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ABSTRACT 

We analyze the quantum phase effects for point-like charges and electric (magnetic) dipoles un-

der a natural assumption that the observed phase for a dipole represents the sum of correspond-

ing phases for charges composing this dipole. This way we disclose two novel quantum phases 

for charged particles, which we named as complementary electric Aharonov-Bohm (A-B) phase 

and complementary magnetic A-B phase, respectively. We reveal that these phases are derived 

from the Schrödinger equation only in the case, where the operator of momentum is re-defined 

via the replacement of the canonical momentum of particle by the sum of its mechanical momen-

tum and interactional field momentum for a system of charged particles. The related alteration 

should be made in Klein-Gordon and Dirac equations, too, and implications of this modification 

are discussed. 

 

1. Introduction 

It is known that the Schrödinger equation with the standard Hamiltonian for a charged particle in 

an electromagnetic (EM) field 

 
e

m

cei
H 




2
ˆ

2
A

        (1) 

yield two quantum phase effects with the electric Aharonov-Bohm (A-B) phase [1] 

 dt
e




,          (2a) 

and the magnetic A-B phase [1] 

  sA d
c

e
A


 ,         (2b) 

respectively, where common notations are used. In particular,  is the scalar potential, A is the 

vector potential, and ds=vdt is the path element of a charged particle e, moving with the velocity 
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v. We emphasize that no other quantum phase effects for point-like charges could be derived 

with the Hamiltonian (1).  

After the publications [1, 2] it was realized that quantum phase effects exist for moving 

dipoles, too, and the first such effect had been predicted by Aharonov and Casher for a magnetic 

dipole moving in an electric field E [3], with the A-C phase  

   sEm d
c

mE 0

1


 ,        (3) 

m0 being the proper magnetic dipole moment. 

 Later, a similar quantum phase effect had been predicted for the electric dipole p0, mov-

ing in the magnetic field B, characterized by the He-McKellar-Wilkens (HMW) phase [4, 5] 

   sBp d
c

pB 0

1


 .        (4) 

 We emphasize that both phases (3) and (4) have been discovered experimentally (e.g., [6, 

7]). However, at that time it was unclear, whether eqs. (3), (4) give all possible phases for mov-

ing dipoles, because a commonly recognized expression for the Hamiltonian of electric/magnetic 

dipole in an EM field did not exist; moreover, even in the classical limit, a consensus with re-

spect to the force on a dipole was not achieved up to the modern time (see, e.g. [8-12]).  

 Recently, using the known expression for the Lagrangian density 2
FML   in ma-

terial media (where M


 is the magnetization-polarization tensor, and F


 is the tensor of EM 

field) and integrating it to a compact dipole, we explicitly determined the relativistic motional 

equation for a dipole and its Hamiltonian [13]. The corresponding expression for the quantum 

phase reads 

              ,
111111

//02//0200 dtdtd
c

d
c

d
c

d
c

BmEpsvBmsvEpsBpsEm


  

(5) 

where two novel phase effects emerge, 

   svEp d
c

pE //02

1



,    svBm d

c
mB //02

1



 ,   (6), (7) 

next to the phases (3), (4), being described respectively by the first and second terms of eq. (5) 

Here //0p , 
//0m  stand for the vector components collinear with v. The last two terms of eq. (5) 

define the Stark phase [14] and Zeeman phase [15], correspondingly, which do not explicitly de-

pend on the velocity of dipole, and are excluded from further analysis. 
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We notice that the phases (3), (4) and (6), (7) are related to each other via electric-

magnetic duality transformations EB, pm [16], and they correspond to all possible combina-

tions of the pair p, m with the pair E, B. 

 In order to determine the physical meaning of quantum phases (3), (4), (6), (7), we will 

consider a dipole as a compact electrically neutral bunch of point-like charges. This representa-

tion suggests that each of these phases should be explained via an appropriate phase effect for 

every charge of the bunch. So, we introduce quantum phase superposition principle based on su-

perposition principle for EM field. In section 2 we apply this idea to the analysis of the physical 

meaning of quantum phases for moving dipoles and find two novel phase effects for point-like 

charges,  

  sv de
c

c   2

1


,    svAv d

c

e
cA 3

 ,     (8), (9) 

named as the complementary electric A-B phase (c) and the complementary magnetic A-B 

phase (cA), correspondingly, which explain the origin of mE, pE, mB phases at the fundamental 

level. 

 In section 3 we emphasize that the phases (8) and (9) do not result from the Schrödinger 

equation with the standard Hamiltonian (1). We further reveal that the phases (8), (9) emerge in 

the case, where the operator of momentum for charged particle in an EM field is re-defined as 

the sum of its mechanical momentum and interactional field momentum, instead of its standard 

definition via the canonical momentum of charged particle.  

 This result implies that the same re-definition of the operator of momentum should be 

made in Klein-Gordon and Dirac equations as well, and in section 4 we discuss possible implica-

tions of this step. Finally, we conclude in section 5.  

2. Origin of quantum phase effects for electric/magnetic dipoles 

In this section we deal for simplicity with the weak relativistic limit, corresponding to the accu-

racy of calculations c
-2

 for electric effects and c
-3

 for magnetic effects. As is shown in refs. [17, 

18], in this limit the first four terms of eq. (5) can be presented in the convenient form  

          svBmsvEpsBpsEm d
c

d
c

d
c

d
c 22

1111


 , (10) 

where all quantities are defined in a labframe.  

 We want to understand, how eq. (10) is related to the phase effects for point-like charges. 

Exploring this problem, we emphasize that the electric A-B phase (2a), being not explicitly de-

pendent on the velocity v, can explain none of the phases of eq. (10). As is known, the magnetic 
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A-B phase (2b) explains the HMW phase only (the second term of eq. (10)) [17]. Therefore, one 

can conjecture the existence of more quantum phase effects for point-like charges (next to the A-

B phases (2a-b)), required to explain all terms of eq. (10).  

Determining corresponding phases, we use the appropriate models of electric and mag-

netic dipoles. In particular, for the simplest model of electric dipole (two elementary charges –e 

and +e separated by a small distance d), we find [17, 18] that the third term of eq. (10) can be 

presented in the form  

         svrdrsvsvEp dee
c

dVd
c

d
c

V

pE 
222

111


. (11) 

This equation indicates that the phase pE for an electric dipole, moving in an electric field, ori-

ginates from a more fundamental quantum phase effect, emerging for each charge of the dipole 

and defined by eq. (8), so that the phase pE represents the sum of elementary phases (8). We see 

that the phase (8), like the electric A-B phase (2a), depends on the scalar potential , though in 

the adopted weak relativistic limit, it is (v/c)
2
 smaller than the phase (2a). We suggested naming 

the phase (8) as the complementary electric A-B phase, marking it by the subscript “c”. 

 It has been also found [17, 18] that the phase (8) is also responsible for the A-C phase 

(the first term of eq. (10)) due to the equality  

    
V

mE dVd
c

d
c

susEm 
2

11


,     (12) 

derived in [17, 18] for a magnetic dipole, considered as a small conducting loop with the charge 

density of carriers of current  and their flow velocity u. Then one can see that the phase (12) 

represents the algebraic sum of fundamental phases (8) for each charge of the dipole.  

 Finally, for the last term on rhs of eq. (10), we derive [17, 18] 

     
V

mB dVd
c

d
c

svAjsvBm
32

11


 ,     (13) 

where j is the current density of carriers of current in the magnetic dipole m. We clarify the ori-

gin of the phase effect (13) for the charge e, moving at some velocity v with the current density 

  vrrj e0 . Substituting this into eq. (13), we arrive at eq. (9), which discloses one more 

fundamental quantum phase, emerging for a charge moving in the field A. We named it as the 

complementary magnetic A-B phase. 

By such a way we confirmed that the quantum phases for a moving dipole (10) find their 

physical interpretation via the corresponding fundamental phases for moving charges, see Fig. 1, 

adapted from refs. [17, 18]. We point out that the quantum phases disclosed for dipoles are path-
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dependent and thus, the electric A-B phase (2a), which does not explicitly depend on v, cannot 

contribute to them. This brings asymmetry into Fig. 1. 

 

Fig. 1. Relationship between quantum phases for charged particles and for moving dipoles. 

 

3. Hamiltonian of charged particle in an electromagnetic field and quantum phase effects 

As we emphasized above, the standard Hamiltonian (1) yields the magnetic (2a) and electric (2b) 

A-B phases only, and the present disclosure of the complementary electric (8) and magnetic (9) 

phases for point-like charges indicates missed points in our understanding of quantum phase ef-

fects. In our opinion, such missed points have the fundamental character and are related to the 

physical interpretation of the operator of momentum  ip̂  for a point-like charge in an EM 

field. As is known, this operator is associated with the canonical momentum Pc of particle  

 i
c

e
cc P

A
pP ˆ ,        (14) 

which straightforwardly leads to eq. (1).  

 In fact eq. (14) prescribes the fundamental role to the canonical momentum of particle; 

hence, it is important to clarify its physical meaning, in particular, with respect to the term eA/c. 

Below we show that eA/c corresponds to the momentum of interactional EM field (herei-

nafter designated as PEM) for a charged particle in an EM field in the particular case, where the 

particle is at rest in the frame of observation. In this frame it produces only the electric field Ee, 

and designating through E, B the external fields, we obtain the interactional field momentum 

       
V

e

V

eEM dV
c

dV
c

v AEBEP
 4

1

4

1
0 .    (15) 
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Here V stands for the entire space, and we used the equality  AB  . Via the identity [19] 

            0 
V

e

V

e

V

e

V

e dVdVdVdV EAAEEAAE , 

we get in the Coulomb gauge ( 0 A ): 

       
c

e
dVdVdV

V

e

V

e

V

e

A
AEAAE   4 .   (16) 

Here we have taken into account that for a resting particle 0 eE  and ee 4 E , e be-

ing its charge density. Substituting (16) into (14), we obtain 

  cevEM AP  0 .         (17) 

 Thus, we see that the canonical momentum Pc represents the sum of mechanical momen-

tum of moving particle p and interactional field momentum in the particular situation, where the 

particle is at rest. This finding clearly indicates that Pc does not have a real physical meaning, 

and it emerges only as a formal variable in the classical Lagrangian formalism. 

 Therefore, it looks reasonable in the quantum domain to re-define the operator of mo-

mentum via the sum of mechanical momentum of particle p and the interactional field momen-

tum PEM for a moving particle. This suggests re-postulating the operator of momentum as 

 iEM PPp ˆ .        (18) 

Hence, instead of the Hamiltonian (1), we obtain 

 
e

m

i
H EM 




2
ˆ

2
P

.        (19) 

In order to analyze the implications of the Schrödinger equation with the Hamiltonian 

(19), we first consider a free spinless charged particle in the external E, B fields, and explicitly 

express PEM via the field potentials. The corresponding calculations yields [18] 

   
 

324

1

4

1

c

e

c

e

c

e
dV

c
dV

c
V

e

V

eEM

vAvvA
BEBEP


 




, (20) 

 This equation is derived in the case, where external fields E, B remain practically con-

stant near any point-like charge up to the distances from this charge, where its fields Ee, Be be-

come negligible. Substituting eq. (20) into eq. (19), we obtain 

 



e

c

e

c

e

c

e
i

m
H 







 


2

322

1 vAvvA
 ,     (21) 

where all variables are considered as operators. 

 The quantum phase for a charged particle in the presence of EM field is defined via the 

relationship (see, e.g. [2]) 
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   dtHH 0

1


 ,         (22) 

where H0 is the Hamiltonian of a particle in the absence of EM field. Assuming the Coulomb 

gauge, where the operators v and A commutate with each other, eqs. (21), (22) yield the follow-

ing expression for the quantum phase of charged particle in an EM field: 

   svvAsvsA de
c

de
c

de
c

dte
32

1111


 ,   (23) 

where we neglected the terms, containing the mass m in their denominators, which is warranted 

in any practical situation.  

 The first two terms of eq. (23) give the electric (2a) and magnetic (2b) A-B phases, cor-

respondingly, whereas the third and fourth terms yield respectively the complementary electric 

(8) and complementary magnetic (9) phase.  

Thus, having defined the operator of momentum according to eq. (18), we achieved a full 

harmony between eqs. (23) and (10), describing quantum phase effects for charges and dipoles. 

 

4. Re-defined operator of momentum in the Dirac equations 

The disclosure of complementary electric (8) and magnetic (9) phases proportional to c
-2

 and c
-3

, 

correspondingly, suggests that their consistent description should be done via the Klein-Gordon 

equation (for spinless particles), or via the Dirac equation (for electrons), with the operator of 

momentum defined by eq. (18). More specifically, in the presence of EM field, the operator   

in the Klein-Gordon equation should be replaced by 


EMP  (=0…3), 


EMP  being the four-

momentum for interactional EM field. The implications of this modification of the Klein-Gordon 

equation will be considered elsewhere; here we focus our attention to the Dirac equation, where 

the redefinition (18) of the momentum operator leads to the Hamiltonian  

  elEM UmciH  2Pα  .        (24) 

Here 









0

0

σ

σ
  ( being the Pauli matrix), 












1

1

0

0
 , and we designated the electric inte-

raction energy eU el  , which is convenient in further analysis.  

 It is known that the Dirac equation with the Hamiltonian (24) leads to the Pauli equation 

in the weak relativistic limit. Thus, for a free electron moving in an EM field with the positive 

total energy, due to equation (20), we again derive complementary electric (8) and complementa-

ry magnetic (9) phases, next to the A-B phases (2a-b). Taking into account that the electron pos-

sesses the magnetic dipole moment, we also get the phases (3), (7) for magnetic dipole. 
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 When the total energy of electron in an EM field is negative (the bound electron), eq. (20) 

becomes inapplicable for two reasons. First, for bound charges, the approximation of constancy 

of E, B in a vicinity of each charge (used in the derivation of eq. (20)) is not longer fulfilled. 

Next reason, which makes eq. (20) incorrect for bound electron, has the fundamental origin and 

is related to the known fact that an electrically bound system in the stationary energy state does 

not radiate. Therefore, the standard Maxwell equations used in the derivation of eq. (20) become 

inapplicable, insofar as their solution includes both the non-radiating (bound) and radiating field 

components. 

 In ref. [20], we already proposed a modification of Maxwell equations with the elimina-

tion of radiative field component, which keeps their Lorentz-invariance: 

4 E , 0 B ,  BvE 
c

1
,  

cc

j
EvB

41
 .  (25a-d) 

Here v is some effective velocity parameter, which for the electron in the s-state has equal spatial 

components, and its modulus coincides with the modulus of averaged velocity of the electron. In 

fact, the structure of eqs. (25a-d) corresponds to the Maxwell equations for a charged particle, 

moving with a constant velocity. It is known that the EM field generated by such particle is de-

scribed by the Heaviside solution [16], which does not contain radiative component.  

 Next, using eqs. (25), we determine the momentum of interactional EM field PEM for the 

simplest one-body problem, where the electron is bound to a heavy immovable nucleus with the 

positive charge Ze. Then, in the semi-classical limit we obtain 

     
V

e

V

eEM dV
c

dV
c

AEBEP
 4

1

4

1
.     (26) 

Using the identity [19] 

            0 
V

e

V

e

V

e

V

e dVdVdVdV EAAEEAAE , 

and involving the equalities 0 E , 4 E  (for host charge) along with the Coulomb 

gauge 0 eA , we derive 

  
c

Ze
dVdV e

V

e

V

e

A
AAE   4 .      (27) 

According to the Heaviside solution, the vector potential of the electron at the location of host 

charge is equal to rcee vA  , where r is the classical radius of electron’s orbit, and  is its Lo-

rentz factor. Hence, combining eqs. (26), (27), we obtain 
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 
24

1

c

e
dV

c
V

eEM

v
BEP





  ,       (28) 

where rZe  is the scalar potential of host charge at the location of the electron. 

 Substituting eq. (28) into eq. (18), and taking into account the equality vp m , we re-

veal that for the one-body problem, the momentum operator is defined via the relationship 









 imb

mc

e
m

c

e
m Pv

v
v ˆ1

22






 ,     (29) 

where we introduced the “binding” factor  

 21 mceb  .         (30) 

 Thus, for the one-body problem, we recover the standard definition of the operator of 

momentum via the replacement of the rest mass m by bm, i.e. 

mbm.          (31) 

 Next, we determine the electric interactional energy Uel with the field equations (25). 

Omitting straightforward calculations, which are based on the Heaviside solution for the 

fields/potentials, we present the final result eUel  . This means that in comparison with the 

free electron, we get the replacement  

ee.          (32) 

Correspondingly, the Hamiltonian acquires the form 

elUbmciH   2α .        (33) 

The replacements (31), (32) for the one-body problem had been proposed for the first 

time by Yarman [21], and later derived in our paper [20] within the purely bound field con-

straint. In particular, we have shown in [20] that these replacements do not change the solution 

of the Dirac-Coulomb equation and thus do not affect the fine structure of the atomic energy le-

vels. However, important corrections do emerge at hyperfine level. 

The analysis of hyperfine contributions to the energy levels of hydrogenlike atoms re-

quires considering the two-body problem for bound particles with the rest masses m and M, cor-

respondingly. Re-definition of the momentum operator according to eq. (18) for two-body prob-

lem leads to replacements of eqs. (31), (32) by 

mmbm  , MMbM  , UmnMnU,       (34a-c) 

with  









2
1

mc

U
b M

m


, 










2
1

Mc

U
b m

M


,   2/1

22
1



 cvmm ,   2/1
22

1


 cvMM , (35a-d) 

in the same way as in [20]. 
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The theory, where the substitutions (34a-c) are applied to the precise physics of light hy-

drogenlike atoms, had been named in [20] as the Purely Bound Field Theory (PBFT). It has been 

shown in the subsequent publication [22] that the application of PBFT to this area of physics al-

lows eliminating all available deviations between theory and experiment, and the most principal 

achievements of PBFT are: 

- the correction of QED result with respect to the 1S-2S interval in positronium from 

 MHz62.2226072331)QED(21 

Ps

SSE  [23] to    MHz67.2146072331PBFT21 

Ps

SSE  [22] 

(the measurement result is  MHz3216607233121 

Ps

SSE  [24]); 

- the correction of QED result with respect to the 1S spin-spin interval in positronium from 

   MHz67.391203QED 

Ps

ssW  [23] to    MHz1386203PBFT 

Ps

ssW  [22] (the measurement 

result is  MHz2387203

Ps

ssW ) [25]); 

- the derivation of the proton charge radius via the 2S-2P Lamb shift in hydrogen (0.841(6) fm 

[26]) and via the 1S Lamb shift in the hydrogen (0.846(22) fm [26]) in a full agreement with the 

recent result derived for muonic hydrogen (0.84087(39) fm [27]). 

 We add that for any other problem of precise physics of hydrogen-like atoms, where the 

agreement between experimental data and QED calculations has been achieved before creation 

of PBFT, the deviation between the results of QED and PBFT calculations either disappears, or 

yields values beyond the measurement precision [21]. These facts indicate that PBFT is the most 

successful theory of hydrogen-like atoms with respect to the achieved agreement between calcu-

lated and experimental results. 

 Nevertheless, the majority of physicists considered PBFT up to date as a somewhat artifi-

cial theory, due to artificial (in their opinion) re-scaling of rest masses according to eqs. (34a-b). 

Now we see that this modification of rest masses is directly related to the proposed re-definition 

of the momentum operator (18), and thus acquires a deep physical meaning. This circumstance 

substantially enriches the physical content of PBFT.  

 

5. Conclusion 

The disclosure of the novel quantum phase effects for point-like charges, named as complemen-

tary electric A-B phase (8) and complementary magnetic A-B phase (9), requires to re-define the 

operator of momentum for charged particle in an EM field according to eq. (18), in order to in-

clude these phases into the solution of the Schrödinger equation.  
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It is important to stress that the complementary electric phase (8) is directly responsible 

for the A-C effect due to eq. (12) and thus, the experimental confirmation of the A-C effect (see, 

e.g., [6]) serves, in fact, as the proof of validity of re-definition (18). 

The suggested re-definition of the momentum operator (18) should be applied to other 

fundamental equations of quantum physics, and it acquires the fundamental significance for elec-

trically bound charges, where we additionally have to take into account the non-radiative origin 

of EM fields generated by such charges. In this case we fully eliminate the available subtle de-

viations between the results of QED calculations and experimental data in precise physics of 

simple atoms.  
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