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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA
DETERMINANTAL CONJECTURE*

AMEET SHARMAT

Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the
region in the complex plane covered by the determinants of the sums of two normal matrices with
prescribed eigenvalues. Call this region A. This paper focuses on boundary matrices of A. We prove
3 theorems regarding these boundary matrices. We propose 2 conjectures related to the Marcus-de
Oliveira conjecture and prove a theorem related to these 2 conjectures. This paper uses ideas from

(1].
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1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-
ture. Given two normal matrices A and B with prescribed eigenvalues ay, as...a,, and
b1, ba...b,, respectively, det(A + B) lies within the region:

co{ H(ai + bg(i))}

where o € S,,. co denotes the convex hull of the n! points in the complex plane. As
described in [1], the problem can be restated as follows. Given two diagonal matrices,
Ag = diag(ay,as...a,) and By = diag(by, by...by,), let:

A= {det(Ao + UBOU*) U e U(n)} (11)

where U (n) is the set of n x n unitary matrices. Then we can write the conjecture
as:

CONJECTURE 1.1 (Marcus-de Oliveira Conjecture).
A C co{ [](ai + b))} (1.2)

Let
M(U) Zdet(A0+UBoU*) (13)

Then the points forming the convex hull are at M (Py), M (Py)...M (Py1—1), where
the P’s are the n x n permutation matrices. We will refer to these as permutation
points from now on.

Note that U(n) is a compact set. A continuous image of a compact set is compact.
Therefore A is compact. And so A is a closed set, because a compact subset of any
metric space (in this case the complex numbers) is closed.
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2 A. SHARMA

33 The paper is organized as follows. In section 2 we define terms and functions
34 that will be used in the rest of the paper. These definitions are necessary to state
35 our results. In section 3, we state 3 theorems, 1 lemmas and 1 corollary that form
36 the bulk of the paper. We state them in the order they are proved. The lemma
37 is an intermediate tools for proving the 3 theorems. The corollary is an interesting
38 consequence of the third theorem. In sections 5-10 we prove all of these. In section 9,
39 we state 2 conjectures and prove a theorem related to these conjectures. In section 10,
40 we conclude.

11 2. Preparatory definitions.

42 2.1. Terms. Given a unitary matrix U and square, diagonal matrices Ay and
13 By all of dimension n x n,

14 o If M(U) is a point on OA (the boundary of A), we call U a boundary matrix

45 of A. See (1.1) and (1.3).

46 o We define the B-matrix of U as UByU*.

47 o We define the C-matrix of U as Ag + UByU*.

A8 e We define the F-matrix of U as C~1 A4y — AoC~! where C is the C-matrix of
19 U. Note that the F-matrix is only defined when C is invertible, or equivalently

0 when det(C) = M(U) # 0. See (1.3). Also note that since Ay is diagonal, the
1 F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes
2 from [1], Theorem 4, p.27.

53 Throughout the rest of the paper, we’ll assume Ay and By are defined, even if we

54 don’t explicitly mention them.

5 2.2. Multidirectional Unitary Matrix. Given a unitary matrix U with M (U) #}
6 0 and F-matrix F. If there exist two skew-hermitian matrices Z; and Zs such that

57 tr(Z1F) and tr(Z2F) are both non-zero, non-collinear vectors in the complex-plane,

58 we say U is multidirectional.

59 2.3. Functions given a unitary matrix U. Given a unitary matrix U with
60  B-matrix B, C-matrix C and F-matrix F. Given M (U) # 0. For every skew-hermitian
61 matrix Z, we define the following functions

62 let
63 Uz(t) = (eZt)U (2.1)

64 where t is any real number.

65 Since the exponential of a skew-hermitian matrix is unitary, Uz(t) is a function
66 of unitary matrices.

67 let

68 Bz(t) = Uz (t) BoUL(t) (2.2)

69 let Cz(t) = Ay + By (t)
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70 We note that Bz(0) = B and Cz(0) = C.

71 let
72 Ry(t) = det(Cz(t)) (2.3)
73 We can see by (1.1) that Rz(t) C A.

74 Rz(O) = Ay +UByU*
75 So by (1.3) we see that Rz(0) = M (U).
76 So all the Rz(t) functions go through M (U) at t = 0.

77 We shall refer to these functions in the rest of the paper with the same notation
78 (for example Rz (¢) for a skew-hermitian matrix Z. Rz, (¢) for a skew-hermitian matrix
79 Zp). Note that Rz (t) requires Ag, By, U and Z in order to be defined. But we won’t
80 explicitly mention Ag and By. All the results in this paper assume there are two
81 diagonal matrices Ag and By defined in the background even if we don’t explicitly
82  mention them.

83 3. Main Results.

84 LEMMA 3.1. Given a unitary matriz U with M(U) # 0. Let F be its F-matriz.
85 Then R, (0) = M(U)tr(ZF) for any skew-hermitian matriz Z.

86 THEOREM 3.2. Given a unitary matric U with M(U) # 0. If U is a boundary
87 matriz then U is not multidirectional.

88 THEOREM 3.3. Given a boundary matriz U with M(U) # 0 with F-matriz F. If

89 F #0, F can be written uniquely in the form F = e H where H is a zero-diagonal
90  hermitian matriz and 0 < 0 < 7.

91 THEOREM 3.4. Given a boundary matriz U with M (U) # 0 and F-matriz F # 0.
92 So we know that F = ¢’ H for some real 0 < 0 < w. Given OA has a tangent line L
93 at M(U).Then L makes an angle arg(M(U)) 4+ 0 + w/2 with the positive real axis.

94 COROLLARY 3.5. Given a point P in the complex plane such that P # 0, P € 0A
95 and OA has a tangent at P. Given two different unitary matrices Uy and Us, with
96 corresponding non-zero F-matrices Fy and Fy, such that M(Uy) = M(Us) = P. Then
97 Fy = eH, and Fy = e Hy for some unique 0 < 0 < 7.

98 4. Proof of Lemma 3.1. The proof given here uses ideas from [1], Theorem 4,
99  p.26-27. But the proof given here is complete on its own.

100 Proof. We're given a unitary matrix U where M (U) # 0. So its F-matrix is well-
101 defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an
102 arbitrary skew-hermitian matrix Z.

103 We can use Jacobi’s formula [5] on (2.3) to find R/, (t)
104 R, (t) = tr(det(Cz(t))C, ()C% (1)) (4.1)
105 R,(0) = tr(det(Cz(0))C,(0)C%(0))

106 We can substitute C for C'z(0).
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107 R, (0) = tr(det(C)C~*C%(0))
108 R, (0) = det(C)tr(C~1C%(0))
109 We know that C7(t) = B/ (t) so
110 R, (0) = det(C)tr(C~*B%(0))
111 By subsection 2.1 and (1.3) we know that det(C) = M(U)
112 R%(0) = M(U)tr(C~'B%(0))
113 Using (2.2),
dUz(t dU(t
114 B (t) = Us( )BOU;(t) +Uz(t)Bo 2(1)
dt dt
115 Using (2.1),
116 Wal) — ze2ty
117 Us(t) = (U*)e 2t
118 dUd%(t) =—(U*)Ze %t
119 Substitute these and (2.1) into (4.3)

120 B (t) = ZeZ'UBy(U*)e %t — (eZY)U By (U*) Ze~ %1

121 B, (0) = ZUBy,U* —UBy(U*)Z

122 Using the definition of the C-matrix in subsection 2.1

123 B%,(0) = Z(C — Ay) — (C — Ay)Z

124 B,(0)=2ZC - ZAy— CZ+ AoZ

125 C7'BL(0)=C71ZC - C~1ZAy - Z+C 1A Z

126 tr(C~1B%(0)) = tr(C~1ZC) — tr(C71Z Ag) — tr(Z) + tr(C~1 Ao Z)

127 The first and third terms cancel since similar matrices have the same trace.

128 tr(C—1BY(0)) = —tr(C~1ZAg) + tr(C~1 Ay Z).

129 Using the idea that tr(XY) = tr(Y X)

130 tr(C1B%(0)) = —tr(ZAoC~Y) + tr(ZC~1 Ap)
131 tr(C~1B%(0)) = tr(ZC~1Ag) — tr(ZAoC~1)
132 tr(C~1B%(0)) = tr(Z(C~1Ag — ApC™1))

133 tr(C~1B%(0)) = tr(ZF)

134 Substitute this into (4.2) to get
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R,(0) = M(U)tr(ZF) (4.4)
This proves Lemma 3.1. O

5. Proof of Theorem 3.2. We will prove the contrapositive. ie: We'll start
with a multidirectional matrix U, and prove that it is not a boundary matrix.

Proof. Given a unitary matrix U with M(U) # 0. Let F be its F-matrix and C
be its C-matrix.

Assume U is multidirectional. See subsection 2.2.

Then there exist two skew-hermitian matrices Z; and Z5 such that

are both non-zero and non-collinear.
We know by Lemma 3.1 that:

R, (0) = M(U)tr(Z,F)

R, (0) = M(U)tr(ZoF)

substitute in (5.1) and (5.2),

/(0) = M(U)T:

R5(0) = M(U)T>

Since we know 7 and T3 are non-collinear, R/, (0) and R, (0) are non-collinear.
They are also non-zero since 17,75, M(U) # 0. Therefore they form a linear basis
for all the complex numbers over the real numbers. Let Q be an arbitrary non-zero
complex number.

Q = Ry, (0) + bR}, (0) where a and b are real.
Q = a(M(U))Ty + b(M(U))Ts

Q = M(U)(aTy + bTy)

substitute in (5.1) and (5.2),

Q = M(U)(tr(aZiF) + tr(bZo F))

Q = MU)tr((aZy + bZs)F)

let Z3 = aZy + bZs

Q = M(U)tr(ZsF)
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Note that Z3 is also a skew-hermitian matrix.

Again by Lemma 3.1, we know that,

Ry, (0) = M(U)tr(ZsF) = Q

R, (0) # 0 since we chose Q to be non-zero.

Therefore since R, (0) # 0, Rz,(t) goes through M (U) in a direction parallel to
Q. But Q was chosen arbitrarily. So through M (U) there exist curves Rz, (t) C A
going in all possible directions. Therefore M (U) is an internal point of A. So it’s not a
boundary point. Therefore U is not a boundary matrix. That gives us Theorem 3.2.0

6. Proof of Theorem 3.3. For n = 3, we define the following 12 skew-hermitian

matrices with zero diagonal:

Zig =

Ly =

Z12; = Zo1;

0
i
0

o

O O .

0

o

o O O

0 0
Z1z3=10 0
10
[0 0
Z31=10 0
—1 0
0
213, = Z31: = |0
1

o O O

O O .

0 0
Zoz =10 0
0 1
(0 0
Z3a =10 0
0 -1
Zo3i = L32;

0
0
0

0
0
i

0
i
0

Note that the commas do not indicate tensors. They’re just used here as a label
to distinguish imaginary and real matrices.

We define Z,;, and Zg; similarly for all n > 3, where a # b. For a given n we
have n(n — 1) real matrices and n(n — 1) imaginary matrices.

Proof. Given a boundary matrix U with M(U) # 0. Let F be its F-matrix. We
know that F is zero-diagonal by subsection 2.1.

Suppose Fyp = Fopr + 1 Fyp,; where Fyp » and Fgp ; are real numbers.

tT(ZabF) = Fop — Fpq

tr(ZapiF) = (Fap + Fpa)i

Substitute in for F,;, and Fp,

tr(ZabF) = (Fab,r

- Fba,r) + Z.(Fav,b,i - Fba,i)

tr<Zab,iF) = (_Fab,i - Fba,i) + Z'<F‘ab,r + Fba,r)

(Note that if both of the above are zero, we get that F,, = Fy, = 0. Soif Fy, # 0
at least one of the above is non-zero.)
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192 By Theorem 3.2, we know that U is not multidirectional. So either tr(Z,,F) and
193 tr(Zew,i F') are collinear as vectors in the complex plane or at least one of them is zero.
194 In either case we know that

195 (Fabyi = Foai)(=Fabi — Foayi) = (Fabr + Foar) (Fapr — Fyayr)

196 We can simplify this to get:

197 Fyp+ Flyi = Fiy o + F

198 | Fab| = | Fpal

199 We can write:

200 Fop = |Fup| £L0as

201 Froo = |Fup| £0ba

202 In the 4 cases below, we will show that when F' # 0, we can get a representation

203 of F as F = e H where 6 is real and H is zero-diagonal and hermitian. After that
204 we will show that restricting 6 to 0 < 6§ < 7 gives us a unique representation.

205 Case 1: |F,;| is non-zero for only one pair (a,b) where a # b

206 In this case,

207 H = e~ (0art0a)/2 P ig g hermitian matrix, and we’re finished.

208 Case 2: |F,;| is non-zero for multiple pairs (a,b) where a # b. For any
2

209 Z, when tr(ZF) is non-zero, it is imaginary.

210 If |Fap| # 0, then by (6.1) and (6.2), 045 = —0pq. So our F-matrix is already
211 hermitian, and we’re done.

212 Case 3: |F,;| is non-zero for multiple pairs (a,b) where a # b. For any
213 Z, when tr(ZF) is non-zero, it is real.

214 If |Fup| # 0, then by (6.1) and (6.2), 0, = 7 — Opq.

215 H = ¢~ (3)F is hermitian and we’re done.

216 Case 4: |F,;| is non-zero for multiple pairs (a,b) where a # b. For any
217 Z, when tr(ZF) is non-zero, it isn’t real or imaginary.

218 Suppose |Fyp| # 0 and |Feq| # 0

219 if tr(ZuwF) # 0, then

220 slope of tr(ZF) = % =— cot(%)

221 if tr(Zgp i F) # 0:

222 slope of tr(Zg i F) = % = — cot( farflia)

223 We know that since |F,p| # 0, at least one of tr(Zyp F') or tr(Za;F) is non-zero.
224 similarly,

This manuscript is for review purposes only.



225

226

227

228

229

230

234
235

236

237

238

239

240

249

[\~

ORI
[SLENG
W N

A. SHARMA

if tr(ZeaF) # 0, then

slope of tr(Z.qF) = — cot(Zeatfae)
if tr(ZeaiF') # 0:

slope of tr(Zeq i F) = — cot(%)

We know that since |Feq| # 0, at least one of tr(Z.qF) or tr(Z.q;F) is non-zero.

So we have:

cot(ec”l?ﬂ) = cot(%) (since U is not multidirectional)
therefore:

06‘1;0“’0 = 0‘“’;9”“ + nm for some integer n.

We can freely adjust 6.q by —2nm. It makes no difference since |Fq|Z0.q4 =

|ch|4(06d — 2n7r)

So after the adjustment we have:

OcatO0ic _ Oap+0ba
2 - 2 :

We make the same adjustment for any pair (¢, d) # (a,b) where |F 4| # 0
We set g = %

let H=ePF

For some pair (x,y) where z # y and |Hy,| # 0,

Hyy = |Hyyl| Loy

Upy = _(%) + ewy

Oy = _(%) + Oya

But because of our adjustment,

Oab+0by _ Ooy+0ya
2 - 2

Plugging this into the above two formulas we have

Ayg = _(meggym)

Therefore H is zero-diagonal, with transpositional elements of equal magnitude

and opposite arguments. Therefore H is hermitian.

So in all 4 cases we can write F' = e'® H for some hermitian matrix H and some

real 5. But we’ve not arrived at a unique representation for F yet.

Suppose
F =M1 H =¢P2H,
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eiBr=F2) [T, = H,

eiBr=P2) [, = H, = H = ei(ﬁrﬁl)Hf = ¢i(P2=P1) f,
So

(eBr=F2) _ ¢i(B2=B)y[ =0

Since F' # 0, we know H; # 0 so

el(B1=P2) _ ¢i(B2—P1) — ()

(i(B1—B2) — gi(Ba—B1)

Then

b1 — B2 = B2 — b1 + 2kw, for any integer k

p1 = B2+ km

So if we restrict 8 to 0 < 8 < 7, we have a unique representation since k is forced
to 0.

This completes our proof of Theorem 3.3. ]

7. Proof of Theorem 3.4. Given a boundary matrix U with M (U) # 0 with
F-matrix F' # 0. Given A has a tangent line L at M (U).

Proof. By Theorem 3.3 we know that

F=¢H (7.1)
for some real 0 < # < 7 and some zero-diagonal hermitian matrix H.

We can substitute (7.1) into (6.1) and (6.2) and simplify to get:

tr(Zap F) = 2H gy, ;¢*0+™/2) (7.2)

tr(Zap,iF) = 2H g e 0T/ (7.3)

Assume the above two equations are always 0 for all pairs (a,b). Then H =0
and by (7.1) and F = 0. But we are given that F' # 0, so we have a contradiction.
So our assumption is false and for some skew-hermitian matrix Z, tr(ZF) # 0. So by
Lemma 3.1 we know that R, (0) = M(U)tr(ZF) # 0.

By (7.2) and (7.3) we see that tr(ZF) forms an angle of (647 /2) with the positive
real axis (By Theorem 3.2 U is not multidirectional so any non-zero tr(ZF) forms
the same angle with the positive real axis. So the angle is always 6 4+ 7/2) Therefore
R',(0) forms an angle arg(M(U)) + 0 4+ 7/2 with the positive real axis.

Assume R',(0) is not parallel to L. Then since R’ (0) # 0, Rz(t) crosses OA at
t=0. So Rz(t) £ A for some t. But we know by subsection 2.3 that Rz(t) C A for
all t. We have a contradiction. So our assumption is false and we know that R/, (0)
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288 is parallel to L. So L also forms an angle arg(M(U)) + 6 + 7/2 with the positive real
289  axis.

290 This completes our proof of Theorem 3.4. O
291 8. Proof of Corollary 3.5. This is a simple consequence of Theorem 3.4.

292 Proof. OA has a unique tangent line at P.

293 So if Fy = €1 H; and F» = %2 H,, then

294 arg(M(Uy)) + 01 + 7/2 = arg(M(Us)) + 03 + 7/2

295 Since M (Uy) = M (Us),

296 arg(M(Uy)) + 01 + 7/2 = arg(M(Uy)) + 03 + /2

297 giving

298 0, =6,

299 9. Conjectures. Before we state our conjectures we define a region Ag which

300 is a restriction of A. See (1.1).

301 Ag = {det(Ay + OByO*) : O € O(n)} (9.1)
302 where O(n) is the set of n x n real orthogonal matrices.

303 As proven in [3], p.207, theorem 4.4.7, a matrix is normal and symmetric if and
304 only if it is diagonalizable by a real orthogonal matrix.

305 Therefore Ag is the set of determinants of sums of normal, symmetric matrices
306 with prescribed eigenvalues. We know Ag contains all the permutation points.

307 CONJECTURE 9.1 (Restricted Marcus-de Oliveira Conjecture).

308 Ag C cof H(ai + bo(i)) }

309 CONJECTURE 9.2 (Boundary Conjecture).

310 OA C 0Ag

311 THEOREM 9.3. If the boundary conjecture is true, the restricted Marcus-de Oliveirdll

312 conjecture imples the full Marcus-de Oliveira conjecture.

313 Proof. Suppose we know Conjecture 9.1 is true. Then Ag along with its boundary
314 is within the convex-hull. Suppose we also know that Conjecture 9.2 is true. Then we
315 know that OA is inside the convex-hull. Can we have a unitary matrix U such that
316 M(U) is outside the convex-hull? No, because that would mean we have points of A
317 on both the inside and outside of OA. This is impossible since A is a closed set (See
318 the paragraph on the compactness of U(n) in section 1). So A is within the convex
319 hull proving Conjecture 1.1. O
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20 10. Conclusion. We hope that further analysis on boundary matrices of A,
21 either by expanding on the results in this paper, or novel research, leads to a proof of
22 the Boundary Conjecture. Then proving the full Marcus-de Oliveira conjecture would
23 amount to proving the restricted conjecture. Whether the restricted conjecture is any
324 easier to prove is unknown, but it’s an avenue worth exploring.
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