
BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA1

DETERMINANTAL CONJECTURE∗2

AMEET SHARMA†3

Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the4
region in the complex plane covered by the determinants of the sums of two normal matrices with5
prescribed eigenvalues. Call this region ∆. This paper focuses on boundary matrices of ∆. We prove6
2 theorems regarding these boundary matrices. This paper uses ideas from [1].7
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1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-11

ture. Given two normal matrices A and B with prescribed eigenvalues a1, a2...an and12

b1, b2...bn respectively, det(A+B) lies within the region:13

co
{∏

(ai + bσ(i))
}

14

where σ ∈ Sn. co denotes the convex hull of the n! points in the complex plane. As15

described in [1], the problem can be restated as follows. Given two diagonal matrices,16

A0 = diag(a1, a2...an) and B0 = diag(b1, b2...bn), let:17

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}

(1.1)18

where U(n) is the set of n×n unitary matrices. Then we can write the conjecture19

as:20

Conjecture 1.1 (Marcus-de Oliveira Conjecture).21

∆ ⊆ co
{∏

(ai + bσ(i))
}

(1.2)22

Let23

M(U) = det(A0 + UB0U
∗). (1.3)24

The paper is organized as follows. In section 2 we define terms and functions25

that will be used in the rest of the paper. These definitions are necessary to state our26

results. In section 3, we state 3 lemmas and 2 theorems that form the bulk of the27

paper. We state them in the order they are proved.28

2. Preparatory definitions.29
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2 A. SHARMA

2.1. Terms. Given a unitary matrix U and square, diagonal matrices A0 and30

B0 all of dimension n× n,31

• If M(U) is a point on ∂∆ (the boundary of ∆), we call M(U) a boundary32

point of ∆ and we call U a boundary matrix of ∆. See (1.1) and (1.3).33

• We define the B-matrix of U as UB0U
∗.34

• We define the C-matrix of U as A0 + UB0U
∗.35

• We define the F-matrix of U as C−1A0−A0C
−1 where C is the C-matrix of36

U. Note that the F-matrix is only defined when C is invertible, or equivalently37

when det(C) = M(U) 6= 0. See (1.3). Also note that since A0 is diagonal, the38

F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes39

from [1], Theorem 4, p.27.40

Throughout the rest of the paper, we’ll assume A0 and B0 are defined, even if we41

don’t explicitly mention them.42

2.2. Functions given a unitary matrix U. Given a unitary matrix U with43

B-matrix B, C-matrix C and F-matrix F. Given M(U) 6= 0. For every skew-hermitian44

matrix Z, we define the following functions45

let46

UZ(t) = (eZt)U (2.1)47

where t is any real number.48

Since the exponential of a skew-hermitian matrix is unitary, UZ(t) is a function49

of unitary matrices.50

let51

BZ(t) = UZ(t)B0U
∗
Z(t) (2.2)52

let CZ(t) = A0 +BZ(t)53

We note that BZ(0) = B and CZ(0) = C.54

let55

RZ(t) = det(CZ(t)) (2.3)56

We can see by (1.1) that RZ(t) ⊆ ∆.57

RZ(0) = A0 + UB0U
∗58

So by (1.3) we see that RZ(0) = M(U).59

So all the RZ(t) functions go through M(U) at t = 0.60

We shall refer to these functions in the rest of the paper with the same notation61

(for example RZ(t) for a skew-hermitian matrix Z. RZ1(t) for a skew-hermitian matrix62

Z1). Note that RZ(t) requires A0, B0, U and Z in order to be defined. But we won’t63

explicitly mention A0 and B0. All the results in this paper assume there are two64

diagonal matrices A0 and B0 defined in the background.65
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2.3. Skew-Hermitian matrices Zab and Zab,i. Given two integers a,b where66

1 ≤ a, b ≤ n and a 6= b.67

We define the n×n skew-hermitian matrix Zab as follows. Zabab = −1 (the element68

at the ath row and bth column is -1.) Zabba = 1 (the element at the bth row and ath69

column is 1.) And all other elements are 0. Note that Zab = −Zba.70

We define the n×n skew-hermitian matrix Zab,i as follows. Zab,iab = i and Zab,iba = i.71

All other elements are zero. Note that Zab,i = Zba,i.72

It is straightforward to verify that Zab and Zab,i are skew-hermitian.73

3. Main Results.74

Lemma 3.1. Given a unitary matrix U with M(U) 6= 0. Let F be its F-matrix.75

Then R′Z(0) = M(U)tr(ZF ) for any skew-hermitian matrix Z.76

Lemma 3.2. Given an n × n zero-diagonal matrix W. If for every n × n skew-77

hermitian matrix Z, tr(ZW ) = 0 then W is the zero-matrix.78

Lemma 3.3. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6=79

0. Given there’s a unique tangent line L to ∆ at M(U) with direction vector v. Then80

for every skew-hermitian matrix Z, tr(ZF ) = cv where c is some real number.81

Theorem 3.4. Given a boundary matrix U with M(U) 6= 0 and with F-matrix82

F 6= 0. Given there’s a unique tangent line to ∆ at M(U). Then F can be written83

uniquely in the form F = eiθH where H is a zero-diagonal hermitian matrix and84

0 ≤ θ < π.85

Theorem 3.5. Given a boundary matrix U with M(U) 6= 0 and with F-matrix86

F 6= 0. Given there’s a unique tangent line L to ∆ at M(U). By the previous87

theorem we know that F = eiθH for some real 0 ≤ θ < π. Then L makes an angle88

arg(M(U)) + θ + π/2 with the positive real axis.89

4. Proof of Lemma 3.1. The proof given here uses ideas from [1], Theorem 4,90

p.26-27. But the proof given here is complete on its own.91

Proof. We’re given a unitary matrix U where M(U) 6= 0. So its F-matrix is well-92

defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an93

arbitrary skew-hermitian matrix Z.94

We can use Jacobi’s formula [5] on (2.3) to find R′Z(t)95

R′Z(t) = tr(det(CZ(t))C−1Z (t)C ′Z(t)) (4.1)96

R′Z(0) = tr(det(CZ(0))C−1Z (0)C ′Z(0))97

We can substitute C for CZ(0).98

R′Z(0) = tr(det(C)C−1C ′Z(0))99

R′Z(0) = det(C)tr(C−1C ′Z(0))100

We know that C ′Z(t) = B′Z(t) so101

R′Z(0) = det(C)tr(C−1B′Z(0))102
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4 A. SHARMA

By subsection 2.1 and (1.3) we know that det(C) = M(U)103

R′Z(0) = M(U)tr(C−1B′Z(0)) (4.2)104

Using (2.2),105

B′Z(t) =
dUZ(t)

dt
B0U

∗
Z(t) + UZ(t)B0

dU∗Z(t)

dt
(4.3)106

Using (2.1),107

dUZ(t)
dt = ZeZtU108

U∗Z(t) = (U∗)e−Zt109

dU∗
Z(t)
dt = −(U∗)Ze−Zt110

Substitute these and (2.1) into (4.3)111

B′Z(t) = ZeZtUB0(U∗)e−Zt − (eZt)UB0(U∗)Ze−Zt112

B′Z(0) = ZUB0U
∗ − UB0(U∗)Z113

Using the definition of the C-matrix in subsection 2.1114

B′Z(0) = Z(C −A0)− (C −A0)Z115

B′Z(0) = ZC − ZA0 − CZ +A0Z116

C−1B′Z(0) = C−1ZC − C−1ZA0 − Z + C−1A0Z117

tr(C−1B′Z(0)) = tr(C−1ZC)− tr(C−1ZA0)− tr(Z) + tr(C−1A0Z)118

The first and third terms cancel since similar matrices have the same trace.119

tr(C−1B′Z(0)) = −tr(C−1ZA0) + tr(C−1A0Z).120

Using the idea that tr(XY ) = tr(Y X)121

tr(C−1B′Z(0)) = −tr(ZA0C
−1) + tr(ZC−1A0)122

tr(C−1B′Z(0)) = tr(ZC−1A0)− tr(ZA0C
−1)123

tr(C−1B′Z(0)) = tr(Z(C−1A0 −A0C
−1))124

tr(C−1B′Z(0)) = tr(ZF )125

Substitute this into (4.2) to get126

R′Z(0) = M(U)tr(ZF ) (4.4)127

This proves Lemma 3.1.128

5. Proof of Lemma 3.2.129
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Proof. Given an n × n zero-diagonal matrix W. Given that for all n × n skew-130

hermitian matrices Z, tr(ZW ) = 0.131

We can write element Wab = Wab,r+iWab,i, where Wab,r and Wab,i are real. These132

aren’t tensors. Wab,r just denotes the real component of Wab and Wab,i denotes the133

imaginary component.134

tr(ZabW ) = 0.135

tr(Zab,iW ) = 0136

(See subsection 2.3 for definitions of Zab and Zab,i).137

by direct computation we see that138

tr(ZabW ) = (Wab,r −Wba,r) + i(Wab,i −Wba,i) = 0139

tr(Zab,iW ) = (−Wab,i −Wba,i) + i(Wab,r +Wba,r) = 0140

Solving these, we get that Wab = 0. This is true for every pair (a,b) where141

1 ≤ a, b ≤ n and a 6= b. So all the off-diagonal elements of W are zero. Hence W is142

the zero-matrix.143

6. Proof of Lemma 3.3.144

Proof. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0.145

Given there’s a unique tangent line L to ∆ at M(U). Let v be the direction vector of146

the line L. Note that v is just a non-zero complex number.147

Let Z be a skew-hermitian matrix. By Lemma 3.1 we know that R′Z(0) =148

M(U)tr(ZF ).149

Since RZ(t) ⊆ ∆ and RZ(0) = M(U), we know that R′Z(0) = kv for some real150

number k. (if L is the unique tangent to the region ∆ at M(U), then it must the151

tangent to every curve that lies in ∆ and goes through M(U) and has a well-defined152

derivative at M(U)).153

So, M(U)tr(ZF ) = kv154

tr(ZF ) = ( k
M(U) )v155

7. Proof of Theorem 3.4.156

Proof. Given a boundary matrix U with M(U) 6= 0 and with F-matrix F 6= 0.157

Given there’s a unique tangent line to ∆ at M(U).158

We pick an arbitrary pair {a, b} such that 1 ≤ a, b ≤ n and a 6= b159

We have two skew-hermitian matrices Zab and Zab,i defined as per subsection 2.3.160

By direct computation we see that161

tr(ZabF ) = Fab − Fba162

tr(Zab,iF ) = (Fab + Fba)i163
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6 A. SHARMA

Given Fab = Fab,r + iFab,i. We can substitute this in to get164

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i) (7.1)165
166

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r) (7.2)167

We know by Lemma 3.3 that these are collinear vectors in the complex plane.168

So we know that169

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)170

We can simplify this to get:171

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i172

|Fab| = |Fba|173

We can write:174

Fab = |Fab|∠θab175

Fba = |Fab|∠θba176

For the remainder of the proof we will divide the possibilities for F into multiple177

cases. Note that we are given that F 6= 0. First we split all cases into two. The first is178

when only one pair of elements of the F-matrix, Fab and Fba is nonzero. The second179

case is when multiple pairs of elements of the F-matrix are nonzero. We shall further180

subdivide the second case using the fact that all tr(ZF) values are collinear. We can181

divide these cases into 3 possibilities: 1. All nonzero tr(ZF ) values are imaginary.182

2. All nonzero tr(ZF ) values are real. 3. All nonzero tr(ZF ) values are not real or183

imaginary. (note that since F is nonzero, we don’t have to deal with the possibility184

that tr(ZF) is 0 for all skew-hermitian matrices Z).185

So we have 4 cases to deal with. Note that we already know by subsection 2.1186

that F is zero-diagonal.187

Case 1: |Fab| is non-zero for only one pair {a, b} where a 6= b188

In this case,189

H = e−(θab+θba)/2F is a hermitian matrix, and we’re finished.190

Case 2: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For any191

skew-hermitian Z, when tr(ZF) is non-zero, it is imaginary.192

If |Fab| 6= 0, then by (7.1) and (7.2), θab = −θba. This holds for all distinct pairs193

{a,b}, so our F-matrix is already hermitian, and we’re done.194

Case 3: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For any195

skew-hermitian Z, when tr(ZF) is non-zero, it is real.196

If |Fab| 6= 0, then by (7.1) and (7.2), θab = π − θba. This holds for all distinct197

pairs {a,b}198

H = e−(
π
2 )F is hermitian and we’re done.199
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Case 4: |Fab| is non-zero for multiple pairs {a, b} where a 6= b. For200

any skew-hermitian matrix Z, when tr(ZF) is non-zero, it isn’t real or201

imaginary.202

Suppose |Fab| 6= 0 and |Fcd| 6= 0203

if tr(ZabF ) 6= 0, then204

slope of tr(ZabF ) = sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba2 )205

if tr(Zab,iF ) 6= 0:206

slope of tr(Zab,iF ) = cos(θab)+cos(θba)
− sin(θab)−sin(θba) = − cot( θab+θba2 )207

We know that since |Fab| 6= 0, at least one of tr(ZabF ) or tr(Zab,iF ) is non-zero.208

similarly,209

if tr(ZcdF ) 6= 0, then210

slope of tr(ZcdF ) = − cot( θcd+θdc2 )211

if tr(Zcd,iF ) 6= 0:212

slope of tr(Zcd,iF ) = − cot( θcd+θdc2 )213

We know that since |Fcd| 6= 0, at least one of tr(ZcdF ) or tr(Zcd,iF ) is non-zero.214

So we have:215

cot( θcd+θdc2 ) = cot( θab+θba2 ) (Lemma 3.3)216

therefore:217

θcd+θdc
2 = θab+θba

2 + nπ for some integer n.218

We can freely adjust θcd by −2nπ. It makes no difference since |Fcd|∠θcd =219

|Fcd|∠(θcd − 2nπ)220

So after the adjustment we have:221

θcd+θdc
2 = θab+θba

2 .222

We make the same adjustment for any pair {c, d} 6= {a, b} where |Fcd| 6= 0223

We set β = θab+θba
2224

let H = e−iβF225

For some pair {x, y} where x 6= y and |Hxy| 6= 0,226

Hxy = |Hxy|∠αxy227

αxy = −( θab+θba2 ) + θxy228

αyx = −( θab+θba2 ) + θyx229

But because of our adjustments,230
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8 A. SHARMA

θab+θba
2 =

θxy+θyx
2231

Plugging this into the above two formulas we have232

αxy =
θxy−θyx

2233

αyx = −(
θxy−θyx

2 )234

Therefore H is zero-diagonal, with transpositional elements of equal magnitude235

and opposite arguments. Therefore H is hermitian.236

So in all 4 cases we can write F = eiβH for some hermitian matrix H and some237

real β. But we’ve not arrived at a unique representation for F yet.238

Suppose239

F = eiβ1H1 = eiβ2H2240

ei(β1−β2)H1 = H2241

ei(β1−β2)H1 = H2 = H∗2 = ei(β2−β1)H∗1 = ei(β2−β1)H1242

So243

(ei(β1−β2) − ei(β2−β1))H1 = 0244

Since F 6= 0, we know H1 6= 0 so245

ei(β1−β2) − ei(β2−β1) = 0246

ei(β1−β2) = ei(β2−β1)247

Then248

β1 − β2 = β2 − β1 + 2kπ, for any integer k249

β1 = β2 + kπ250

So if we restrict all β to 0 ≤ β < π, we have a unique representation since k is251

forced to 0.252

This completes our proof of Theorem 3.4.253

8. Proof of Theorem 3.5. Given an ordinary boundary matrix U with M(U) 6=254

0 and F-matrix F 6= 0. Given ∂∆ has the unique tangent line L at M(U).255

Proof. By Theorem 3.4 we know that256

F = eiθH (8.1)257

for some real 0 ≤ θ < π and some zero-diagonal hermitian matrix H.258

We can substitute (8.1) into (7.1) and (7.2) and simplify to get:259

tr(ZabF ) = 2Hab,ie
i(θ+π/2) (8.2)260
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tr(Zab,iF ) = 2Hab,re
i(θ+π/2) (8.3)261

By Lemma 3.2 we know that at least one of the above equations is nonzero for262

some pair {a, b}. So then using Lemma 3.1 we know that R′Z(0) = M(U)tr(ZF ) 6= 0263

for some skew-hermitian matrix Z.264

So by (8.2) and (8.3) we see that for some skew-hermitian matrix Z, tr(ZF ) forms265

an angle of (θ+π/2) or (θ+3π/2) with the positive real axis (depending on whether the266

coefficient is negative or not). Therefore R′Z(0) forms an angle arg(M(U)) + θ+ π/2267

or arg(M(U)) + θ + 3π/2 with the positive real axis.268

Therefore the line L forms an angle arg(M(U)) + θ + π/2 with the positive real269

axis (since this is a line as opposed to a vector, a rotation of π makes no difference).270

This completes our proof of Theorem 3.5.271
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