
nano-SOA - a powerful alternative and

complementary of SOA
Bai Yang

baiyang@gmail.com
http://baiy.cn

Abstract

SOA (Service Oriented Architecture) and micro SOA (Micro Service) have the advantages of high

cohesion and low coupling, but at the same time they also bring complicated implementation,

maintenance, high network load, and weak consistency. At the same time, they also increase product

development and operation costs. This article attempts to use an improved approach by a kind of

plug-in isolation mechanism that avoids the above issues as much as possible while preserving the

benefits of SOA.

In addition, this paper also proposes a new strong consistent distributed coordination algorithm

for improving the low performance and high overhead (at least three network broadcasts and multiple

disk I/O requests per request) problem of existing Paxos/Raft algorithms. This algorithm, at the expense

of data reliability, completely eliminates the above overhead and provides the same level of strong

agreement and high availability guarantees as the Paxos/Raft algorithm.

1. The nano-SOA Architecture

1.1 AIO vs. SOA

Since long ago, the high-layer architecture at server end has been categorized into two

contradictory patterns: SOA (Service-oriented architecture) and AIO (All in one). SOA divides a

complete application into several independent services, each of which provides a single function (such

as session management, trade evaluation, user points, and etc.). These services expose their interfaces

and communicate with each other through IPC mechanisms like RPC and WebAPI, altogether

composing a complete application.

Conversely, AIO restricts an application within a separate unit. Different services within SOA

behave as different components and modules. All components usually run within a single address

space (the same process), and the codes of all components are usually maintained under the same

mailto:baiyang@gmail.com
http://baiy.cn/

project altogether.

The advantage of AIO is simplified deployment, eliminating the need for deploying multiple

services and implementing high availability clustering for each service. AIO architecture has far higher

efficiency than SOA, because it can avoid huge consumptions caused by IPC communications li ke

network transmission and memory copy.

On the other hand, components within AIO are highly inter-dependent with poor reusability and

replaceability, making maintenance and extension difficult. It is common that a rookie will spend a lot

of effort and make many mistakes before getting the hang of a huge project which contains a large

number of highly coupled components and modules. Even a veteran is prone to cause seemingly

irrelevant functions being affected after modifying functions of a module, because of complicated

inter-dependence among components.

The SOA architecture features complex deployment and configuration. In real cases, a large

application is usually divided into hundreds of independent services. For example, a famous

e-commerce website (among the top 5 in China) which fully embraces SOA has divided their Web

application into tens of hundreds of services. We can imagine the huge amount of workload required to

deploy hundreds of servers within high availability environment where multiple active data centers

exist, and to configure these servers to establish coordination relationships among them. For example,

the recent network outage with ctrip.com was followed by slow recovery due to its huge SOA

architecture which comprises tens of hundreds of services.

Inefficient is another major disadvantage of SOA. From the logic flow perspective, almost every

complete request from the client needs to flow through multiple services before the final result is

generated and then returned to the client. Flowing through each service (through messaging

middleware) is accompanied by multiple times of network and disk I/O operations. Thus several

requests will cause long network delay accumulatively, resulting in bad user experience and high

consumption of resources.

Figure 1 The Messy SOA Dependencies (Image from the Internet)

The responsibility to implement the support for cross-service distributed transaction will fall on

the application developers, no matter each service is connected to a different DBMS or all services are

connected to the same distributed DBMS system. The effort for implementing distributed transaction

itself is more complex than most of common applications. Things will become more difficult when we

try to add high availability and high reliability assurance to it, to achieve this goal, developers need to:

utilize algorithms like Paxos/Raft or master/slave + arbiter for a single data shard; and employ

algorithms like 2PC/3PC for transactions comprised of multiple data shards to achieve the ACID

guarantee. Therefore, a compromise solution for implementing cross-service transactions within SOA

applications is to guarantee the eventual consistency. This also requires extensive efforts, because it is

not easy to implement consistency algorithms in a complex system.

Most of SOA systems usually need to utilize messaging middleware to implement message

dispatching. This middleware can easily become a bottleneck if there are requirements for availability

(part of nodes failed will not affect normal operation of the system), reliability (ensures messages are in

order and never repeated/lost even when part of nodes failed), functionality (e.g., publish-subscribe

pattern, distributing the tasks in a round-robin fashion) and etc.

The strength of SOA architecture lies with its high cohesion and low coupling characteristics.

Services are provided through predefined IPC interface, and are running in an isolated way (usually in a

separate node). SOA architecture has set a clear boundary for interfaces and functions, thus services

can be easily reused and replaced (any new services that have compatible IPC interface can replace

existing services).

From the point of view of software engineering and project management, each service itself has

enough high cohesion, and its implemented functions are independent, SOA services are easier to

maintain compared with interwoven AIO architecture. A developer only needs to take care of one

specific service, and don't need to worry about any code modif ication or component replacement will

affect other consumers, as long as there is no incompatible change to the API.

An application composed of multiple independent services is easier to implement function

modification or extension through the addition of new services or recombination of existing services.

1.2 nano-SOA Architecture

Through extensive exploration and practice with real projects, I have defined, implemented and

improved the patented nano-SOA architecture which incorporates the strengths of both SOA and AIO.

In nano-SOA, services that run independently are replaced by cross-platform plugins (IPlugin) that

support hot-plugging. A plugin dynamically exposes (register) and hides (unregister) its function

interfaces through (and only through) API Nexus, and consumes services provided by other plugins also

through API Nexus.

nano-SOA fully inherits the high cohesion and low coupling characteristics of SOA architecture.

Each plugin behaves like an independent service, has clear interface and boundary, and can be easily

reused or replaced. It is comparable to SOA from the maintenance perspective. Each plugin can be

developed and maintained separately, and a developer only needs to take care of his own plugin. By

the addition of new plugins and recombination of existing plugins, nano-SOA makes things easier to

modify or extend existing functions than SOA architecture.

nano-SOA is comparable to AIO with regard to performance and efficiency. All plugins run within

the same process, thus calling another plugin through API Nexus does not need any I/O or memory

copy or any other forms IPC consumption.

The deployment of nano-SOA is as simple as AIO. It can be deployed to a single node, and can

achieve high availability and horizontal scaling by deploying only a single cluster. The configuration of

nano-SOA is far simpler than SOA. Compared with AIO, configuring a list of modules to be loaded is the

only thing added for nano-SOA. However, all the configurations for nano-SOA can be maintained in

batch through utilizing a configuration management product. Streamlined deployment and

configuration process can simplify operation and maintenance efforts, and also significantly facilitate

establishing development and testing environments.

By using direct API calling through API Nexus, nano-SOA can avoid the dependence on messaging

middleware to the maximum extent. We can also improve the parallel computing performance by

plugging an inter-thread message queue (which is optimized through zero-copy and lock-free

algorithms) on it. This has greatly increased throughput, reduced delay, and also eliminated huge

efforts required for deploying and maintaining a high availability message dispatching cluster.

nano-SOA has minimized the requirement for inter-node cooperation and communication, not

imposing high demand for reliability, availability and functionality. In most cases, decentralized P2P

protocol such as Gossip is adequate to meet these requirements. Sometimes, inter-node

communication can even be completely avoided.

From the nano-SOA perspective, DBC can be considered as a type of fundamental plugin for

almost all server-end applications. It was implemented and added into libapidbc beforehand because

of its wide use. libapidbc has established a firm foundation for the nano-SOA architecture, by offering

the key components like IPlugin, API Nexus and DBC.

nano-SOA, SOA and AIO are not mutually exclusive options. In real use cases, users can work out

the optimum design through combination of these three architecture patterns. For time-consuming

asynchronous operations (like video transcoding) without the need to wait for a result to be returned,

it is a preferred option to deploy it as an independent service to a dedicated server cluster with

acceleration hardware installed, because most of the consumptions are used for video encoding and

decoding. It is unnecessary to add it into an App Server as a plugin.

2. BaiY Port Switch Service (BYPSS)

BaiY Port Switch Service (BYPSS) is designed for providing a high available, strongly consistent and

high performance distributed coordination and message dispatching service which supports ten billion

level ports, one hundred thousand level nodes, and millions to ten millions of messages processed per

second. The key concepts of the patented algorithm include:

 Connection: Each client (a server within an application cluster) node maintains at least one

TCP Keep-Alive connection with the port switch service.

 Port: Any number of ports can be registered for each connection. A port is described using a

UTF-8 character string, and must be globally unique. Registering a port will fail if the port is

already registered by another client node.

BYPSS offers the following API primitives:

 Waiting for Message (WaitMsg): Each node within the cluster should keep at least one TCP

Keep-Alive connection with the BYPSS, and call this method for message pushing. This

method upgrades the current connection from a message transmission connection to a

message receiving connection.

Each node number corresponds to only one message receiving connection. If a node

attempts to generate two message receiving connections at the same time, the earlier

connection will be disconnected, and all ports bound with that node will be unregistered.

 Relet: If BYPSS does not receive a relet request from a message receiving connection for a

specified time period, it will treat the node as being offline, and will release all the ports

associated with this node. A relet operation is used for periodically providing heartbeat

signals to BYPSS.

 Port Registration (RegPort): After a connection is established, the client should send request

to BYPSS to register all the ports associated with the current node. A port registration

request can contain any number of ports to be registered. BYPSS will return a list of ports

(already occupied) that are failed to be registered. The caller can choose to subscribe port

release notification for the ports failed to be registered.

It is worth noting that each time a message receiving connection is re -established through

calling WaitMsg, the server need to register all the relevant ports again.

 Port Un-registration (UnRegPort): To unregister the ports associated with the current node. A

request can contain several ports for batch un-registration.

 Message Sending (SendMsg): To send a message (BLOB) to the specified port. The message

format is transparent to BYPSS. If the specified port is an empty string, the message will be

broadcasted to all nodes within BYPSS; sender can also specify multiple receiving ports to do

a multicast. If the specified port does not exist, the message will be discarded quietly. The

client can package multiple message sending commands within a single network request for

batch sending, The BYPSS server will package messages sent to the same node automatically

for batch message push.

 Port Query (QueryPort): To query node number and IP address associated with the node

currently owns the specified port. This operation is used for service discovery with fault

detection. This method is not needed for message sending (SendMsg) because the operation

is automatically executed while delivering a message. A request can contain several ports for

batch query.

 Node Query (QueryNode): To query information (e.g. IP address) associated with the

specified node. This operation is mainly used for node resolving with fault detection. A

request can contain several nodes for batch query.

Client connections within BYPSS are categorized into two types:

 Message receiving connection (1:1): It uses WaitMsg method for node registration and

message pushing, and keeps occupying all ports belong to current node using Relet. Each

node within the cluster should keep and only keep a single message receiving connection,

which is a Keep-Alive connection. It is recommended to always keep the connection active

and to complete Relet in a timely manner, because re-establishing a receiving connection will

require service electing again (port registration).

 Message sending connection (1:N): All connections that are not upgraded using WaitMsg API

are deemed as sending connections. They use primitives like RegPort, UnRegPort, SendMsg

and QueryPort for non-pushing requests, without the need for using Relet to keep heartbeat.

Each node within the cluster maintains a message sending connection pool, so that the

worker threads can stay in communication with the port switch service.

Compared with traditional distribute coordination service and messaging middleware products,

the port switch service has the following characteristics:

 Functionality: The port switch service integrates standard message routing function into

distributed coordination services such as service electing (port registration), service discovery

(send message and query port information), fault detection (relet timeout) and distribute

locking (port registration and unregister notification). This high-performance message switch

service has distributed coordination capabilities. Also, it can be purely used as a service

electing and discovery service with fault detection, by using QueryPort and other interfaces.

 High-concurrency and high-performance: Implemented using C/C++/assembly languages;

maintains a message buffer queue for each connection, and all port definitions and all

messages to be forwarded are saved in memory (Full in-memory); there is no data replication

or status synchronization between master node and slave node; message sending and

receiving are implemented using pure async IO, enabling high-concurrency and

high-throughput message dispatch performance.

 Scalability: When single-node performance gets a bottleneck, service can scaling out by

cascading upper-level port switch service, similar to the three layers (access, aggregation, and

core) switch architecture in IDC.

 Availability: High availability insurance by completing fault detection and master/slave

switching within two seconds; quorum-based election algorithm, avoiding split brain due to

network partition.

 Consistency: A port can be owned by only one client node at any given time. It is impossible

that multiple nodes can succeed in registering and occupying the same port simultaneously.

 Reliability: All messages sent to an unregistered port (the port does not exist, or is

unregistered or expired) are discarded quietly. The system ensures that all messages sent to

registered ports are in order and unique, but messages may get lost in some extreme

conditions:

 Master/slave switching due to the port switch service is unavailable: All messages

queued to be forwarded will be lost. All the already registered nodes need to register

again, and all the already registered ports (services and locks) need election/acquirement

again (register).

 A node receiving connection is recovered from disconnection: After the message

receiving connection was disconnected and then re-connected, all the ports that were

ever registered for this node will become invalid and need to be registered again. During

the time frame from disconnection to re-connection, all messages sent to the ports that

are bound with this node and have not been registered by any other nodes will be

discarded.

BYPSS itself is a message routing service that integrates fault detection, service election, service

discovery, distributed lock, and other distributed coordination functionalities. It has achieved superior

performance and concurrency at the premise of strong consistency, high availability and scalability

(scale-out), by sacrificing reliability in extreme conditions.

BYPSS can be treated as a cluster coordination and message dispatching service customized for

nano-SOA architecture. The major improvement of nano-SOA is, the model that each user request

needs to involve multiple service nodes is improved so that most of user requests need to involve only

different BMOD in the same process space.

In addition to making deployment and maintenance easier and the delay for request processing

dramatically reduced, the above improvement also brings the following two benefits:

 In SOA, distributed transaction with multiple nodes involved and eventual consistency issues

are simplified to a local ACID Transaction issue (from DBS perspective, transactions can still be

distributed). This has greatly reduced complexity and enhanced consistency for distributed

applications, and also has reduced inter-node communications (from inter-service IPC

communications turned out to be inner-process pointer passing) and improved the overall

efficiency.

 P2P node is not only easy to deploy and maintain, but also has simplified the distributed

coordination algorithm. Communications among nodes are greatly reduced, because the

tasks having high consistency requirements are completed within the same process space.

Reliability of messaging middleware also becomes less demanding (the inconsistency due to

message getting lost can be simply resolved by cache timeout or manual refreshing).

BYPSS allows for a few messages to be lost in extreme conditions, for the purpose of avoiding disk

writing and master/slave copying and promoting efficiency. This is a reasonable choice for nano-SOA.

2.1 Reliability Under Extreme Conditions

Traditional distributed coordination services are usually implemented using quorum-based

consensus algorithms like Paxos and Raft. Their main purpose is to provide applications with a

high-availability service for accessing distributed metadata KV. The distributed coordination services

such as distributed lock, message dispatching, configuration sharing, role election and fault detection

are also offered. Common implementations of distributed coordination services include Google Chubby

(Paxos), Apache ZooKeeper (Fast Paxos), etcd (Raft), Consul (Raft+Gossip), and etc.

Figure 2 Traditional Paxos/Raft distributed coordination cluster

Poor performance and high network consumption are the major problems with consensus

algorithms like Paxos and Raft. For each access to these services, either write or read, it requires three

times of network broadcasting within the cluster to confirm in voting manner that the current access is

acknowledged by the quorum. This is because the master node needs to confirm it has the support

from the majority while the operation is happening, and to confirm it remains to be the legal master

node.

In real cases, the overall performance is still very low and has strong impact to network IO, though

the read performance can be optimized by degradation the overall consistency of the system or adding

a lease mechanism. If we look back at the major accidents happened in Google, Facebook or Twitter,

many of them are caused by network partition or wrong configuration (human error). Those errors lead

to algorithms like Paxos and Raft broadcasting messages in an uncontrollable way, thus driving the

whole system crashed.

Furthermore, due to the high requirements of network IO (both throughput and latency), for

Paxos and Raft algorithm, it is difficult (and expensive) to deploy a distributed cluster across multiple

data centers with strong consistency (anti split brain) and high availability. For example: Google GCE

service was disconnected for 12 hours and lost some data permanently on August 20, 2015; Alipay was

interrupted for several hours on May 27, 2015 and July 22, 2016; July 22, 2013 WeChat service

interruption Hours; and May 2017 British Airways paralyzed for a few days and other major accidents

both are due to the single IDC dependency.

Because most of the products that employ SOA architecture rely on messaging middleware to

guarantee the overall consistency, they have strict requirements for availability (part of nodes failed

will not affect normal operation of the system), reliability (ensures messages are in order and never

repeated/lost even when part of nodes failed), and functionality (e.g., publish-subscribe pattern,

distributing the tasks in a round-robin fashion). It is inevitable to use technologies that have low

performance but require high maintenance cost, such as high availability cluster, synchronization and

copy among nodes, and data persistence. Thus the message dispatching service often becomes a major

bottleneck for a distributed system.

Compared with Paxos and Raft, BYPSS also provides distributed coordination services such as fault

detection, service election, service discovery and distributed lock, as well as comparable consensus,

high availability, and the capability of resisting split-brain. Moreover, by eliminates nearly all of the high

cost operations like network broadcast and disk IO, it has far higher performance and concurrency

capability than Paxos and Raft. It can be used to build large-scale distributed cluster system across

multiple data centers with no additional requirements of the network throughput and latency.

BYPSS allows for tens of millions of messages to be processed per second by a single node, and

guarantees that messages are in order and never repeated, leaving common middleware far behind in

terms of performance.

While having absolute advantages from performance perspective, BYPSS has to make a trade-off.

The compromise is the reliability in extreme conditions (two times per year on average; mostly resulted

from maintenance; controlled within low-load period; based on years of statistics in real production

environments), which has the following two impacts to the system:

 For distributed coordination services, each time the master node offline due to a failure, all

registered ports will forcibly become invalid, and all active ports need to be registered again.

For example, if a distributed Web server cluster treat a user as the minimum schedule unit,

and register a message port for each user who is logged in, after the master node of BYPSS is

offline due to a failure, each node will know that all the ports it maintains have became

invalid and it need to register all active (online) users again with the new BYPSS master.

Fortunately, this operation can be completed in a batch. Through the batch registration

interface, it is permitted to use a single request to register or unregister as much as millions

of ports simultaneously, improving request processing efficiency and network utilization. On a

Xeon processer (Haswell 2.0GHz) which was release in 2013, BYPSS is able to achieve a speed

of 1 million ports per second and per core (per thread). Thanks to the concurrent hash table

(each arena has its own full user mode reader/writer lock optimized by assembly) which was

developed by us, we can implement linear extension by simply increasing the number of

processor cores.

Specifically, under an environment with 4-core CPU and Gigabit network adapter, BYPSS is

capable of registering 4 millions of ports per second. Under an environment with 48-core CPU

and 10G network adapter, BYPSS is able to support registering nearly 40 millions of ports per

second (the name length of each of the ports is 16 bytes), almost reaching the limit for both

throughput and payload ratio. There is almost no impact to system perforce, because the

above scenarios rarely happen and re-registration can be done progressively as objects being

loaded.

To illustrate this, we consider the extreme condition when one billion users are online

simultaneously. Though applications register a dedicated port (for determining user owner

and for message distribution) for each of the users respectively, it is impossible that all these

one billion users will press the refresh button simultaneously during the first second after

recovering from fault. Conversely, these online users will usually return to the server after

minutes, hours or longer, which is determined by the intrinsic characteristics of Web

applications (total number of online users = the number of concurrent requests per second ×

average user think time). Even we suppose all these users are returned within one minute

(the average think time is one minute) which is a relatively tough situation, BYPSS only need

to process 16 million registration requests per second, which means a 1U PC Server with

16-core Haswell and 10G network adapter is enough to satisfy the requirements.

As a real example, the official statistics show there were 180 million active users (DAU) in

Taobao.com on Nov 11 (“double 11”), 2015, and the maximum number of concurrent online

users is 45 million. We can make the conclusion that currently the peak number of concurrent

users for huge sites is far less than the above mentioned extreme condition. BYPSS is able to

support with ease even we increase this number tens of times.

 On the other hand, from message routing and dispatching perspective, all messages queuing

to be forwarded will be lost permanently whenever the master node is offline due to a fault.

Fortunately, the nano-SOA does not reply on messaging middleware to implement

cross-service transaction consistency, thus does not have strict reliability requirements for

message delivery.

In the µSOA architecture, the worst consequence of the loss of messages is the corresponding

user requests failed, but data consistency is still guaranteed and “half success” issue will

never occur. This is enough for most use cases. Even Alipay and the china four largest banks’

E-bank applications occasionally have operation failures. This will not cause real problems

only if there is no corruption with bank account data. User can just try again later one this

case.

Moreover, the BYPSS service has reduced the time that messages need to wait in the queue,

through technologies such as optimized async IO and message batching. This message

batching mechanism consists of message pushing and message sending:

BYPSS offers a message batch sending interface, allowing for millions of messages to be

submitted simultaneously within a single request. BYPSS also has a message batch pushing

mechanism. If message surge occurs in a node and a large number of messages has arrived

and are cumulated in the queue, BYPSS server will automatically enable message batch

pushing mode, which packs plenty of messages into a single package, and pushes it to the

destination node.

The above mentioned batch processing mechanism has greatly improved message processing

efficiency and network utilization. It guarantees the server-end message queue is almost

empty in most cases, and thus has reduced the possibility of message loss when the master

node is offline.

Although the probability of message loss is very low, and the nano-SOA architecture does not

reply on messaging middleware to guarantee reliability, there are a few cases which have high

requirements for message delivery. The following solutions can satisfy these requirements:

 Implement the acknowledgment and timeout retransmission mechanism by self: After

sending a message to the specified port, the sender will wait for a receipt to be returned.

If no receipt is received during the specified time period, it will send the request again.

 Directly send RPC request to the owner node of the port: The message sender obtains IP

address of the owner node using port query commands, and then establishes direct

connection with this owner node, sends a request and waits for the result to be returned.

During the process, BYPSS is responsible for service election and discovery, and does not

route messages directly. This solution is also recommended for inte r-node

communications with large volume of data stream exchanges (e.g., video streaming and

video transcoding, deep learning), to avoid BYPSS becoming an IO bottleneck.

 Use third-party messaging middleware: If there is a large quantity of message delivery

requests that have strict reliability requirements and using complex rules, it is suggested

to deploy a third-party message dispatching cluster to process these requests.

In brief, we can treat BYPSS as a cluster coordination and message dispatching service customised

for the nano-SOA architecture. BYPSS and nano-SOA are mutually complementary. BYPSS is ideal for

implementing a high performance, high availability, high reliability and strong consistency distributed

system with nano-SOA architecture. It can substantially improve the overall performance of the system

at the price of slightly affecting system performance under extreme conditions.

2.2 BYPSS Characteristics

The following table gives characteristic comparisons between BYPSS and some distributed

coordination products that utilize traditional consensus algorithms like Paxos and Raft.

Item BYPSS ZooKeeper, Consul, etcd…

Availability High availability; supports multiple active IDC. High availability; supports multiple

active IDC.

Consistency Strong consistency; the master node is elected

by the quorum.

Strong consistency; multi-replica.

Concurrency Tens of millions of concurrent connections;

hundreds of thousands of concurrent nodes.

Up to 5,000 nodes.

Capacity Each 10GB memory can hold about 100 million

message ports; each 1TB memory can hold

about ten billion message ports; two-level

concurrent Hash table structure allows capacity

to be linearly extended to PB level.

Usually supports up to tens of

thousands of key-value pairs; this

number is even smaller when change

notification is enabled.

Delay The delay per request within the same IDC is at

sub-millisecond level (0.5ms in Aliyun.com);

the delay per request for different IDCs within

the same region is at millisecond level (2ms in

Aliyun.com).

Because each request requires three

times of network broadcasting and

multiple times of disk I/O operations,

the delay per operation within the same

IDC is over 10 milliseconds; the delay

per request for different IDCs is more

longer (see the following paragraphs).

Performance Each 1Gbps bandwidth can support nearly 4

million times of port registration and

unregistration operations per second. On an

entry-level Haswell processor (2013), each core

can support 1 million times of the above

mentioned operations per second. The

performance can be linearly extended by

increasing bandwidth and processor core.

The characteristics of the algorithm

itself make it impossible to support

batch operations; less than 100 requests

per second. (Because each atomic

operation requires three times of

network broadcasting and multiple

times of disk I/O operations, it is

meaningless to add the batch

operations supporting.)

Network

utilization

High network utilization: both the server and

client have batch packing capabilities for port

registration, port unregistration, port query,

node query and message sending; network

payload ratio can be close to 100%.

Low network utilization: each request

use a separate package (TCP Segment,

IP Packet, Network Frame), Network

payload ratio is typically less than 5%.

Scalability Yes: can achieve horizontal scaling in cascading

style.

No: more nodes the cluster contains

(the range for broadcasting and disk I/O

operations becomes wider), the worse

the performance is.

Partition

tolerance

The system goes offline when there is no

quorum partition, but broadcast storm will not

occur.

The system goes offline when there is

no quorum partition. It is possible to

produce a broadcast storm aggravated

the network failure.

Message Yes and with high performance: both the server None.

Item BYPSS ZooKeeper, Consul, etcd…

dispatching and client support automatic message

batching.

Configuration

Management

No: BYPSS believes the configuration data

should be managed by dedicate products like

Redis, MySQL, MongoDB and etc. Of course the

distribute coordination tasks of these CMDB

products (e.g. master election) can still be done

by the BYPSS.

Yes: Can be used as a simple CMDB. This

confusion on the functions and

responsibilities making capacity and

performance worse.

Fault

recovery

Need to re-generate a state machine, which

can be completed at tens of millions of or

hundreds of millions of ports per second;

practically, this has no impact on performance.

There is no need to re-generate a state

machine.

Among the above comparisons, delay and performance mainly refers to write operations. This is

because almost all of the meaningful operations associated with a typical distributed coordination tasks

are write operations. For example:

Operations From service coordination perspective From distributed lock perspective

Port

registration

Success: service election succeeded;

becomes the owner of the service.

Failed: successfully discover the current

owner of the service.

Success: lock acquired successfully.

Failed: failed to acquire the lock, returning

the current lock owner.

Port

unregistration

Releases service ownership. Releases lock.

Unregistration

notification

The service has offline; can update local

query cache or participate in service

election.

Lock is released; can attempt to acquire the

lock again.

As shown in the above table, the port registration in BYPSS corresponds to “write/create KV pair”

in traditional distributed coordination products. The port unregistration corresponds to “delete KV

pair”, and the unregistration notification corresponds to “change notification”.

To achieve maximum performance, we will not use read-only operations like query in production

environments. Instead, we hide query operations in write requests like port registration. If the request

is successful, the current node will become the owner. If registration failed, the current owner of the

requested service will be returned. This has also completed the read operations like owner query

(service discovery / name resolution).

It is worth noting that even a write operation (e.g., port registration) failed, it is still accompanied

by a successful write operation. The reason is: There is a need to add the current node that initiated

the request into the change notification list of specified item, in order to push notification messages to

all interested nodes when a change such as port unregistration happens. So the write performance

differences greatly affect the performance of an actual application.

2.3 BYPSS based High performance cluster

From the high-performance cluster (HPC) perspective, the biggest difference between BYPSS and

the traditional distributed coordination products (described above) is mainly reflected in the following

two aspects:

1. High performance: BYPSS eliminates the overhead of network broadcasting, disk IO, add the

batch support operations and other optimizations. As a result, the overall performance of the

distributed coordination service has been increased by tens of thousands of times.

2. High capacity: about 100 million message ports per 10GB memory, due to the rational use of

the data structure such as concurrent hash table, the capacity and processing performance

can be linearly scaled with the memory capacity, the number of processor cores, the network

card speed and other hardware upgrades.

Due to the performance and capacity limitations of traditional distributed coordination services, in

a classical distributed cluster, the distributed coordination and scheduling unit is typically at the service

or node level. At the same time, the nodes in the cluster are required to operate in stateless mode as

far as possible .The design of service node stateless has low requirement on distributed coordination

service, but also brings the problem of low overall performance and so on.

BYPSS, on the other hand, can easily achieve the processing performance of tens of millions of

requests per second, and tens of billions to hundreds of billions of message ports capacity. This

provides a good foundation for the fine coordination of distributed clusters. Compared with the

traditional stateless cluster, BYPSS-based fine collaborative clusters can bring a huge overall

performance improvement.

User and session management is the most common feature in almost all network applications. We

first take it as an example: In a stateless cluster, the online user does not have its owner server. Each

time a user request arrives, it is routed randomly by the reverse proxy service to any node in the

backend cluster. Although LVS, Nginx, HAProxy, TS and other mainstream reverse proxy server support

node stickiness options based on Cookie or IP, but because the nodes in the cluster are stateless, so the

mechanism simply increases the probability that requests from the same client will be routed to a

certain backend server node and still cannot provide a guarantee of ownership. Therefore, it will not be

possible to achieve further optimizations.

While benefiting from BYPSS's outstanding performance and capacity guarantee, clusters based on

BYPSS can be coordinated and scheduled at the user level (i.e.: registering one port for each active user)

to provide better overall performance. The implementation steps are:

1. As with the traditional approach, when a user request arrives at the reverse proxy service, the

reverse proxy determines which back-end server node the current request should be

forwarded to by the HTTP cookie, IP address, or related fields in the custom protocol. If there

is no sticky tag in the request, the lowest-load node in the current back-end cluster is selected

to process the request.

2. After receiving the user request, the server node checks to see if it is the owner of the

requesting user by looking in the local memory table.

a) If the current node is already the owner of the user, the node continues processing the

user request.

b) If the current node is not the owner of the user, it initiates a RegPort request to BYPSS,

attempting to become the owner of the user. This request should be initiated in batch

mode to further improve network utilization and processing efficiency.

i. If the RegPort request succeeds, the current node has successfully acquired the

user's ownership. The user information can then be loaded from the backend

database into the local cache of the current node (which should be optimized using

bulk load) and continue processing the user request.

ii. If the RegPort request fails, the specified user's ownership currently belongs to

another node. In this case, the sticky field that the reverse proxy can recognize, such

as a cookie, should be reset and point it to the correct owner node. Then notifies

the reverse proxy service or the client to retry.

Compared with traditional architectures, taking into account the stateless services also need to

use MySQL, Memcached or Redis and other technologies to implement the user and session

management mechanism, so the above implementation does not add much complexity, but the

performance improvement is very large, as follows:

Item BYPSS HPC Traditional Stateless Cluster

1

Op.

Eliminating the deployment and maintenance costs of

the user and session management cluster.

Need to implement and maintain the

user management cluster separately,

and provides dedicated high-availability

protection for the user and session

management service. Increases the

number of fault points, the overall

system complexity and the maintenance

costs.

2

Net.

Nearly all user matching and session verification tasks

for a client request can be done directly in the

memory of its owner node. Memory access is a

nanosecond operation, compared to millisecond-level

network query delay, performance increase of more

than 100,000 times. While effectively reducing the

network load in the server cluster.

It is necessary to send a query request

to the user and session management

service over the network each time a

user identity and session validity is

required and wait for it to return a

result. Network load and the latency is

high.

Item BYPSS HPC Traditional Stateless Cluster

Because in a typical network application,

most user requests need to first

complete the user identification and

session authentication to continue

processing, so it is a great impact on

overall performance.

3

Cch.

Because each active user has a definite owner server

at any given time, and the user is always inclined to

repeat access to the same or similar data over a

certain period of time (such as their own properties,

the product information they have just submitted or

viewed, and so on). As a result, the server's local data

caches tend to have high locality and high hit rates.

Compared with distributed caching, the advantages of

local cache is very obvious:

1. Eliminates the network latency required by

query requests and reduces network load (See

"Item 2" in this table for details).

2. Get the expanded data structures directly from

memory, without a lot of data serialization and

deserialization work.

The server's local cache hit rate can be further

improved if the appropriate rules for user owner

selection can be followed, for example:

a) Group users by tenant (company, department,

site);

b) Group users by region (geographical location,

map area in the game);

c) Group users by interest characteristics (game

team, product preference).

And so on, and then try to assign users belonging to

the same group to the same server node (or to the

same set of nodes). Obviously, choice an appropriate

user grouping strategy can greatly enhance the server

node's local cache hit rate.

This allows most of the data associated with a user or

a group of users to be cached locally. This not only

No dedicated owner server, user

requests can be randomly dispatched to

any node in the server cluster; Local

cache hit rate is low; Repeatedly caching

more content in different nodes; Need

to rely on the distributed cache at a

higher cost.

The read pressure of the backend

database server is high. Additional

optimizations are required, such as

horizontal partitioning, vertical

partitioning, and read / write

separation.

Item BYPSS HPC Traditional Stateless Cluster

improves the overall performance of the cluster, but

also eliminates the dependency on the distributed

cache. The read pressure of the backend database is

also greatly reduced.

4

Upd.

Due to the deterministic ownership solution, any user

can be ensured to be globally serviced by a particular

owner node within a given time period in the cluster.

Coupled with the fact that the probability of a sudden

failure of a modern PC server is also very low.

Thus, the frequently changing user properties with

lower importance or timeliness can be cached in

memory. The owner node can update these changes

to the database in batches until they are accumulated

for a period of time.

This can greatly reduce the write pressure of the

backend database.

For example, the shop system may collect and record

user preference information in real time as the user

browses (e.g., views each product item). The

workload is high if the system needs to immediately

update the database at each time a user views a new

product. Also considering that due to hardware

failure, some users who occasionally lose their last

few hours of product browsing preference data are

perfectly acceptable. Thus, the changed data can be

temporarily stored in the local cache of the owner

node, and the database is updated in batches every

few hours.

Another example: In the MMORPG game, the user's

current location, status, experience and other data

values are changing at any time. The owner server

can also accumulate these data changes in the local

cache and update them to the database in batches at

appropriate intervals (e.g.: every 5 minutes).

This not only significantly reduces the number of

requests executed by the backend database, but also

eliminates a significant amount of disk flushing by

encapsulating multiple user data update requests into

Cumulative write optimization and batch

write optimization cannot be

implemented because each request

from the user may be forwarded to a

different server node for processing. The

write pressure of the backend database

is very high.

A plurality of nodes may compete to

update the same record simultaneously,

further increasing the burden on the

database.

Additional optimizations are required,

such as horizontal partitioning and

vertical partitioning, However, these

optimizations will also result in side

effects such as "need to implement

distributed transaction support at the

application layer."

Item BYPSS HPC Traditional Stateless Cluster

a single batch transaction, resulting in further

efficiency improvements.

In addition, updating user properties through a

dedicated owner node also avoids contention issues

when multiple nodes are simultaneously updating the

same object in a stateless cluster. It further improves

database performance.

5

Push

Since all sessions initiated by the same user are

managed centrally in the same owner node, it is very

convenient to push an instant notification message

(Comet) to the user.

If the object sending the message is on the same

node as the recipient, the message can be pushed

directly to all active sessions belong to the recipient.

Otherwise, the message may simply be delivered to

the owner node of the recipient. Message delivery

can be implemented using BYPSS (send messages to

the corresponding port of the recipient directly,

should enable the batch message sending mechanism

to optimize). Of course, it can also be done through a

dedicated message middleware (e.g.: Kafka,

RocketMQ, RabbitMQ, ZeroMQ, etc.).

If the user's ownership is grouped as described in

item 3 of this table, the probability of completing the

message push in the same node can be greatly

improved. This can significantly reduce the

communication between servers.

Therefore, we encourage customizing the user

grouping strategy based on the actual situation for

the business properly. A reasonable grouping strategy

can achieve the desired effect, that is, most of the

message push occurs directly in the current server

node.

For example, for a game application, group players by

map object and place players within the same map

instance to the same owner node - Most of the

message push in the traditional MMORPG occurs

Because different sessions of the same

user are randomly assigned to different

nodes, there is a need to develop,

deploy, and maintain a specialized

message push cluster. It also needs to be

specifically designed to ensure the high

performance and high availability of the

cluster.

This not only increases the development

and maintenance costs, but also

increases the internal network load of

the server cluster, because each

message needs to be forwarded to the

push service before it can be sent to the

client. The processing latency of the user

request is also increased.

Item BYPSS HPC Traditional Stateless Cluster

between players within the same map instance (AOI).

Another example: For CRM, HCM, ERP and other SaaS

applications, users can be grouped according to the

company, place users belong to the same enterprise

to the same owner node - It is clear that for such

enterprise applications, nearly 100% of the

communications are from within the enterprise

members.

The result is a near 100% local message push rate: the

message delivery between servers can almost be

eliminated. This significantly reduces the internal

network load of the server cluster.

6

Bal.

Clusters can be scheduled using a combination of

active and passive load balancing.

Passive balancing: Each node in the cluster

periodically unloads users and sessions that are no

longer active, and notifies the BYPSS service to bulk

release the corresponding ports for those users. This

algorithm implements a macro load balancing (in the

long term, clusters are balanced).

Active balancing: The cluster selects the load

balancing coordinator node through the BYPSS

service. This node continuously monitors the load of

each node in the cluster and sends instructions for

load scheduling (e.g.: request node A to transfer

5,000 users owned by it to Node B). Unlike the

passive balancing at the macro level, the active

balancing mechanism can be done in a shorter time

slice with quicker response speed.

Active balancing is usually effective when some of the

nodes in the cluster have just recovered from the

failure (and therefore are in no-load state), it reacts

more rapidly than the passive balancing. For Example:

In a cluster that spans multiple active IDCs, an IDC

resumes on-line when a cable fault has just been

restored.

If the node stickiness option is enabled

in the reverse proxy, its load balancing is

comparable to the BYPSS cluster's

passive balancing algorithm.

If the node stickiness option in the

reverse proxy is not enabled, its balance

is less than the BYPSS active balance

cluster when recovering from a failure.

At the same time, In order to ensure

that the local cache hit rate and other

performance indicators are not too bad,

the administrator usually does not

disable the node sticky function.

In addition, SOA architecture tends to

imbalance between multiple services,

resulting in some services overload, and

some light-load, nano-SOA cluster

without such shortcomings.

It is worth mentioning that such a precise collaborative algorithm does not cause any loss in

availability of the cluster. Consider the case where a node in a cluster is down due to a failure: At this

point, the BYPSS service will detect that the node is offline and automatically release all users

belonging to that node. When one of its users initiates a new request to the cluster, the request will be

routed to the lightest node in the current cluster (See step 2-b-i in the foregoing). This process is

transparent to the user and does not require additional processing logic in the client.

The above discussion shows the advantages of the BYPSS HPC cluster fine coordination capability,

taking the user and session management functions that are involved in almost all network applications

as an example. But in most real-world situations, the application does not just include user

management functions. In addition, applications often include other objects that can be manipulated

by their users. For example, in Youku.com, tudou.com, youtube.com and other video sites, in addition

to the user, at least some "video objects" can be played by their users.

Here we take the "video object" as an example, to explore how the use the fine scheduling

capabilities of BYPSS to significantly enhance cluster performance.

In this hypothetical video-on-demand application, similar to the user management function

described above, we first select an owner node for each active video object through the BYPSS service.

Secondly, we will divide the properties of a video object into following two categories:

1. Common Properties: Contains properties that are less updated and smaller in size. Such as

video title, video introduction, video tag, video author UID, video publication time, ID of the

video stream data stored in the object storage service (S3 / OSS), and the like. These

properties are all consistent with the law of “read more write less”, or even more, most of

these fields cannot be modified after the video is published.

For such small-size, less-changed fields, they can be distributed in the local cache of each

server node in the current cluster. Local memory caches have advantages such as high

performance, low latency, and no need for serialization, plus the smaller size of the objects in

cache. Combined with strategies to further enhance the cache locality, such as user

ownership grouping, the overall performance can be improved effectively through a

reasonable memory overhead (see below).

2. Dynamic Properties: Contains all properties that need to be changed frequently, or larger in

size. Such as: video playback times, "like" and "dislike" times, scores, number of favours,

number of comments, and contents of the discussion forum belong to the video and so on.

We stipulate that such fields can only be accessed by the owner of the video object. Other

nodes need to send a request to the corresponding owner to access these dynamic attributes.

This means that we use the election mechanism provided by BYPSS to hand over properties

that require frequent changes (updating the database and performing cache invalidation) or

requiring more memory (high cache cost) to the appropriate owner node for management

and maintenance. This result in a highly efficient distributed computing and distributed

caching mechanism, greatly improving the overall performance of the application (see

below).

In addition, we also stipulate that any write operation to the video object (whether for common or

dynamic properties) must be done by its owner. A non-owner node can only read and cache the

common properties of a video object; it cannot read dynamic properties and cannot perform any

update operations.

Therefore, we can simply infer that the general logic of accessing a video object is as follows:

1. When a common property read request arrives at the server node, the local cache is checked.

If the cache hit, then return the results directly. Otherwise, the common part of the video

object is read from the backend database and added to the local cache of current node.

2. When an update request or dynamic property read request arrives, it checks whether the

current node is the owner of the corresponding video object through the local memory table.

a) If the current node is already the owner of the video, the current node continues to

process this user request: For read operations, the result is returned directly from the

local cache of the current node; depending on the situation, write operations are either

accumulated in the local cache or passed directly to the backend database (the local

cache is also updated simultaneously).

b) If the current node is not the owner of the video but finds an entry matching the video in

the local name resolution cache table, it forwards the current request to the

corresponding owner node.

c) If the current node is not the owner of the video and does not find the corresponding

entry in the local name resolution cache table, it initiates a RegPort request to BYPSS and

tries to become the owner of the video. This request should be initiated in batch mode

to further improve network utilization and processing efficiency.

i. If the RegPort request succeeds, then the current node has successfully acquired the

ownership of the video. At this point, the video information can be loaded from the

backend database into the local cache of the current node (which should be

optimized using bulk loading) and continue processing the request.

ii. If the RegPort request fails, the specified video object is already owned by another

node. In this case, the video and its corresponding owner ID are added to the local

name resolution cache table, and the request is forwarded to the corresponding

owner node for processing.

Note: Because BYPSS can push notifications to all nodes that are interested in this

event each time the port is unregistered (whether due to explicit ownership release,

or due to node failure offline). So the name resolution cache table does not require

a TTL timeout mechanism similar to the DNS cache. It only needs to delete the

corresponding entry if the port deregistration notice is received or the LRU cache is

full. This not only improves the timeliness and accuracy of entries in the lookup

table, but also effectively reduces the number of RegPort requests that need to be

sent, improving the overall performance of the application.

Compared with the classic stateless SOA cluster, the benefits of the above design are as follows:

Item BYPSS HPC Traditional Stateless Cluster

1

Op.

The distributed cache structure is based on

ownership, it eliminates the deployment and

maintenance costs of distributed cache clusters such

as Memcached and Redis.

Distributed cache clusters need to be

implemented and maintained

separately, increase overall system

complexity.

2

Cch.

A common property read operation will hit the local

cache. If the owner node selection strategy that

"Group users according to their preference

characteristics" is used, then the cache locality will be

greatly enhanced. Furthermore, the local cache hit

rate will increase and the cache repetition rate in the

different nodes of the cluster will decrease.

As mentioned earlier, compared to distributed cache,

the local cache can eliminate network latency, reduce

network load, avoid frequent serialization and

deserialization of data structures, and so on.

In addition, dynamic properties are implemented

using distributed cache based on ownership, which

avoids the problems of frequent invalidation and data

inconsistency of traditional distributed caches. At the

same time, because the dynamic properties are only

cached on the owner node, the overall memory

utilization of the system is also significantly improved.

No dedicated owner server, user

requests can be randomly dispatched to

any node in the server cluster; Local

cache hit rate is low; Repeatedly caching

more content in different nodes; Need

to rely on the distributed cache at a

higher cost.

The read pressure of the backend

database server is high. Additional

optimizations are required, such as

horizontal partitioning, vertical

partitioning, and read / write separation.

Furthermore, even the CAS atomic

operation based on the Revision field

and other similar improvements can be

added to the Memcached, Redis and

other products. These independent

distributed cache clusters still do not

provide strong consistency guarantees

(i.e.: The data in the cache may not be

consistent with the records in the

backend database).

3

Upd.

Due to the deterministic ownership solution, It is

ensured that all write and dynamic property read

operations of video objects are globally serviced by a

particular owner node within a given time period in

the cluster. Coupled with the fact that the probability

of a sudden failure of a modern PC server is also very

Cumulative write optimization and batch

write optimization cannot be

implemented because each request may

be forwarded to a different server node

for processing. The write pressure of the

backend database is very high.

Item BYPSS HPC Traditional Stateless Cluster

low.

Thus, the frequently changing dynamic properties

with lower importance or timeliness can be cached in

memory. The owner node can update these changes

to the database in batches until they are accumulated

for a period of time.

This can greatly reduce the write pressure of the

backend database.

For example: the video playback times, "like" and

"dislike" times, scores, number of favours, references

and other properties will be changed intensively with

every user clicks. If the system needs to update the

database as soon as each associated click event is

triggered, the workload is high. Also considering that

due to hardware failure, the loss of a few minutes of

the above statistics is completely acceptable. Thus,

the changed data can be temporarily stored in the

local cache of the owner node, and the database is

updated in batches every few minutes.

This not only significantly reduces the number of

requests executed by the backend database, but also

eliminates a significant amount of disk flushing by

encapsulating multiple video data update requests

into a single batch transaction, resulting in further

efficiency improvements.

In addition, updating video properties through a

dedicated owner node also avoids contention issues

when multiple nodes are simultaneously updating the

same object in a stateless cluster. It further improves

database performance.

A plurality of nodes may compete to

update the same record simultaneously,

further increasing the burden on the

database.

Additional optimizations are required,

such as horizontal partitioning and

vertical partitioning, However, these

optimizations will also result in side

effects such as "need to implement

distributed transaction support at the

application layer."

4

Bal.

Clusters can be scheduled using a combination of

active and passive load balancing.

Passive balancing: Each node in the cluster

periodically unloads videos that are no longer active,

and notifies the BYPSS service to bulk release the

corresponding ports for those videos. This algorithm

implements a macro load balancing (in the long term,

When recovering from a fault, the

balance is less than the BYPSS active

balanced cluster. However, there is no

significant difference under normal

circumstances.

In addition, SOA architecture tends to

imbalance between multiple services,

Item BYPSS HPC Traditional Stateless Cluster

clusters are balanced).

Active balancing: The cluster selects the load

balancing coordinator node through the BYPSS

service. This node continuously monitors the load of

each node in the cluster and sends instructions for

load scheduling (e.g.: request node A to transfer

10,000 videos owned by it to Node B). Unlike the

passive balancing at the macro level, the active

balancing mechanism can be done in a shorter time

slice with quicker response speed.

Active balancing is usually effective when some of the

nodes in the cluster have just recovered from the

failure (and therefore are in no-load state), it reacts

more rapidly than the passive balancing. For Example:

In a cluster that spans multiple active IDCs, an IDC

resumes on-line when a cable fault has just been

restored.

resulting in some services overload, and

some light-load, nano-SOA cluster

without such shortcomings.

Similar to the previously mentioned user management case, the precise collaboration algorithm

described above does not result in any loss of service availability for the cluster. Consider the case

where a node in a cluster is down due to a failure: At this point, the BYPSS service will detect that the

node is offline and automatically release all videos belonging to that node. When a user accesses these

video objects next time, the server node that received the request takes ownership of the video object

from BYPSS and completes the request. At this point, the new node will (replace the offline fault node)

becomes the owner of this video object (See step 2-c-i in the foregoing). This process is transparent to

the user and does not require additional processing logic in the client.

The above analysis of "User Management" and "Video Services" is just an appetizer. In practical

applications, the fine resource coordination capability provided by BYPSS through its high-performance,

high-capacity features can be applied to the Internet, telecommunications, Internet of Things, big data

processing, streaming computing and other fields.

References

M.Swientek, U.Bleimann and P.S.Dowland, Service-Oriented Architecture: Performance Issues and

Approaches.

SOA Performance Considerations, Microsoft MSDN.

Roberdan (2007) SOA in the Real World, Microsoft.

https://msdn.microsoft.com/en-us/library/cc907051%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396

Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara (2016) Workload Characterization for

Microservices, IBM Research – Tokyo.

Amir, Y. and Kirsch, J. (2008) Paxos for system builders.

Diego Ongaro and John Ousterhout, In search of an Understandable Consensus Algorithm

(Extended Version), Stanford University.

Leslie Lamport (2005) Fast Paxos

Leslie Lamport (2001) Paxos Made Simple.

	Abstract
	1. The nano-SOA Architecture
	1.1 AIO vs. SOA
	1.2 nano-SOA Architecture

	2. BaiY Port Switch Service (BYPSS)
	2.1 Reliability Under Extreme Conditions
	2.2 BYPSS Characteristics
	2.3 BYPSS based High performance cluster

	References

