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Abstract. We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the4
region in the complex plane covered by the determinants of the sums of two normal matrices with5
prescribed eigenvalues. Call this region ∆. This paper focuses on boundary matrices of ∆. We prove6
4 theorems regarding these boundary matrices. We propose 2 conjectures related to the Marcus-de7
Oliveira conjecture.8
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1. Introduction. Marcus [4] and de Oliveira [2] made the following conjec-12

ture. Given two normal matrices A and B with prescribed eigenvalues a1, a2...an and13

b1, b2...bn respectively, det(A+B) lies within the region:14

co
{∏

(ai + bσ(i))
}

15

where σ ∈ Sn. co denotes the convex hull of the n! points in the complex plane. As16

described in [1], the problem can be restated as follows. Given two diagonal matrices,17

A0 = diag(a1, a2...an) and B0 = diag(b1, b2...bn), let:18

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}

(1.1)19

where U(n) is the set of n×n unitary matrices. Then we can write the conjecture20

as:21

Conjecture 1.1 (Marcus-de Oliveira Conjecture).22

∆ ⊆ co
{∏

(ai + bσ(i))
}

(1.2)23

Let24

Rm(U) = det(A0 + UB0U
∗). (1.3)25

Then the points forming the convex hull are at Rm(P0), Rm(P1)...Rm(Pn!−1),26

where the P’s are the n× n permutation matrices. We will refer to these as permu-27

tation points from now on.28

Note that U(n) is a compact set. A continuous image of a compact set is compact.29

Therefore ∆ is compact. And so ∆ is a closed set, because a compact subset of any30

metric space (in this case the complex numbers) is closed.31
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2 A. SHARMA

The paper is organized as follows. In section 2 we define terms that will be32

used in the rest of the paper. These terms are necessary to state our main results.33

In section 3, we state our 4 main theorems. section 4 provides a proof of the first34

theorem, section 5 provides a proof of the second, section 6 provides a proof of the35

third and section 7 provides a proof of the fourth. In section 8, we state 2 conjectures.36

In section 9, we conclude.37

2. Terms and definitions.38

2.1. Boundary matrix.39

• Given a point P on ∂∆ (the boundary of ∆) and given a unitary matrix U40

such that Rm(U) = P , we call U a boundary matrix of ∆. See (1.3).41

• Given a boundary matrix U. If ∂∆ is smooth at Rm(U) and U is not a42

permutation matrix, we say U is a regular boundary matrix.43

2.2. Properties of unitary matrices given A0 and B0. In this section, we44

define four properties of unitary matrices that will be very useful when examining45

boundary matrices of ∆.46

The first three of these properties are matrices related to U. These matrices are47

defined in [1], p.27. They provide a language to talk about unitary matrices within48

the context of the determinantal conjecture.49

B-matrix50

B = UB0U
∗ (2.1)51

C-matrix52

C = A0 + UB0U
∗ (2.2)53

Using (1.3), Rm(U) = det(C)54

F-matrix55

F = BC−1 − C−1B56

We can change the F-matrix into a more useful form:57

F = (C −A0)C−1 − C−1(C −A0)58

59

F = C−1A0 −A0C
−1 (2.3)60

The F-matrix is only defined when C is invertible or equivalently Rm(U) 6= 0.61

Since A0 is diagonal, we see that F is a zero-diagonal matrix.62

As demonstrated in [1], p.27, the F-matrix is 0 if and only if U is a permutation63

matrix.64

The fourth property is conditional. Given a unitary matrix U with Rm(U) 6= 065

and with F-matrix F. Suppose there exist two skew-hermitian matrices Z1 and Z2 such66

that tr(Z1F ) and tr(Z2F ) are both non-zero and non-collinear vectors in the complex67
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE3

plane. Then we say that U is a multidirectional matrix. A multidirectional matrix68

must have a non-zero F-matrix to allow those non-zero traces. So a permutation69

matrix cannot be multidirectional because its F-matrix is 0.70

Note that these properties require an A0 and B0 to be defined. Throughout the71

paper we will assume there’s a defined A0 and B0 in the background. We will not72

mention them explicitly in order to simplify our language. For example when we73

say ”the C-matrix of a unitary matrix U”, it is clear that there’s an unmentioned74

A0 and B0 according to which the C-matrix of U is defined. It is the same thing75

with the terms ”boundary matrix” and ”regular boundary matrix”. Obviously it is76

meaningless for a unitary matrix to be a boundary matrix ”in general”. These terms77

only make sense in the context of A0, B0 and the corresponding ∆. So we’ll assume78

this context has been defined.79

3. Main Theorems.80

Theorem 3.1. Given U is a non-permutation unitary matrix with Rm(U) 6= 081

and F-matrix F. Given an arbitrary skew-hermitian matrix Z. There exists a curve82

Rf (t) ⊆ ∆, where t is real, such that Rf (0) = Rm(U) and R′f (0) = Rm(U)tr(ZF ).83

Theorem 3.2. If U is a boundary matrix, then U is not multidirectional.84

Theorem 3.3. Given a boundary matrix U such that Rm(U) 6= 0. Then its F-85

matrix has the form F = eiθH where H is a zero-diagonal hermitian matrix.86

Theorem 3.4. Given a regular boundary matrix U such that Rm(U) 6= 0. Let87

F = eiθH be the F-matrix of U. let l be the tangent line to ∂∆ at the boundary point.88

Then l makes an angle arg(Rm(U)) + θ + π/2 with the positive real axis.89

4. Proof of Theorem 3.1. This theorem is apparent from [1], p.27, but it is90

not stated explicitly there. It is worth proving explicitly here as it will be used for91

the other theorems.92

Before we can prove the theorem we need to set up some tools. Our aim is to93

examine boundary matrices of ∆. Towards this aim, it is useful to consider smooth94

functions of unitary matrices going through these boundary matrices and see how95

they behave under (1.3). For this reason, we introduce the functional form of (1.3).96

Rf (t) = det(A0 + Uf (t)B0U
∗
f (t)) (4.1)97

where t is real and Uf (t) is some smooth function of unitary matrices.98

Every unitary matrix can be written as an exponential of a skew-hermitian matrix.99

So we can write:100

Uf (t) = eSf (t). (4.2)101

where Sf (t) is a smooth function of skew hermitian matrices102

For small ∆t,103

Uf (t+ ∆t) = (eSf (t+∆t))104
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4 A. SHARMA

Uf (t+ ∆t) = (eSf (t)+(∆t)S′
f (t))105

Uf (t+ ∆t) = (e(∆t)S′
f (t))Uf (t)106

If we take the above function and plug it into Rf (t) we’ll get Rf (t + ∆t), but it107

won’t be in a form useful to us. We use a result from [1], p.27 for this purpose. In108

order to state this result within the context of this paper, we first need the functional109

forms of the B-matrix, C-matrix, F-matrix (these were defined in section 2):110

Bf (t) = Uf (t)B0U
∗
f (t) (4.3)111

Cf (t) = A0 +Bf (t) (4.4)112

Ff (t) = C−1
f (t)A0 −A0C

−1
f (t) (4.5)113

Note, Ff (t) is only defined if Rf (t) 6= 0. Also Ff (t) = 0 only when Uf (t) is a114

permutation matrix.115

Now we can state the result from [1]:116

When Ff (t) 6= 0,117

Rf (t+ ∆t) = Rf (t) + (∆t) det(Cf (t))tr(S′f (t)Ff (t)) +O((∆t)2) (4.6)118

119
R′f (t) = det(Cf (t))tr(S′f (t)Ff (t)) (4.7)120

Now we have the tools needed to prove Theorem 3.1.121

Proof. Given any non-permutation unitary matrix U with Rm(U) 6= 0. let C122

be the C-matrix of U. let F be the F-matrix of U. Given Z is some arbitrary skew-123

hermitian matrix. We can find a skew-hermitian matrix S such that U = eS .124

We choose:125

Sf (t) = S + tZ (4.8)126

Note that Sf (t) is a smooth function of skew-hermitian matrices. We use it with127

(4.1),(4.2),(4.4),(4.5) and (4.7) to get Rf (t), Uf (t), Cf (t), Ff (t) and R′f (t). Note that128

Uf (0) = U , the unitary matrix we’re originally given. The choice of t = 0 is merely129

for simplicity and has no special significance. We could time-shift Sf (t) to the right130

by t1 to make Uf (t1) = U instead.131

Note that Cf (0) = C132

Note that Ff (0) = F133

Note that Rf (0) = Rm(U). See (1.3) and (4.1).134

R′f (t) = det(Cf (t))tr(ZFf (t))135
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE5

R′f (0) = det(Cf (0))tr(ZFf (0))136

R′f (0) = det(C)tr(ZF )137

therefore138

R′f (0) = Rm(U)tr(ZF ) (4.9)139

This proves Theorem 3.1.140

5. Proof of Theorem 3.2. We will prove the contrapositive. ie: We’ll start141

with a multidirectional matrix U, and prove that it is not a boundary matrix.142

Proof. Given we have a multidirectional matrix U. Let F be its F-matrix and143

C-matrix C. We know Rm(U) = det(C) 6= 0 and we know F is non-zero. See the144

discussion on multidirectional matrices in the second last paragraph of section 2.145

There exist two skew-hermitian matrices Z1 and Z2 such that146

T1 = tr(Z1F ) (5.1)147

T2 = tr(Z2F ) (5.2)148

are both non-zero and non-collinear.149

By Theorem 3.1, there exist two functions R1(t) and R2(t) such that R1(0) =150

R2(0) = Rm(U) and such that151

R′1(0) = Rm(U)tr(Z1F )152

R′2(0) = Rm(U)tr(Z2F )153

substitute in (5.1) and (5.2),154

R′1(0) = Rm(U)T1155

R′2(0) = Rm(U)T2156

Since we know T1 and T2 are non-collinear, R′1(0) and R′2(0) are non-collinear.157

They are also non-zero. Therefore they form a linear basis for all the complex numbers158

over the real numbers. Let Q be an arbitrary complex number.159

Q = aR′1(0) + bR′2(0) where a and b are real.160

Q = a(Rm(U))T1 + b(Rm(U))T2161

Q = Rm(U)(aT1 + bT2)162

substitute in (5.1) and (5.2),163

Q = Rm(U)(tr(aZ1F ) + tr(bZ2F ))164

Q = Rm(U)tr((aZ1 + bZ2)F )165

This manuscript is for review purposes only.



6 A. SHARMA

let Z3 = aZ1 + bZ2166

Q = Rm(U)tr(Z3F )167

Note that Z3 is also a skew-hermitian matrix.168

Again by Theorem 3.1, there exists a function R3(t) such that169

R3(0) = Rm(U)170

and171

R′3(0) = Rm(U)tr(Z3F ) = Q172

Therefore R3(t) goes through Rm(U) in a direction parallel to Q. Q was chosen173

arbitrarily. So through Rm(U) there exists curves R3(t) ⊆ ∆ going in all directions.174

Therefore Rm(U) is an internal point of ∆. So it’s not a boundary point. Therefore175

U is not a boundary matrix. That gives us Theorem 3.2.176

6. Proof of Theorem 3.3. For n = 3, we define the following 12 skew-hermitian177

matrices with zero diagonal:178

Z12 =

0 −1 0
1 0 0
0 0 0

 Z13 =

0 0 −1
0 0 0
1 0 0

 Z23 =

0 0 0
0 0 −1
0 1 0

179

Z21 =

 0 1 0
−1 0 0
0 0 0

 Z31 =

 0 0 1
0 0 0
−1 0 0

 Z32 =

0 0 0
0 0 1
0 −1 0

180

Z12,i = Z21,i =

0 i 0
i 0 0
0 0 0

 Z13,i = Z31,i =

0 0 i
0 0 0
i 0 0

 Z23,i = Z32,i =

0 0 0
0 0 i
0 i 0

181

Note that the commas do not indicate tensors. They’re just used here as a label182

to distinguish imaginary and real matrices.183

We define Zab and Zab,i similarly for all n > 3, where a 6= b. For a given n we184

have n(n− 1) real matrices and n(n− 1) imaginary matrices.185

Proof. Given a boundary matrix U with Rm(U) 6= 0. Let F be its F-matrix. We186

know that F is zero-diagonal by (4.5).187

Suppose Fab = Fab,r + iFab,i where Fab,r and Fab,i are real numbers.188

tr(ZabF ) = Fab − Fba189

tr(Zab,iF ) = (Fab + Fba)i190

Substitute in for Fab and Fba191
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BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE7

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i) (6.1)192

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r) (6.2)193

By Theorem 3.2, we know that U is not multidirectional.194

Therefore195

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)196

We can simplify this to get:197

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i198

|Fab| = |Fba|199

We can write:200

Fab = |Fab|∠θab201

Fba = |Fab|∠θba202

There are multiple cases we need to deal with.203

Case 1: F-matrix is 0204

F=0 is hermitian so we’re finished.205

Case 2: |Fab| is non-zero for only one pair (a,b) where a 6= b206

In this case,207

H = e−(θab+θba)/2F is a hermitian matrix, and we’re finished.208

Case 3: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For an209

arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it is imaginary.210

If |Fab| 6= 0, then by (6.1) and (6.2), θab = −θba. So our F-matrix is already211

hermitian, and we’re done.212

Case 4: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For an213

arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it is real.214

If |Fab| 6= 0, then by (6.1) and (6.2), θab = π − θba.215

H = e−(π2 )F is hermitian and we’re done.216

Case 5: |Fab| is non-zero for multiple pairs (a,b) where a 6= b. For217

an arbitrary skew-hermitian Z, when tr(ZF) is non-zero, it isn’t real or218

imaginary.219

Suppose |Fab| 6= 0 and |Fcd| 6= 0220

if tr(ZabF ) 6= 0, then221
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8 A. SHARMA

slope of tr(ZabF ) = sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba2 )222

if tr(Zab,iF ) 6= 0:223

slope of tr(Zab,iF ) = cos(θab)+cos(θba)
− sin(θab)−sin(θba) = − cot( θab+θba2 )224

similarly,225

slope of tr(ZcdF ) = − cot( θcd+θdc
2 )226

or227

slope of tr(Zcd,iF ) = − cot( θcd+θdc
2 )228

cot( θcd+θdc
2 ) = cot( θab+θba2 )229

therefore either:230

θcd+θdc
2 = θab+θba

2231

or,232

θcd+θdc
2 = θab+θba

2 + π233

For some specific x, y where x 6= y and |Fxy| 6= 0234

let β =
θxy+θyx

2235

let H = e−iβF236

For any a 6= b,237

Hab = |Hab|∠αab238

αab+αba
2 = 0 or π239

Therefore H is zero-diagonal, with transpositional elements of equal magnitude240

and opposite arguments. Therefore H is hermitian.241

So in all 5 cases we can write F = eiβH for some hermitian matrix H and some242

real β.243

This completes our proof of Theorem 3.3.244

7. Proof of Theorem 3.4. Given a regular boundary matrix U. Let F be the245

F-matrix of U.246

Proof. Therefore by Theorem 3.3 we know that247

F = eiθH (7.1)248

for some real θ and some zero-diagonal hermitian matrix H.249

We can substitute (7.1) into (6.1) and (6.2) and simplify to get:250

tr(ZabF ) = 2Hab,ie
i(θ+π/2) (7.2)251
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tr(Zab,iF ) = 2Hab,re
i(θ+π/2) (7.3)252

As expected the vectors are collinear.253

Since U is a regular boundary matrix, ∂∆ is smooth at Rm(U) ie: the tangent to254

the curve exists at Rm(U).255

So using Theorem 3.1, we see that the tangent line forms an angle arg(Rm(U)) +256

θ + π/2 with the positive real axis. This completes our proof of Theorem 3.4.257

8. Conjectures. Before we state our conjectures we define a region ∆S which258

is a restriction of ∆. See (1.1).259

∆S =
{
det(A0 +OB0O

∗) : O ∈ O(n)
}

(8.1)260

where O(n) is the set of n× n real orthogonal matrices.261

As proven in [3], p.207, theorem 4.4.7, a matrix is normal and symmetric if and262

only if it is diagonalizable by a real orthogonal matrix.263

Therefore ∆S is the set of determinants of sums of normal, symmetric matrices264

with prescribed eigenvalues. We know ∆S contains all the permutation points.265

Conjecture 8.1 (Restricted Marcus-de Oliveira Conjecture).266

∆S ⊆ co
{∏

(ai + bσ(i))
}

267

Conjecture 8.2 (Boundary Conjecture).268

∂∆ ⊆ ∂∆S269

Theorem 8.3. If the boundary conjecture is true, the restricted Marcus-de Oliveira270

conjecture imples the full Marcus-de Oliveira conjecture.271

Proof. Suppose we know Conjecture 8.1 is true. Then ∆S along with its boundary272

is within the convex-hull. Suppose we also know that Conjecture 8.2 is true. Then we273

know that ∂∆ is inside the convex-hull. Can we have a unitary matrix U such that274

Rm(U) is outside the convex-hull? No, because that would mean we have points of275

∆ on both the inside and outside of ∂∆. This is impossible since ∆ is a closed set276

(See the second last paragraph of section 1). So ∆ is within the convex hull proving277

Conjecture 1.1.278

9. Conclusion. We hope that further analysis on boundary matrices of ∆, either279

by expanding on the results in this paper, or novel research, leads to a proof of the280

Boundary Conjecture. Then proving the full Marcus-de Oliveira conjecture would281

amount to proving the restricted conjecture. Whether the restricted conjecture is any282

easier to prove is unknown, but it’s an avenue worth exploring.283
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