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In the wake of the article A. Aspect "BELL's THE®REhe naive view of the experimentét”
Since the formula (23) was found to be a mistaka (gpo), | took the trouble to check the calcidas from 1 to 5
sections of the article. Some clarifying points amant for understanding the essence are given.
Given an elementary derivation of the formulas {@)ich is omitted in the article.

The limited applicability of the point descriptiom real space-time relations has become apparent
since the formulation of the uncertainty principhe1927 by Heisenberg. It became clear that point
topology does not work very well in quantum mechanbut with the realization that the physical rcetr
of space-time relations is lost in relativistic plog, these suspicions have become a problem today.
Actually this is confirmed by the experiments of #spect. As is known, velocity is the main topoti
parameters of conjugation of continuous space and.tTherefore, when interpreting the results of
experiments A. Aspect and there are problems assacwith the velocities of propagation of sigreaisl
cause preoccupation.

The connection of local theories with additionalgmeters and bell inequalities is a topic of the
day in physics. In detail history of a questiorasvered in works [1, 2, 3, 4]. Results of A. Aspaotl J.
Bell belong to the physics of the microlevel dgstoin.

So what is the main thing in the Aspect's work?

1. The found theoretically correlations in the &abr of "entangled States of the two photons
can be explained by the introductionaufditional parameters, "averaging" of which would theoreljcal
allow to find agreement with the observed effects.

2. That Local Supplementary Parameters Thedread-built on the basis 6fMC-topology)are
constrained by Bell's Inequalities.

3. That certain predictions of Quantum Mechanics ¥®IRell's Inequalities, and therefore that
Quantum Mechanics is incompatible with Local Supyatary Parameters Theories.

4. Fundamental assumption for this conflict is toeality assumption

5. We will show that in a more sophisticated versibithe E.P.R. thought experiment (« timing
experiment »), the Locality Condition may be coesédl a consequence of Einstein's Causality,
preventing faster-than-light interactions.

Concerning items 4 and 5 it is necessary toltelffbllowing:

i4. The notion of locality of space-time relatioimsquantum mechanics lost its direct meaning
after the appearance of Heisenberg uncertaintyiorfa retaining its indirect meaning only in cootien
with the classical ones macro interpretations ainum mechanical measurements. The concept of a
continuous trajectory that ensures the establishiwfea genetic affinity of the positions of poirdthe
same point body in a dynamic, as a causal sequémsents, has also disappeared.

1 n order not to disturb the coherence of the pregion, the author's words of the article A. Adpeitl be highlighted in color
and reproduced in the original.

Bell Theorem naive view 18 Alain Aspect.

Text was prepared for a talk at a conference in angrof John Bell, held in Vienna in December

2000. It has been published in “Quantum [Un]spekdsab From Bell to Quantum information”, edited Ry

A. Bertlmann and A. Zeilinger, Springer (2002ittps://www.dropbox.com/s/q8f5ehdudr2ixe6/04020a#2dI=0

2)| beg your pardon for my not very good English! The original text in Russiahttp://vixra.org/pdf/1804.0300v1.pdf
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i5. The Einstein's causality implies the neednidude the notion of velocity as a "topological
coupling”" between a continuous time 1-manifold armbntinuous 3-space manifoldmMMC-+opology. It
is the speed that makes it possible to establigiersetic relationship between the positions of the
trajectory points of a moving body that are or rbayin the dynamic causal sequence of events. Haweve
such concepts as speed, trajectory, genetic affigiteserved in motion, are absent in quantum
mechanics. Therefore to speak about violation ofsabty of big sense isn't present. Violation oé th
Einstein relativity principle for non-localized @gjts can also be seen in the macro-description of
physical reality [6].

The positiveresult of experiments A. Aspect is concluded that PMGstogy in KM stops
working properly.

The locality of classical physics, CTR and GTRnisst likely a consequence of their asymptotic
approximations, when macrodistances and macrotariegs far exceed the micro scales.

The very same occurrence of locality is the subpétcondensation” of Hilbert's description (of
arbitrary dimension, countable-separable spacés)(8t1)-dimensional pseudo-euclidean (riemannian)
diversity.

In physics, today, with the help of "entanglediiXed microstates, attempts are made to recreate
macrorealities, the description of which cannotdsiuced to the description RMC- topology. For them,
the concept of speed and genetic affinity throygged is alienPoint Lorentz transformations cannot be
applied to them either.

1. Experimental scheme

Let us consider the optical variant of the Bohm@ssiorf of the E.P.R. Gedankenexperiment
(Fig. 1). A sourceS emits a pair of photons with different frequenagsind v, , counterpropagating
along0z. Suppose that the polarization part of the stattor describing the pair is:
1

|¥ (v1,v2)) = 2

{lx, ) + |y, ¥)} (1)
where|x) and|y) are linear polarizations states. This state is rkeatde: it cannot be factorized into a
product of two states associated to each photonyes@annot ascribe any well defined state to each
photon. In particular, we cannot assign any podaign to each photon. Such a state describing tersys
of several objects that can only be thought of gllghis anentangled state

We perform linear polarization measurements ontwe photons, with analysetsandlIl. The
analysell, in orientationa, is followed by two detectors, giving resultsor —, corresponding to a linear
polarization found parallel or perpendiculamtoThe analyseli, in orientatiorb, acts similarly.

y
+ | I +
V1 V2
X V4
a b

Fig. 1. Einstein-Podolsky-Rosen-Bohm Gedankenexperiment with
photons. The two photong, and v, , emitted in the stat# (v,, v,)) of
Equation (1), are analyzed by linear polarizersoirentationsa and b.
One can measure the probabilities of single or tjaetections in the
output channels of the polarizers.

¥ There is a one-to-one correspondance with the BE6tin Gedankenexperiment dealing with a pair of 4y
particles, in a singlet state, analysed by twondable Stern-Gerlach filters.
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It is easy to derive the Quantum Mechanical preahstfor these measurements of polarization, single
in coincidence. Consider first the singles probaéd P, (a) of getting the results: for the photorv, ,
and similarly, the singles probabilitieB, (b) of obtaining the resultst on photonv,. Quantum
Mechanics predicts:

P.(a) =P_(a) =
Q.M. )
P.(b) = P_(b) =

N| R DN -

These results are in agreement with the remarkwkatannot assign any polarization to each phaon,
that each individual polarization measurement gavesndom result.

Let us now consider the probabilities,. (a, b) of joint detections of; and v, in the channels
+ or — of polariserd or I, in orientationsa and b. Quantum mechanics predidts

1 -
P,,(a,b)=P__(ab) = Ecosz(a, b)

. QM. 3)
P,_(a,b) =P__.(a,b) = Esin2 (a,b)

We are going to show that these quantum mechamiedictions have far reaching consequences.

2. Correlations

Consider first the particular situatiqa,b) = 0, where polarisers are parallel. The Quantum
Mechanical predictions for the joint detection pabliities (equations 3) are :

1
P,,(a,a)=P__(a,a) = 3

(4)
P._(a,a)=P_,(aa)=0

According to this result, and taking into accowjt (ve conclude that when the photgnis found in the

+ channel of polarizet, v, is foundwith certaintyin the + channel ofl (and similarly for the —

channels). For parallel polarizers, there is thustal correlatiorf between the individually random
results of measurements of polarization on thepghaonsy, and v,.

A convenient way to measure the amount of coioglat between random quantities, is to
calculate the correlation coefficient. For the piakztion measurements considered above, it is équal

E(a,b) =P,,(a,b)+P__(a,b)—P,_(a,b) — P_, (a,b) (5)

Note 1

To verify that (5) adequately reflects the degs€eorrelation between the orientations of vectorsid b,
two cases can be considered: complete independenceorrelation) and functional uniquely dependeetween
their values (full correlation).

1) When the vectors a and b are completely indeperad&h(2) is satisfied, we have:

Pyi(ab) = Pr(@)-Pi(b)=5-5=—; P_(ab)= P(a)-P(b) =

(@)

N[ = N =
N| = N =
B = D

P,_(ab)= P,(a)-P_(b) ="

i P_y(ab)= P.(a)-Py(b) =

N = N

Then from (5) we obtain:

E(a,b) =0, (b)
that means that there is no correlation betweemticepted values afand b.

%) The output of the formulas (3) is presented in Ajgie.
) The correlation dependence, in contrast to tinetfonal, determines the effect of the value of goantity on the distribution
of another. The correlation coefficient determitiestightness (strength) of this dependence.
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4,
2) Now let each of the vectoraand b can take one of two mutually exclusive valués:"or" —".
Consider two options for functional dependence:
a) if the projection of vectom is positive (+), the projection of vectob also takes a uniquely
positive valug(+);
b) if the projection of vectaa is positive(+), the projection of vectob takes a uniquely negative
value(-).

Denote byP(B|A) - probability of occurrence of the eveBt(+ or — the projection of the vectds),
provided that has occurred eventAs(+ or — the projection of the vectd). Considering vectoa as
a cause, we obtain:

P,i(a,b) = P(ay) - P(bylay) P__(ab) = P(a_)-P(b_la.) ©

P,_(a,b) = P(ay) P(b_|a,) P_,(a,b) = P(a_) P(bsla-)
Then
for the case of a):

P(byla,) =P(b_la_) =1, P(b_la,) = P(b,la_) =0; (d)
for case b):

P(b,la,) =P(b_la_) =0, P(b_la,) = P(b,la_) =1. (e)
Substituting the found values (d) and (e) in (@)hoth cases, taking into account (2), from (5)obvtain:

|E(a,b)| =1, ®

that characterizes the complete correlation betwthenaccepted values of the projections of vectors
aand b.
It is easy to obtain similar results when consiugthe value of the projection of the vechoas the initial
event.

Using the prediction (3) of Quantum Mechanics, imd fa correlation coefficierigy

Eou(a,b) = cos 2 -(a,b) (6)

In the particular case of parallel polarizgesb) = 0 ), we find E,,,(0) = 1 this confirms that the
correlation is total.

In conclusion, the quantum mechanical calculatisnggest that although each individual
measurement gives random results, these randoittsrasel correlated, as expressed by equation (8). F
parallel (or perpendicular) orientations of thegpiers, the correlation is tot@E,, | = 1).

3. Difficulty of an image
derived from the formalism of Quantum Mechanics

As a naive physicist, | like to raise the questadrfinding a simple image to understand these
strong correlations. The most natural way to findraage may seem to follow the quantum mechanical
calculations leading to (3). In fact, there areesalyways to do this calculation. A very direct aado
project the state vector (1) onto the eigenvectmmesponding to the relevant result. This gives
immediately the joint probabilities (3). Howeveinae this calculation bears on state vectors desgyi
globally the two photons, | do not know how to el picture in our ordinary space.

The situation with the experiment on a pair oftamgled" photons(selote 1) is similar to the
variant 2 of the functional dependence of the Staffeprojections of vectorsand b at|E(a,b)| =1
described by the formulas (c), (d), (e), (f). ledewhen measuring the projection of the first phothe
state of which is unknown, the value of the profcttof the second photon automatically becomes
known, no matter how remote it is.

In order to overcome this problem, and to iderdéyparately the two measurements happening on
both ends of the experiment, we can split the joieasurement in two steps. Suppose for instante tha
the measurement on photeptakes place first, and gives the restlt with the polarizer | in orientation
a. The+ result (associated with the polarization stajghas a probability of 1/ 2 . To proceed with the
calculation, we must then use the postulate ofaiaiu of the state vector, which states that aftesr
measurement, the new state ve¢¥d(v,,v,)) describing the pair is obtained by projection & ihitial
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5.

state vectof¥ (v,,v,)) (equation 1) onto the eigenspace associated t@udt+ : this two dimensional
eigenspace has a bafis x), |a, y)}. Using the corresponding projector, we find a#tdittle algebra

¥Y'(vy,v,) = |a,a) (7)

This means that immediately after the first measwent, photomw, takes the polarizatiopa): this
is obvious because it has been measured with aizmlariented along, and the resul# has been
found. More surprisingly, the distant photan, which has not yet interacted with any polariters also
been projected into the statewith a well defined polarization, parallel to theeofound for photor; .
This surprising conclusion however leads to theemirfinal result (3), since a straightforward aggion
of Malus law’ shows that a subsequent measurement performegllatom photorw, will lead to

1 ,\
P.,.(ab) = Ecosz(a, b) (8)

The calculation in two steps therefore gives theeseesult as the direct calculation. But in addifio
suggests a picture for the two steps measurement:

i. Photonv, , which had not a well defined polarization befit® measurement, takes the
polarization associated to the obtained resultthat moment of its measurement: this is not
surprising.

ii. When the measurement on is done, photom, , which had not a well defined polarization
before this measurement, is projected into a siatpolarization parallel to the result of the
measurement ony . This is very surprising, because this changééndescription ob, happens
instantaneously, whatever the distance between and v, at the moment of the first
measurement.

This picture seems in contradiction with relativiyccording to Einstein, what happens in a givenae
of space-time cannot be influenced by an eventérapg in a region of space-time that is separayeal b
space like interval. It therefore not unreasonébley to find more acceptable pictures for
«understanding » the EPR correlations. It is supictarre that we consider now.

4. Supplementary parameters

Correlations between distant measurements onaparated systems that had previously
interacted are common in the classical world. Retance, if a mechanical object with a null linezar
angular) momentum is split in two parts by somenmal repulsion, the linear (or angular) momenta of
the two separated parts remain equal and oppositeicase of a free evolution. In the general case
where each fragment is submitted to some intenactiee two momenta remain correlated since they are
at each moment determined by their initial valwgsich had a perfectly defined sum.

It is tempting to use such a classical pictureetader an account of the EPR correlations, in term
of common properties of the two systems. Let usiclam again the perfect correlation of polarization
measurements in the case of parallel polariggety = 0. When we find+ for v;, we are sure to find
also+ for v,. We are thus led to admit that there is some ptpifEinstein said « an element of physical
reality ») pertaining to this particular pair, ashetermining the result +. For another pair, when the
results is— —, we can similarly invoke a common property, deiaing the result- —. It is then
sufficient to admit that half the pairs are emitteith the property- 4+, and half with the property —, to
reproduce all the results of measurement in thidigoration. Note however that such properties,
differing from one pair to another one, are noetaknto account by the Quantum Mechanical stateovec
|¥ (v4,v,)) Which is the same for all pairs. This is why wa canclude with Einstein thQuantum

>) The Malus law is a physical law that expressesdiygendence of the intensity of linearly polarizigghtl after its passage
through the polarizer from the angfebetween the polarization planes of the incidegtttliand the polarizel = k,I,cos?¢,
where [, is the intensity of the light incident on the pdtar, I is the intensity of the light exiting the polarnizk, is the
transmittance of the polarizer.
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6.

Mechanics is not completAnd this is why such additional properties afemed to as supplementary
parameters», or <iddenvariables®.

As a conclusion, it seems possible to « understatite EPR correlations by such a classical-
looking picture, involving supplementary parametéiffering from one pair to another one. It can be
hoped to recover the statistical Quantum Mechamcadictions when averaging over the supplementary
parameters. It seems that so was Einstein’s posftio Note that at this stage of the reasoning, a
commitment to this position does not contradictrquan mechanics: there is no logical problem toyfull
accept the predictions of quantum mechanasl to invoke supplementary parameters giving an
acceptable picture of the EPR correlations. It ameto considering Quantum Mechanics as the
Statistical Mechanics description of a deeper level

Three decades after the publication of the EPRepd4], Bell expressed in mathematical form the
consequences arising from the previous discussidreaplicitly introduced additional parameters[Phe details of
the events related to the subsequent statementst #ft® impossibility to introduce additional paraers in
guantum mechanics without contradictions AND thsulis of real experiments confirming the correlatio
connections of type (5) are presented in the wiaddchere [1]. It is our task here was to once mgaidress the

essence of space-time contradictions in the indésion of experiments such as EPR with the refewnof
additional calculations.

5.Bell' inequalitoes
5.1. Formalism

Three decades after the EPR paper, Bell transiatedmathematics the consequences of the
preceding discussion, and he explicitly introducsdpplementary parameters, denoted I. Their
distribution on an ensemble of emitted pairs icH@el by a probability distributiop(1), such that

pAH) =0
9)
f dlp(h) =1

For a given pair, characterized by a given suppigang parametet, the results of measurements are
given by the bivalued functions

A(A,a) = +1 atanalyzer I (in orientation a) (10)
B(A,b) = +1 at analyzer II(in orientation b)

A particular Supplementary Parameter Theory is detaly defined by the explicit form of the function
p(1),A(A,a) and B(A,b). It is then easy to express the probabilities ofdugous results of measurements.
For instance, noting that the functies{A(1,a) + 1] assumes the valu¢l for the + result, and0
otherwise (and similarlyz[1 — B(4, b)]) assumes the valuel for the— result, and otherwise, we can
write

P = [arpy &0 a
A(A,a)+ 1] [1 - B(A4,b)]

2 2

P,_(a,b) = f a0’

Similarly, the correlation function assumes theperiorm
E(a,b) = f dAp(D)A(2,a)B(A,b) (12)

®) Einstein actually did not speak of « hidden alles » or « supplementary parameters », but ratherelements of the
physical reality ». Accordingly, many authors refer« realistic theories » rather than to « hiddanable theories », or to
« supplementary variable theories ».
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Note 2.

On the comparison of formulas for correlations (5)and (12). Along with the General definitions of
correlation, as bearing information about the tigiss of the influence of the value of one randonabée on the
distribution of another, the definition (5) is thest adequate. Its value of 1 indicates a direnttfanal dependence
of the directions of vectors a and b (see NoteTd)determine the correlation in the General modelrbndom
variables X and Y, we have chosen for them a umifdistribution, which does not carry any informatimbout the
probabilities of their values, except for certaimes. Its value of 1 indicates a direct functiongpehdence of the
directions of vectors a and b (see Note 1). Tordste the correlation in the General model for @ndsariables X
and Y, we have chosen for them a uniform distridmutiwvhich does not carry any information aboutghebabilities
of their values, except for certain ones.

In table. A data and results for the calculatidérthe standard correlation coefficientX,Y)) of random
variablesX and Y, coinciding covarianc€0V (X,Y) [7]:

COV(X,Y)/(0,0,) = (MIX,Y] — peut,) /o0, = 7(X,Y) (9)
Table A
xi +1 —1
x? +1 +1
Di 1/2 1/2

e =M[X] = (x; +x,)/2
M[X?] = (xf +x5)/2
D[X] = M[X?] — (M[X])?

. 1

The additional parametgrintroduced in (12) provides the generality of tiedl model.

N

5.2. (Naive) example of a theory with additionalgraeters

As an example of a theory with an additional peeter, we consider a model in which each
photon propagating along the Oz axis is assumdthte a well-defined linear polarization given by it
angle (4;u 4;;) with the x axis. To account for the tight correlation, weless that two photons of the
same pair are emitted with the same linear poléoizadefined by the General angléFig. 2).

y Polarisation of a pe

_ a: direction of analysis
for polariser |

> X

\ 0

Fig. 2 - The naive example. Each pair of photons has a « direction of polatisn »,
defined by, which is the supplementary parameter of the mdeelariser | makes a
polarisation measurement alomgat an angled, from thex axis..

The polarisation of the various pairs is randodistributed, according to the probability
distributionp(2), that we take rotationally invariant:

p) = (13)

To complete our model, we must give an explicitrfdor the functionsi(4, a) and B(4, b). We take the
following form

A(4,a) = sign{cos2 (8, — 1)},

B(4,b) = sign{cos 2 (6, — 1)}, (14)

where the angle§; and 6;; indicate the orientations of the polarisers. Ndtat these forms are very
reasonableA(A,a) assumes the value1l when the polarisation of photan makes an angle less than
n/4 with the direction of analysia, and —1 for the complementary case (polarisation closetht®
perpendicular ta).
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With this explicit model, we can use equations) {blcalculate the probabilities of the various
measurements. We find for instance single proliadsli

1
P.(a) = P-(a) = P,(b) = P_(b) = 5 (15)
identical to the Quantum Mechanical results. Thel@halso allows us to calculate the joint prob&bi,
or equivalently the correlation function, and wedfi using (12) :

16; — 6, _ |(a, b)| _
— = =

E(ab)=1—14 1-4

16
for—gse,—a,,sg (16)
Note 3
Let us present the conclusions of the formula.(16)
To facilitate the understanding of the relationshigtween the angles arising in the example, lepresent two
analyzers with the same orientatigch= m/4with respect to the axiX. By rotating the first analyzer
counterclockwise by an anglé, Bt orientating it along the direction, the vector acquires the orientation
6; = 6 + A,. By rotatingthe second analyzer clockwise at an amgleorienting it in the directio, we obtain an
angled,; = 6 — A,. Together with the analyzers, the areas of pa&sitalues for the coefficiens(4,a) and B(4, b)
— blue and green , respectively, rotate

Ya

V x

Fig. A. Directions a and b with their "neighborhoods" of positive values of
A, a) and B(4, b)'. Maximum "raster" between the directions of pidation — ¢,
and 6, isw?2, thatis;—m/2 <6, — 6, <m/2.

As a result, we obtain the following regions witle tistribution of signs fo&(1, a) andB(4, b).

Table B
Domain The range of angles The absolute valug A B
of the angle
1, A=) >—A, A+ 4y - +
2. (m/2) =Dy =4 = A (m/2) — (8 +4;) + +
3. (n/2)+A0, 242> (m/2) — A, AL+ A, + —
4, 2n-A, 24 2(m/2) + A 3n/4— (AL +A) - -

The relationship betwedhand 4A; is expressed by the pair of formulas:

0, =0 +m/4 6,=—-A+n/4
AN=6,—mn/4 Ny=-0,+71/4
0,—6,; =A; +A,.

(h)

The integral (12) in a closed loop counter-clodevstarting from the direction 4 given the datdetdd

leads to the results (16)

This is a remarkable result. Note first thgt, b) depends only on the relative angte b), as

the Quantum Mechanical prediction (6). Moreover,saswn on Fig 3, the difference between the
predictions of the simple supplementary parameatevdel and the quantum mechanical predictions is
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always small, and the agreement is exact for tigéean, +/4 and+m/2 i.e. cases of total correlation.
This result, obtained with an extremely simple sepgntary parameters model, is very encouraging), an
it might be hoped that a more sophisticated modeldc be able to reproduce exactly the Quantum
Mechanical prediction®Bell's discovery is the fact that the search foctsmodels is hopelesas we are
going to show now. E(0)
A

Fig. 3 - Polarisation correlation coefficient, as a furanti of
the relative orientation of the polarisers: (i) Detl line :
Quantum Mechanical prediction ; (ii) solid linehd naive
model

5.3. Bell's Inequalities

There are many different forms, and demonstratioinBell'inequalities. We give here a very
simple demonstration leading to a form directlylmgble to the experimerfts

Let us consider the quantity

s =A(1,a)B(4,b) — A(4,a)B(4,b") + A(4,a")B(4,b) + A(4,a")B(A,b") =

= A(1,a)[B(4,b) — B(A,b)] + A1, a)[B(4,b) + B(1,b")]

Remembering that the four numbdrand B take only the values 1, a simple inspection of the second
line of (17) shows that

s(4,a,a’,b,b") = +2 (18)

(17)

The average dfover | is therefore comprised betweer2 and — 2:

-2< fdlp(l)s(l, a,a’,b,b") <2 (19)
According to (12), we can rewrite these inequalitie

—2<5S(1,aa’,bb) <2 (20)
with

S(1,a,a’,b,b’) = E(a,b) —E(a,b’) + E(a’,b) + E(a’,b’) (21)

These are B.C.H.S.H. inequalitiess. Bell's inequalitites as generalized by Clauser, ri¢or
Shimony, Holt®. They bear upon the combinatishof the four polarization correlation coefficients,
associated to two directions of analysis for eaalanzer @ and a’ for polarizerl, b and b’ for polarizer
II). Note that they apply to any Supplementary PatamEgheory of the very general form defined in
section 5.1 (equations 9, 10, and 12), of whichraive model is only an example.

" It is important to distinguish between inequasitwhich show a mathematical contradiction witamum
mechanics, but without the possibility of an expemtal test with (necessarily) imperfect apparatasd
inequalities allowing an experimental test provideat the experimental imperfections remain inaiartimits.
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6. Conflict with quantum mechanics
6.1. Evidence

We can use the predictions (6) of Quantum Meclsafic EPR pairs, to evaluate the quantity
S(a,a’,b,b") defined by equation (21). For the particular sepriéntations shown on Fig. 4.a, the result
is

Sou =2.83>2 (22)

This quantum mechanical prediction definitely camd with the Bell’s inequality (20) which is valfdr
any Supplementary Parameter Theory of the genamal defined in 85.1.

We have thus found a situation where the quant@rthamical predictions cannot be reproduced
(mimicked) by Supplementary Parameters Theoriess. i§tlthe essence of Bell's theorem: it is impdssib
to find a Supplementary Parameter Theory, of theeg® form defined in 8 3.1, that reproduedisthe
predictions of quantum mechanics. This statemetiiteageneralisation of what appears on Fig. 3iHer
particular supplementary parameter model considéne@ 5.2: the model exactly reproduces the
predictions of quantum mechanics for some particamales(0, /4,7 /2), but it somewhat deviates at
other angles. The importance of Bell's theoremhat it is not restricted to a particular suppleraent
parameters model, but it is general.

©, | ®

67.5°

Fig. 4 - Orientations yielding the largest conflict
between Bell's inequalities and Quantum Mechanics..

6.2. Maximum conflict

It is interesting to look for the maximum violatiof Bell’s inequalities by the quantum
mechanical predictions. Let us take the quantumhiangical value ofSgy,:

Som(a,a’,b,b") =cos 2 -(a,Ab) —cos 2 -(E,F) + cos 2 (ﬂ) + cos 2 -(ﬁ’) (23)
It ®) is a function of three independent variabl@sb), (b,a") u (a’,b"). Note that

(ab’) =(ab)+(b,a) + (a’,b')

Note 4

Introduce the notatior(a,b) = «, (b,a") =, (a’,b’) =y, (a,b’) = & with

a+pf+y=26. 0}

The Lagrangian takes the fora(a, 8,7, 8) = cos 2a — cos 28 + cos 28 + cos 2y +u(a + f +y — §), whereu
is the Lagrange multiplier.

DifferentiatingL(«, 8,y, 8) by independent variablesg, y, taking into account the relationship between the
anglesa, 8,v, § we obtain a system of equations:

0L/da =0 sin2a = pu/2
{6L/6,8 =0 N {sin 2B =u/2 0
dL/dy =0, sin2y = u/2,
a+pB+y=9, a+f+y=4,
which has the solution
a=Ff=y=9, (k)

®) The original text of the article contains the fotens,;(a,a’,b,b’) = cos (a,b) — cos (a,b’) + cos (a’,b) + cos (a’, b")

V.A.Kasimov Copyright ©. 2014r. Some topological paradoxes of relativity (EPR)



11.

and by virtue of the last equality

=36 o
Equation
dL/98 = 2sin28 =p wmm sin28 =u/2 = sin20 (m)

we rewrite in the form
sin26 — sin26 = 2 cos(§ + 6) sin(d — §) = 2cos40sin26 =0 . (n)

The equation (n) has solutions faf = % + 2mk; 20 = mk, from whereg = g + %k; 6 = gk. At k = 0 we have:

0="mn 0;npnk=1:9=§nn z
8 8 2

For a rigid construction defined by equationsa(iy (k), the ratio is true

Som(8) =3cos26 — cos 60 P

The table C shows values 6§, (6) for configurations with deviations from predictomf quantum

mechanics are given: TaGmua C

0 Som(0)
0=0° 2
m/8 =22,5° | 2.83
3n/8 = 67,5° | -2.83
n/2=90° |2

These values are the results of substitution oivéleesé in (p). The orientation sets fans 6 = 7/8u 6 = 31/8
are shown in Fig. B. they give the greatest violadiof Bell's inequalities.

A more General consideration shows that therele&sge range of orientations that involve confligth
bell's inequalities (see Fig. 5); it is also cldawever, that there are many sets of orientafiong/hich there is no
such conflict.

4
Som (6)
3

% 8 0 22,5 \ 67,5 90

: \ ;
R

-3

-4

Fig. B: linear approximation based on the dependefigg(8) fromé
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Fi.e5: Sy, (6), predicted by quantum mechanics for EPR-pairs. The
conflict with Bell's inequalities occurs g > 2 and it reaches a
maximum for the set of orientations shown in Figlire
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Appendix. A simple derivation of the basic formulas
for a pair of "tangled" photons

1. Light polarization
1. Polarization and helicity are examples of pbgisijuantities taking only two quantized values.

Description of a photon as an object with dichatomproperties is possible using the property ti€ite
the helicity of a photon in any direction can takdy two values - positive and negative. The situais similar to
the state of an electron with spif in the singlet state.

The concept of polarization, inherited from thasdlical properties of light, refers to the deswwipbf the
properties of transverse electromagnetic wavesrRation is described by two vectors, orthogonahe direction
of motion. The quantum dichotomy of the classiaalhpzation parameter is manifested here. Theseveutors are
also orthogonal to each other, and if you know dfrection of one vector, the orthogonal directidntlee other
vector can be represented by two directions -deftght, which distinguishes right or left poleet waves.

> X
Fig. 1
2. The state of a photon with respect to its prddion can be described by two basic vectors »fliaear
spacex), |y):

|x) — vector describing polarization along the aXis
|y) — vector describing polarization along the aXis ()

Vectors|x) and |y) represent the complete orthonormal system, so

(xlx) = (yly) = 1, (xly) = (ylx)" =0 2
Any state of the photoj¥’) can be represented as a linear combination oé ttves basic states

|¥) = A|x) + B|y), where A and B are in generally — complex numbers (3)
Let's

|x") = Alx) + Bly) (4)

describes the new polarization state (Fig. 1). Film@obvious equalitiec|x’) = cos ¢, (y|x') = sin @
should bed = cos ¢, B = sin ¢, that is

|x") = cos @ |x) + sing |y) (5)
a (5) will represent a photon polarized along tee/axisX’.

Let's find the second basis vectet) and write down

|y} = Clx) + D|y). (6)

From orthogonality of vectorg ) and |y’) we have:

(y'|x"y =C*cos@ + D*sinp =0, @)
and from the normalization of the veclyr):

'lyy=cc+D'D=1 (8)
The joint solution (6), (7) and (8) in real numbgrges

C = +sing

D =+cosg (9)
V.A.Kasimov Copyright ©. 2014r. Some topological paradoxes of relativity (EPR)
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So for|y') we have two solutions:
ly') = —sing |x) + cos ¢ |y) (10)
ly') = sing|x) — cos ¢ |y) (12)
corresponding to the right and left polarizatiohghe photon.

2. Experiment

> 7
Fig. 2

Let's consider a two-photon system. Since photlnsot interact with each other, the equation afesfor
this system allows for separation of variables eqtesentation of the solution as a product ofsthée vectors of
individual photons (1st and 2nd):

|llu)1,2 = |¥), = |¥), (12

To represent the entangled state " of a pair otgts moving in opposite directions, needs chotetes
with opposite polarizations. Then, given (5), (Hdd (11) wherp = 0, the expression for the fir$¥’); and the
second¥), vectors of states take the form:

[9)1 = 5 {x) + 1y} (139
¥), = 5 {1x)2 = ¥)2) (14)

According to (12), we have

1
|llu)1,2 = §(|x)1 +y)) x(x) = y)) =

1 (15)
=§{|x)1 #lx)y = |x ) = |y)o [y * %) — [¥) *1y)2}

To satisfy the requirement of the particle idengitinciple, this state vector must be symmetridsThocedure will
describe the real entanglement of photons, aftéctwit is impossible to distinguish the first aselcond photons.
Therefore :

1
—{|¥) + |¥ =
\/E{l h2 + %)z}

=57 e )z =1 s ) 4 ) w1 = )= 1),

|11U)initial —

+ |xl)2 #laxdy =[x ) = [y + Y2 * [k — [¥)a* |y} =
= ﬁ{lx)l #|x ), = [y * [¥)2}
Finally, the vector of the singlet initial stateaopair of photons will take the form:
. 1
Y initial — _—_ X * |x _ %
|¥) \/E{l M lx), — 1y *[y)2} (16)
1. Let us consider the result of the measuremenaf when the firsty), and the secongy), photons are
recorded with the same polarization described by#ttor (5)x’) = cos ¢ |x) + sin ¢ |y):
[x)1 = {cos@s|x)1 + singy|y)} (17)
[x)2 = {cos@;|x), + sing,|y),} (18)

V.A.Kasimov Copyright ©. 2014r. Some topological paradoxes of relativity (EPR)
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According to (16), (17), (18), get for the finghte

075" = 10 * 102 = {cosgy [x)y + singu [y)1} * {cosgs |x); + sings y),} = 19
= {cos@; cos@,|x);|x), + cos@; sing,|x);|y), + sing; cosg,|y):1x), + sing; sing,|y);1y).}
final _
2,1 (Xl (1g|)

= {cos@; cos@; (x| 1{x| + cos@; sing, ,(y| 1{x| +sin@; cosg, (x| 1{y| + sing, sing, ,(y| 1(y[}

For the amplitude of transition from the initighe|¥)™ ! to final statex)] 5% are:

figall(xllp)initial —
= {cosp; cos@; »{x| 1{x| + cosg; sing, ,(y| 1{x| +sing; cose, ,{x| 1{y| + sing,; sing, ,{y|(y|} * (20)

1 1 1
« —{|x) *|x), — |y *|y)o} = —={cosg, cosp, — sing, singp,} = —cos(p;+
ﬁ{l 1* ) — |y *[y)2} NG ®1 P2 ¢1 SINY, NG (p1t+e2)

2. Now let us consider the result of the measurgra&the pair, when the states of the firgl; and the

secondy), photons are fixed with the same polarization,drsicribed by the vector (1Q)') = —sin¢ |x) + cos ¢ |y) :
|x)1 = {—singy|x); + cospy|y),} (22)
[x)2 = {—sing;|x); + cosp,|y).} (22
According to (16), (21), (22), get for the finghte

final

X)iz =101 *1x)2 = {—sing|x); + cos@,|y),} * {—sing,|x), + cos@,|y),} =

. . . . 23
= {sing, sing,|x){|x); — sing; cos@,|x);|y), — cosg, sing,|y),|x), + cos@; cos,|y)1y).} 23
"5a0 = 23)

= {sing, sing, (x| 1{x| — sing; cos @, (y| (x| —cosp; sing, (x| 1{y| + cosp, cos@, (y| 1{¥[}
For the amplitude of transition from the initighe|¥)™ ! to final statex)] 5 are:
fl‘leflll (){llzu)initial —
= {sing; sing, ,(x| 1{x| — sing; cos @, (y| (x| —cos@; sing, (x| 1{y| + cosp; cosp, ,{y| (I} * (24)
1 1
x —{|x) *|x), — V)1 *|y¥),} = sing, sing, — cos@, cosp, = ——cos(¢;+
\/E{l 1* (X)) — [y x|y)2} ¢1 SINP; $1 P2 NG (p1+92)

3. Let us consider the result of the measuremigpaio when the states of the fifgt); and the secongy),
photons are fixed with different polarizations désed by vectors (5) and (10)x’) = cos ¢ |x) + sin¢ |y),
ly') = —sing|x) + cos @ |y):

[
[X)2

cos ¢ |x) + sing |y) (25)
{—sing;|x), + cosg,|y),} (26)

According to (16), (25), (26), get for the finghte

final

|X)1,2 = |x)1 * |x)2 = {cos@|x); + sing,|y)1} * {—sing,|x), + cosp,|y),} =
) . . . (27
= {—cos@; sing,|x);|x), + cosp; cosp,|x)1|y), — sing, sing,|y),|x), + sing; cosp,|y)11y).}
figflllo{l — (27)

= {—cos@; sing; (x| 1{x| — cop; cos @, ,(y| 1{x| —sing; sing, (x| 1{y| + sing; cosp, »(y| 1(y[}

For the amplitude of transition from the initighe|¥)™ ! to final statg )(){"2"“’ are:

fl'Tzlall(XW;)initial —

= {—cos@, sing; 5(x| 1 (x| — cop; cos @, ,(y| 1{x| —sing, sing, ,(x| 1{y| + sing; cosp, ,(y| 1 (y|} (28)
1 1

x —{|x ) *|x)y, — V)1 *|y)2} = —cos@, sing, — sing, cosp, = ——sin +
ﬁ{l 1* X)) — |y *[y)2} @1 SINY; ¥1 P2 NG (p1 + 92)

In formulas (20), (24), (28) the anglesand ¢, are represented in different coordinate systemight and

left. To bring their values to one coordinate systé is necessary to replagg = —¢,. Fig. 3 explains the need
for this replacement.
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Fig. 3
When replacingp, = —¢, then the results (20), (24), (28) rewrite the form
final initial _ 1 "
2,1 (Xlly) - ﬁ COS(¢1_¢2) (20)
; — 1
PGP = — = cos(1=¢2) (24)
; L 1
ML GP)E = ——=sin (g1~ 92) (28)
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We introduce explicitly the angle differenge —¢, as the angle between vectaas a,. Then the
probability of transition, for example, (20") wiike the form:

inal 2 1 .
S Gawyingtat]” = 2 cos? (@)

Following the Aspect[1], we introduce notation:

P, (ay,ay) — the probability to detect the polarization of tivstfphoton along the vectar, and the
AL 2 second photon along the vector

P_(aga,) — the probability to detect the polarization of tlstfphoton perpendicular to the vector
-\ 92 a,, and the second photon perpendicular to the vagtor

P,_(ay,ay) — the probability to detect the polarization of tivstfphoton along the vectar, and the
-T2 second photo on the perpendicular veatpr

the probability to detect the polarization of tlmstfphoton perpendicular to the vector
P_,(ay,a;) — | a4, and the second photon along the veator

From (20", (24", (28" should

P, (aj,a;) = ECOSZ(aﬁz) (29)
1
P__(a;,a;) = Ecosz(ﬁz) (30)
1
P_(ay,2)) = Py (a,h) = 5 sin’ (@ 8,) (31
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Abstract

In the footsteps of the article by A. Aspect "BEGITHEOREM: the naive view of an experimentalist".
As in equation (23) has detected an error (or typtmok the trouble to verify calculations fromd.5
sections of the article. Are some clarifying poititat are important for understanding the essdaisen
an elementary conclusion of formulas (3), whichnsitted in the article.

The Bell's inequality, derived on the basis of geaeral model for a dichotomous variable, disturthed
guantum mechanical model for a pair of "entangf@uStons. In Bell's article it is clearly (thoughtvery
detailed) shown.

No " artificial gadgets" is not able to resolvestbontradiction. The only thing that causes confuss the
procedure of creating a mixed state of two photorsthe essence conceptual view of mathematics
experiment. Theoretically, this procedure can Ipeagented as a symmetrization of the wave functfon
the pair. However, how does the transfer of thémitb the technical essence of the experimentdean

V.A.Kasimov Copyright ©. 2014r. Some topological paradoxes of relativity (EPR)



18.

%k %k % %k %k

For communicating:
guadrica-m@mail.ru

Author's seminar:
http://my.mail.ru/community/physiks.princips/?reétc

http://quadrica.ucoz.net/
https://independent.academia.edu/KasimovVladimir
https://vk.com/public128913510
https://www.facebook.com/quadrica.m
http://orcid.org/0000-0002-1435-9220

*kkkk

V.A.Kasimov Copyright ©. 2014r. Some topological paradoxes of relativity (EPR)



