterittgeienvironment.

If the states of the environment correspondinghi® detector States are orthogonal, the densityixniatided over
uncontrolled and unknown degrees of freedom takesfdrm (14)*”, which was proposed by von Neumann. In this
case, if the observetl of the subsystens commutes with the Hamiltonian of thk,; detector-environment interaction,
its dynamics invariantly closes on the diagonahef reduced density matrix, that is, when the systein its eigenstate
4, the interaction with the environment will leaveinperturbed, and the observedvill be the motion integral.

The last remark allows us to divide the system ipatars into controlled, preserving coherence (gtanent), and
uncontrolled (unknown, destroying entanglement)sThct makes it possible to "raise" the entanglenmm a small
group of controlled parameters to meso- and malenels and, at the same time, to explain the disagmce of
coherence on a large group of uncontrolled paraisiete
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V.A.Kasimov. Once more about quantum "entanglement"(English version)

Abstract

During the conceptual design of the experimentlite of Aspect one must speak the language oftgmamechanics,
not the language Argo of the privatesights. One of these insights is the conceptearitanglemetit(of particles or
states is unclear!) The language of quantum mecbatiows for a clear and unambiguous manner te gbncrete
content to the questions on this occasion. Foattadysis of the proposed elementary model used, ig][
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