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Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the4
region in the complex plane covered by the determinants of the sums of two normal matrices with5
prescribed eigenvalues. Call this region ∆. This paper focuses on boundary matrices of ∆. We prove6
3 theorems regarding these boundary matrices. We propose 2 conjectures related to the Marcus-de7
Oliveira conjecture and prove a theorem related to these 2 conjectures. This paper uses ideas from8
[1].9
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1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-13

ture. Given two normal matrices A and B with prescribed eigenvalues a1, a2...an and14

b1, b2...bn respectively, det(A+B) lies within the region:15

co
{∏

(ai + bσ(i))
}

16

where σ ∈ Sn. co denotes the convex hull of the n! points in the complex plane. As17

described in [1], the problem can be restated as follows. Given two diagonal matrices,18

A0 = diag(a1, a2...an) and B0 = diag(b1, b2...bn), let:19

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}

(1.1)20

where U(n) is the set of n×n unitary matrices. Then we can write the conjecture21

as:22

Conjecture 1.1 (Marcus-de Oliveira Conjecture).23

∆ ⊆ co
{∏

(ai + bσ(i))
}

(1.2)24

Let25

M(U) = det(A0 + UB0U
∗). (1.3)26

Then the points forming the convex hull are at M(P0),M(P1)...M(Pn!−1), where27

the P’s are the n× n permutation matrices. We will refer to these as permutation28

points from now on.29

Note that U(n) is a compact set. A continuous image of a compact set is compact.30

Therefore ∆ is compact. And so ∆ is a closed set, because a compact subset of any31

metric space (in this case the complex numbers) is closed.32
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2 A. SHARMA

The paper is organized as follows. In section 2 we define terms and functions33

that will be used in the rest of the paper. These definitions are necessary to state34

our results. In section 3, we state 3 theorems, 1 lemmas and 1 corollary that form35

the bulk of the paper. We state them in the order they are proved. The lemma36

is an intermediate tools for proving the 3 theorems. The corollary is an interesting37

consequence of the third theorem. In sections 5-10 we prove all of these. In section 9,38

we state 2 conjectures and prove a theorem related to these conjectures. In section 10,39

we conclude.40

2. Preparatory definitions.41

2.1. Terms. Given a unitary matrix U and square, diagonal matrices A0 and42

B0 all of dimension n× n,43

• If M(U) is a point on ∂∆ (the boundary of ∆), we call U a boundary matrix44

of ∆. See (1.1) and (1.3).45

• We define the B-matrix of U as UB0U
∗.46

• We define the C-matrix of U as A0 + UB0U
∗.47

• We define the F-matrix of U as C−1A0−A0C
−1 where C is the C-matrix of48

U. Note that the F-matrix is only defined when C is invertible, or equivalently49

when det(C) = M(U) 6= 0. See (1.3). Also note that since A0 is diagonal, the50

F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes51

from [1], Theorem 4, p.27.52

Throughout the rest of the paper, we’ll assume A0 and B0 are defined, even if we53

don’t explicitly mention them.54

2.2. Multidirectional Unitary Matrix. Given a unitary matrix U withM(U) 6=55

0 and F-matrix F. If there exist two skew-hermitian matrices Z1 and Z2 such that56

tr(Z1F ) and tr(Z2F ) are both non-zero, non-collinear vectors in the complex-plane,57

we say U is multidirectional.58

2.3. Functions given a unitary matrix U. Given a unitary matrix U with59

B-matrix B, C-matrix C and F-matrix F. Given M(U) 6= 0. For every skew-hermitian60

matrix Z, we define the following functions61

let62

UZ(t) = (eZt)U (2.1)63

where t is any real number.64

Since the exponential of a skew-hermitian matrix is unitary, UZ(t) is a function65

of unitary matrices.66

let67

BZ(t) = UZ(t)B0U
∗
Z(t) (2.2)68

let CZ(t) = A0 +BZ(t)69
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE3

We note that BZ(0) = B and CZ(0) = C.70

let71

RZ(t) = det(CZ(t)) (2.3)72

We can see by (1.1) that RZ(t) ⊆ ∆.73

RZ(0) = A0 + UB0U
∗74

So by (1.3) we see that RZ(0) = M(U).75

So all the RZ(t) functions go through M(U) at t = 0.76

We shall refer to these functions in the rest of the paper with the same notation77

(for example RZ(t) for a skew-hermitian matrix Z. RZ1(t) for a skew-hermitian matrix78

Z1). Note that RZ(t) requires A0, B0, U and Z in order to be defined. But we won’t79

explicitly mention A0 and B0. All the results in this paper assume there are two80

diagonal matrices A0 and B0 defined in the background even if we don’t explicitly81

mention them.82

3. Main Results.83

Lemma 3.1. Given a unitary matrix U with M(U) 6= 0. Let F be its F-matrix.84

Then R′Z(0) = M(U)tr(ZF ) for any skew-hermitian matrix Z.85

Theorem 3.2. Given a unitary matrix U with M(U) 6= 0. If U is a boundary86

matrix then U is not multidirectional.87

Theorem 3.3. Given a boundary matrix U with M(U) 6= 0 with F-matrix F. If88

F 6= 0, F can be written uniquely in the form F = eiθH where H is a zero-diagonal89

hermitian matrix and 0 ≤ θ < π.90

Theorem 3.4. Given a boundary matrix U with M(U) 6= 0 and F-matrix F 6= 0.91

So we know that F = eiθH for some real 0 ≤ θ < π. Given ∂∆ has a tangent line L92

at M(U).Then L makes an angle arg(M(U)) + θ + π/2 with the positive real axis.93

Corollary 3.5. Given a point P in the complex plane such that P 6= 0, P ∈ ∂∆94

and ∂∆ has a tangent at P. Given two different unitary matrices U1 and U2, with95

corresponding non-zero F-matrices F1 and F2, such that M(U1) = M(U2) = P . Then96

F1 = eiθH1 and F2 = eiθH2 for some unique 0 ≤ θ < π.97

4. Proof of Lemma 3.1. The proof given here uses ideas from [1], Theorem 4,98

p.26-27. But the proof given here is complete on its own.99

Proof. We’re given a unitary matrix U where M(U) 6= 0. So its F-matrix is well-100

defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an101

arbitrary skew-hermitian matrix Z.102

We can use Jacobi’s formula [5] on (2.3) to find R′Z(t)103

R′Z(t) = tr(det(CZ(t))C−1Z (t)C ′Z(t)) (4.1)104

R′Z(0) = tr(det(CZ(0))C−1Z (0)C ′Z(0))105

We can substitute C for CZ(0).106
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4 A. SHARMA

R′Z(0) = tr(det(C)C−1C ′Z(0))107

R′Z(0) = det(C)tr(C−1C ′Z(0))108

We know that C ′Z(t) = B′Z(t) so109

R′Z(0) = det(C)tr(C−1B′Z(0))110

By subsection 2.1 and (1.3) we know that det(C) = M(U)111

R′Z(0) = M(U)tr(C−1B′Z(0)) (4.2)112

Using (2.2),113

B′Z(t) =
dUZ(t)

dt
B0U

∗
Z(t) + UZ(t)B0

dU∗Z(t)

dt
(4.3)114

Using (2.1),115

dUZ(t)
dt = ZeZtU116

U∗Z(t) = (U∗)e−Zt117

dU∗
Z(t)
dt = −(U∗)Ze−Zt118

Substitute these and (2.1) into (4.3)119

B′Z(t) = ZeZtUB0(U∗)e−Zt − (eZt)UB0(U∗)Ze−Zt120

B′Z(0) = ZUB0U
∗ − UB0(U∗)Z121

Using the definition of the C-matrix in subsection 2.1122

B′Z(0) = Z(C −A0)− (C −A0)Z123

B′Z(0) = ZC − ZA0 − CZ +A0Z124

C−1B′Z(0) = C−1ZC − C−1ZA0 − Z + C−1A0Z125

tr(C−1B′Z(0)) = tr(C−1ZC)− tr(C−1ZA0)− tr(Z) + tr(C−1A0Z)126

The first and third terms cancel since similar matrices have the same trace.127

tr(C−1B′Z(0)) = −tr(C−1ZA0) + tr(C−1A0Z).128

Using the idea that tr(XY ) = tr(Y X)129

tr(C−1B′Z(0)) = −tr(ZA0C
−1) + tr(ZC−1A0)130

tr(C−1B′Z(0)) = tr(ZC−1A0)− tr(ZA0C
−1)131

tr(C−1B′Z(0)) = tr(Z(C−1A0 −A0C
−1))132

tr(C−1B′Z(0)) = tr(ZF )133

Substitute this into (4.2) to get134
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE5

R′Z(0) = M(U)tr(ZF ) (4.4)135

This proves Lemma 3.1.136

5. Proof of Theorem 3.2. We will prove the contrapositive. ie: We’ll start137

with a multidirectional matrix U, and prove that it is not a boundary matrix.138

Proof. Given a unitary matrix U with M(U) 6= 0. Let F be its F-matrix and C139

be its C-matrix.140

Assume U is multidirectional. See subsection 2.2.141

Then there exist two skew-hermitian matrices Z1 and Z2 such that142

T1 = tr(Z1F ) (5.1)143

T2 = tr(Z2F ) (5.2)144

are both non-zero and non-collinear.145

We know by Lemma 3.1 that:146

R′Z1
(0) = M(U)tr(Z1F )147

R′Z2
(0) = M(U)tr(Z2F )148

substitute in (5.1) and (5.2),149

R′1(0) = M(U)T1150

R′2(0) = M(U)T2151

Since we know T1 and T2 are non-collinear, R′Z1
(0) and R′Z2

(0) are non-collinear.152

They are also non-zero since T1, T2,M(U) 6= 0. Therefore they form a linear basis153

for all the complex numbers over the real numbers. Let Q be an arbitrary non-zero154

complex number.155

Q = aR′Z1
(0) + bR′Z2

(0) where a and b are real.156

Q = a(M(U))T1 + b(M(U))T2157

Q = M(U)(aT1 + bT2)158

substitute in (5.1) and (5.2),159

Q = M(U)(tr(aZ1F ) + tr(bZ2F ))160

Q = M(U)tr((aZ1 + bZ2)F )161

let Z3 = aZ1 + bZ2162

Q = M(U)tr(Z3F )163
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6 A. SHARMA

Note that Z3 is also a skew-hermitian matrix.164

Again by Lemma 3.1, we know that,165

R′Z3
(0) = M(U)tr(Z3F ) = Q166

R′Z3
(0) 6= 0 since we chose Q to be non-zero.167

Therefore since R′Z3
(0) 6= 0, RZ3

(t) goes through M(U) in a direction parallel to168

Q. But Q was chosen arbitrarily. So through M(U) there exist curves RZ3
(t) ⊆ ∆169

going in all possible directions. Therefore M(U) is an internal point of ∆. So it’s not a170

boundary point. Therefore U is not a boundary matrix. That gives us Theorem 3.2.171

6. Proof of Theorem 3.3. For n = 3, we define the following 12 skew-hermitian172

matrices with zero diagonal:173

Z12 =

0 −1 0
1 0 0
0 0 0

 Z13 =

0 0 −1
0 0 0
1 0 0

 Z23 =

0 0 0
0 0 −1
0 1 0

174

Z21 =

 0 1 0
−1 0 0
0 0 0

 Z31 =

 0 0 1
0 0 0
−1 0 0

 Z32 =

0 0 0
0 0 1
0 −1 0

175

Z12,i = Z21,i =

0 i 0
i 0 0
0 0 0

 Z13,i = Z31,i =

0 0 i
0 0 0
i 0 0

 Z23,i = Z32,i =

0 0 0
0 0 i
0 i 0

176

Note that the commas do not indicate tensors. They’re just used here as a label177

to distinguish imaginary and real matrices.178

We define Zab and Zab,i similarly for all n > 3, where a 6= b. For a given n we179

have n(n− 1) real matrices and n(n− 1) imaginary matrices.180

Proof. Given a boundary matrix U with M(U) 6= 0. Let F be its F-matrix. We181

know that F is zero-diagonal by subsection 2.1.182

Suppose Fab = Fab,r + iFab,i where Fab,r and Fab,i are real numbers.183

tr(ZabF ) = Fab − Fba184

tr(Zab,iF ) = (Fab + Fba)i185

Substitute in for Fab and Fba186

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i) (6.1)187
188

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r) (6.2)189

(Note that if both of the above are zero, we get that Fab = Fba = 0. So if Fab 6= 0190

at least one of the above is non-zero.)191
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE7

By Theorem 3.2, we know that U is not multidirectional. So either tr(ZabF ) and192

tr(Zab,iF ) are collinear as vectors in the complex plane or at least one of them is zero.193

In either case we know that194

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)195

We can simplify this to get:196

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i197

|Fab| = |Fba|198

We can write:199

Fab = |Fab|∠θab200

Fba = |Fab|∠θba201

In the 4 cases below, we will show that when F 6= 0, we can get a representation202

of F as F = eiθH where θ is real and H is zero-diagonal and hermitian. After that203

we will show that restricting θ to 0 ≤ θ < π gives us a unique representation.204

Case 1: |Fab| is non-zero for only one pair (a,b) where a 6= b205

In this case,206

H = e−(θab+θba)/2F is a hermitian matrix, and we’re finished.207

Case 2: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For any208

Z, when tr(ZF) is non-zero, it is imaginary.209

If |Fab| 6= 0, then by (6.1) and (6.2), θab = −θba. So our F-matrix is already210

hermitian, and we’re done.211

Case 3: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For any212

Z, when tr(ZF) is non-zero, it is real.213

If |Fab| 6= 0, then by (6.1) and (6.2), θab = π − θba.214

H = e−(
π
2 )F is hermitian and we’re done.215

Case 4: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For any216

Z, when tr(ZF) is non-zero, it isn’t real or imaginary.217

Suppose |Fab| 6= 0 and |Fcd| 6= 0218

if tr(ZabF ) 6= 0, then219

slope of tr(ZabF ) = sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba2 )220

if tr(Zab,iF ) 6= 0:221

slope of tr(Zab,iF ) = cos(θab)+cos(θba)
− sin(θab)−sin(θba) = − cot( θab+θba2 )222

We know that since |Fab| 6= 0, at least one of tr(ZabF ) or tr(Zab,iF ) is non-zero.223

similarly,224
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8 A. SHARMA

if tr(ZcdF ) 6= 0, then225

slope of tr(ZcdF ) = − cot( θcd+θdc2 )226

if tr(Zcd,iF ) 6= 0:227

slope of tr(Zcd,iF ) = − cot( θcd+θdc2 )228

We know that since |Fcd| 6= 0, at least one of tr(ZcdF ) or tr(Zcd,iF ) is non-zero.229

So we have:230

cot( θcd+θdc2 ) = cot( θab+θba2 ) (since U is not multidirectional)231

therefore:232

θcd+θdc
2 = θab+θba

2 + nπ for some integer n.233

We can freely adjust θcd by −2nπ. It makes no difference since |Fcd|∠θcd =234

|Fcd|∠(θcd − 2nπ)235

So after the adjustment we have:236

θcd+θdc
2 = θab+θba

2 .237

We make the same adjustment for any pair (c, d) 6= (a, b) where |Fcd| 6= 0238

We set β = θab+θba
2239

let H = e−iβF240

For some pair (x, y) where x 6= y and |Hxy| 6= 0,241

Hxy = |Hxy|∠αxy242

αxy = −( θab+θba2 ) + θxy243

αyx = −( θab+θba2 ) + θyx244

But because of our adjustment,245

θab+θba
2 =

θxy+θyx
2246

Plugging this into the above two formulas we have247

αxy =
θxy−θyx

2248

αyx = −(
θxy−θyx

2 )249

Therefore H is zero-diagonal, with transpositional elements of equal magnitude250

and opposite arguments. Therefore H is hermitian.251

So in all 4 cases we can write F = eiβH for some hermitian matrix H and some252

real β. But we’ve not arrived at a unique representation for F yet.253

Suppose254

F = eiβ1H1 = eiβ2H2255
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ei(β1−β2)H1 = H2256

ei(β1−β2)H1 = H2 = H∗2 = ei(β2−β1)H∗1 = ei(β2−β1)H1257

So258

(ei(β1−β2) − ei(β2−β1))H1 = 0259

Since F 6= 0, we know H1 6= 0 so260

ei(β1−β2) − ei(β2−β1) = 0261

ei(β1−β2) = ei(β2−β1)262

Then263

β1 − β2 = β2 − β1 + 2kπ, for any integer k264

β1 = β2 + kπ265

So if we restrict β to 0 ≤ β < π, we have a unique representation since k is forced266

to 0.267

This completes our proof of Theorem 3.3.268

7. Proof of Theorem 3.4. Given a boundary matrix U with M(U) 6= 0 with269

F-matrix F 6= 0. Given ∂∆ has a tangent line L at M(U).270

Proof. By Theorem 3.3 we know that271

F = eiθH (7.1)272

for some real 0 ≤ θ < π and some zero-diagonal hermitian matrix H.273

We can substitute (7.1) into (6.1) and (6.2) and simplify to get:274

tr(ZabF ) = 2Hab,ie
i(θ+π/2) (7.2)275

tr(Zab,iF ) = 2Hab,re
i(θ+π/2) (7.3)276

Assume the above two equations are always 0 for all pairs (a, b). Then H = 0277

and by (7.1) and F = 0. But we are given that F 6= 0, so we have a contradiction.278

So our assumption is false and for some skew-hermitian matrix Z, tr(ZF ) 6= 0. So by279

Lemma 3.1 we know that R′Z(0) = M(U)tr(ZF ) 6= 0.280

By (7.2) and (7.3) we see that tr(ZF ) forms an angle of (θ+π/2) with the positive281

real axis (By Theorem 3.2 U is not multidirectional so any non-zero tr(ZF ) forms282

the same angle with the positive real axis. So the angle is always θ + π/2) Therefore283

R′Z(0) forms an angle arg(M(U)) + θ + π/2 with the positive real axis.284

Assume R′Z(0) is not parallel to L. Then since R′Z(0) 6= 0, RZ(t) crosses ∂∆ at285

t = 0. So RZ(t) 6⊆ ∆ for some t. But we know by subsection 2.3 that RZ(t) ⊆ ∆ for286

all t. We have a contradiction. So our assumption is false and we know that R′Z(0)287
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10 A. SHARMA

is parallel to L. So L also forms an angle arg(M(U)) + θ+ π/2 with the positive real288

axis.289

This completes our proof of Theorem 3.4.290

8. Proof of Corollary 3.5. This is a simple consequence of Theorem 3.4.291

Proof. ∂∆ has a unique tangent line at P.292

So if F1 = eiθ1H1 and F2 = eiθ2H2, then293

arg(M(U1)) + θ1 + π/2 = arg(M(U2)) + θ2 + π/2294

Since M(U1) = M(U2),295

arg(M(U1)) + θ1 + π/2 = arg(M(U1)) + θ2 + π/2296

giving297

θ1 = θ2298

9. Conjectures. Before we state our conjectures we define a region ∆S which299

is a restriction of ∆. See (1.1).300

∆S =
{
det(A0 +OB0O

∗) : O ∈ O(n)
}

(9.1)301

where O(n) is the set of n× n real orthogonal matrices.302

As proven in [3], p.207, theorem 4.4.7, a matrix is normal and symmetric if and303

only if it is diagonalizable by a real orthogonal matrix.304

Therefore ∆S is the set of determinants of sums of normal, symmetric matrices305

with prescribed eigenvalues. We know ∆S contains all the permutation points.306

Conjecture 9.1 (Restricted Marcus-de Oliveira Conjecture).307

∆S ⊆ co
{∏

(ai + bσ(i))
}

308

Conjecture 9.2 (Boundary Conjecture).309

∂∆ ⊆ ∂∆S310

Theorem 9.3. If the boundary conjecture is true, the restricted Marcus-de Oliveira311

conjecture imples the full Marcus-de Oliveira conjecture.312

Proof. Suppose we know Conjecture 9.1 is true. Then ∆S along with its boundary313

is within the convex-hull. Suppose we also know that Conjecture 9.2 is true. Then we314

know that ∂∆ is inside the convex-hull. Can we have a unitary matrix U such that315

M(U) is outside the convex-hull? No, because that would mean we have points of ∆316

on both the inside and outside of ∂∆. This is impossible since ∆ is a closed set (See317

the paragraph on the compactness of U(n) in section 1). So ∆ is within the convex318

hull proving Conjecture 1.1.319
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10. Conclusion. We hope that further analysis on boundary matrices of ∆,320

either by expanding on the results in this paper, or novel research, leads to a proof of321

the Boundary Conjecture. Then proving the full Marcus-de Oliveira conjecture would322

amount to proving the restricted conjecture. Whether the restricted conjecture is any323

easier to prove is unknown, but it’s an avenue worth exploring.324
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