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Abstract 

In a completely different approach, this paper proposes fundamental particles formed from 

infinite superpositions, with mass borrowed from either a Higgs type scalar field, or the time 

component of zero point fields. Energy is also borrowed from zero point vector fields. Just as 

the Standard Model divides the fundamental particles into two types…those with mass and 

those without, with the Higgs mechanism providing the difference…infinite superpositions 

also seem to divide naturally into two sets: (a) those with  “infinitesimal” mass, and (b) those 

with significant mass (from micro electron volts upwards). In the infinitesimal set (a), 

photons, gluons and gravitons (to fit with cosmology and the expansion of the cosmos) all 

have 33
10


 eV mass, approximately the inverse of the causally connected horizon radius. 

These values are sufficiently close to zero, the symmetry breaking of the Standard Model 

remains essentially valid. With velocities this close to light, helicity is virtually fixed. The 

Higgs mechanism increases mass from infinitesimal type (a) to significant or measureable 

type (b) values. The energy in the zero point fields (borrowed to build fundamental particles) 

is limited. Cosmic wavelength gravitons (in contrast to high frequency borrowing from local 

invariant sources) borrow a redshifted supply of Planck scale zero point action modes from a 

holographic horizon, receding at virtually light velocity. Just as atomic wavefunctions require 

spherically symmetric scalar potentials, superposition wave functions require spherically 

symmetric squared vector potentials in the form of spin 1 quanta. In flat comoving 

coordinates the horizon is spherical but not at peculiar velocities. The borrowed spin 1 

quanta, and the action from the horizon, transform together as a “Spherically Symmetric Four 

Volume Action Density” at cosmic wavelengths. It is invariant in all coordinates and metrics, 

and appears to relate with gravity. It only works in a flat on average continually expanding 

universe. This exponential expansion may relate with the present discrepancy in the different 

ways of measuring the Hubble parameter. There is an infinitesimal change to Einstein’s stress 

tensor effective only at cosmic wavelengths. There is also a change in the metric tensor 

effective near black hole horizons that may increase apparent black hole masses slightly. This 

change has parallels to the Reissner-Nordstrom and Kerr-Newman metrics, but at solar 

system scale appears to be inside current experimental limits. 
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Foreword 

As someone in their eighties, this paper represents the culmination of around sixty five years 

of thinking about physics, sometimes very intensely for long periods, and others less so; 

probably like many others of us interested in what makes the Universe tick. It combines two 

papers originally called Part I and Part II. That separation did not work so well because the 

ideas, though very simple are also very radical, and Part II frequently needed to refer to 

formulae and equations in Part I. These equations are now all hyperlinked for immediate 

reference, hopefully providing better continuity and consistency. 

 

My love of Physics started in my teens and I apologize for the old fashioned methodology. I 

still tend to think in terms of rest mass for example where the modern generation don’t. As 

will become apparent, perhaps slowly, the ideas presented here are basically very simple. To 

make them accessible to the widest possible audience, I have tried to express them as simply 

as I could, and much more detail is used than that required by experts in these fields. When 

looking at virtual photon and graviton probability densities for example, I did this in a simple 

way that works, and I think illustrates more effectively why gravitons around mass 

concentrations change the metric. I introduced a four vector type of graviton probability 

density, and what I called a “Spherically symmetric four volume action density from the 

receding horizon”, invariant in all coordinates and metrics, only at a much later stage.  

 

From early days I always puzzled over particles with zero radius having angular momentum, 

unless they have infinite mass; but like so many others, was always told it just has to be a 

mathematical fact. Newton would, I think, have turned in his grave. I always saw this as 

contradicting him much more so than Einstein’s corrections to his absolute space and time, 

which I think, he would have eventually accepted. I am also almost certain he would have 

approved of spatially dependant wave functions with their orbital angular momentum. 

Richard Feynman was also my hero. I read and reread his wonderful lectures on physics; 

referring to them so many times they started to fall apart. Like Bibles to me, and treasured so 

much I had to get them rebound. They are a model of clarity and simplicity in the way he 

explains difficult topics. Some sections in my papers are almost verbatim from his books, but 

modified to illustrate my arguments. I hope he would not mind. When reading these books, I 

noticed that 3, 2l m    wavefunctions have an angular momentum vector at the same angle 

to the z  axis as spin ½, 1
2m    point particles. I started wondering whether it might be 

possible, to somehow build all the fundamental point particles out of superpositions of these 

spatially dependant 3l   wavefunctions; as 3, 2l m    states can emit both spins 1 & 2 

bosons in 1 &  2m m   states. Maybe someone has demonstrated how spin ½ particles can 

emit spin 2 gravitons, but I have never seen it, nor can I see how it is possible.  
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And so my long journey began. Back then there were various models using preon building 

blocks of real spin ½ particles. In contrast I used imaginary or virtual spin zero building 

blocks, I also called them preons. These virtual preons cannot be observed in the real world 

of experiments. There are only three; red, green and blue, all electrically charged with their 

anti-counterparts. Because they are spin zero they are not subject to the weak force. I found 

that groups of 8 coupling to the electromagnetic and 8 gluon colour fields can build all the 

fundamental point particles, providing they had non-zero mass. They spanned the frequency 

range from, a Planck Energy maximum to a low frequency cutoff min
k ; or maximum 

wavelength where the zero point energy/action density required, equalled that available. This 

cutoff min
@ k  is always approximately the inverse of the radius of the observable universe. 

They divided naturally into two sets, the normal mass set, and the infinitesimal mass set of 

min
m k  for photons, gluons and gravitons etc.  This mass can be borrowed from either, a 

Higgs type scalar field, or the time component of a four potential zero point field; but they 

also borrow energy from the spatial component.  

 

This mass and energy is borrowed for time / 2T E   , the time that each member of the 

superposition lasts before repeating this process. The density of zero point fields at the 

cosmic wavelength cutoff is infinitesimal. In the rest frame, in which the particle is built, 

these preons are born with zero momentum and infinite wavelength, allowing them to borrow 

Planck scale action quanta, redshifted from a distant receding horizon. Apart from the 

infinitesimal masses, it seems to mesh with the most basic version of the Standard Model. 

There are very approximately 122
10  of these cosmic wavelength gravitons at the present time, 

exceeding by at least 20
10  the number of all other particles. The action density they require 

controls the velocity of the horizon, which accelerates exponentially quite naturally with no 

need for Dark Energy. And it only works in a Euclidean or flat space on average universe.   

 

In comoving coordinates, at any particular cosmic time, in a flat universe with homogeneous 

mass, there is a uniform (3 volume) density of cosmic wavelength gravitons, with a balancing 

uniform action density of cosmic wavelength quanta redshifted from the expanding spherical 

horizon. If mass concentrations gather locally, they are surrounded by concentrations of 

gravitons, and space around them expands to restore the required action density. This 

changing metric is equivalent to an “Invariant Spherically Symmetric Four Volume Action 

Density” for cosmic wavelength gravitons in all coordinates. It appears to be a different form 

of invariance, but must be related, to the action principle from which Einstein’s field 

equations can be derived. It does however require changes to Einstein’s energy momentum 

tensor. The effect locally is infinitesimal, but more significant near black hole horizons, and 

in a way that may relate with recent black hole merger observations.   
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It is even more significant at cosmic scale, such as requiring Euclidean on average space and 

exponential expansion. It adds an 2 2
1.4 /m r  dimensionless term to the metric which may be 

problematic. This is equivalent to adding 700  metres from the sun to all the planets in our 

solar system, with no change in the distance between them, or their orbital periods. This is 

probably within the current solar system constraints from experiments to test modified 

General Relativity, but not by much, and possibly detectable very soon. It would only affect 

the last few cycles of mergers and could increase the apparent mass of each member by up to 

  70%, but supercomputer simulation of this would be required. This 2 2
/m r term may also 

affect the inflow rate of matter into a black hole with possible implications for supermassive 

black hole build rates. It may also be a factor in the unexpected non alignment of black hole 

spins in some of the mergers observed so far. 

 

When I was looking at the possible connections between superpositions and gravity, I 

watched the wonderful internet lectures by Leonard Susskind. Like Feynman’s lectures, I 

watched and re watched the sessions on both General Relativity and Cosmology time and 

again. They helped me crystalize my ideas enormously. His books with Art Freidman have, 

like Feynman’s, inspirationally simple explanations, but less voluminous of course. Even 

when you think you understand something, I have often found that someone who has a very 

deep grasp explains things in such a way that frequently opens new pathways to 

understanding. It was only after reading these books that I started to see possible connections 

between gravity, and invariant four volume cosmic wavelength graviton action densities. I am 

deeply indebted to such people, and the countless others past and present; all treading similar 

paths, from whom we can all learn so much.  

 

Repeating what has been said many times over the centuries, but in a slightly different way: 

Of all life forms, humanity has perhaps most refined the art “Of Standing on the shoulders of 

others, to enable us to try to see further” It may even turn out to be one of humanities 

defining features, and in reality is what all of us, trying to better understand the universe and 

world around us, each in our own different ways, are doing. As knowledge slowly progresses 

in this collective manner, if you have downloaded my paper, please just click on my email 

address and let me know very briefly what you think. 
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1 Introduction 

Many Physicists today (probably a large majority) are; Supersymmetry supporters, String 

theory supporters, Inflation supporters, Metaverse supporters, etc. They will perhaps see the 

ideas presented in this paper as irrelevant. On the other hand there is a much smaller, but 

possibly growing band who are increasingly disillusioned at what seems to them to be a lack 

of real, concrete or testable progress over the last 30 to 40 years or so, since the development 

of the brilliantly successful and accurate Standard Model. This smaller band adheres to the 

tradition, started originally by the Greeks but more particularly over the last few centuries, of 

empirically testable science: Newton’s theories, Maxwell’s equations, General Relativity, 

Quantum mechanics and lastly the Standard Model representing the pinnacle of this testing 

by experiment era. All these great theories were developed from experiments. As 

instrumentation accuracy slowly improved, and experiments grew more refined, the above 

theories, each accurate in their day, slowly evolved from one to the next. The current 

situation in contrast, invites some important and relevant questions; for example: 

1. Is Supersymmetry really the answer to the problems with the Standard Model? 

2. Are the extra dimensions of String Theory really necessary? 

3. Is “The Multiverse” the only explanation of accelerating cosmic expansion? 

4. Is Inflation really necessary? And so on. 

 

Approaching all this in a new direction, this paper explores possible solutions to these 

questions in a completely different way; but still using very simple basic principles of 

quantum mechanics and relativity. Apart from infinitesimal differences it is (almost) 

consistent with the Standard Model. It requires the universe to expand exponentially after the 

big bang in an accelerating manner that is testable. This is so regardless of the value of , 

with no need for Dark Energy. It changes the metric around mass concentrations in 

accordance with an infinitesimally modified General Relativity. And it all only works if the 

Universe is flat on average, with no need for inflation.   

 

1.1 Summary 

Papers modifying the Standard Model are too numerous to list, however we briefly touch on a 

small number of some early versions of these in section 1.1.2. The approach in this paper is 

very different from that in most of these earlier papers. The main differences are summarized 

below. 

1.1.1 General Relativity as our starting point 

General Relativity tells us that all forms of mass, energy and pressure are sources of the 

gravitational field. Thus to create gravitational fields all spin ½ leptons & quarks, spin 1 

gluons, photons, 0
W & Z

 particles etc. emit virtual gravitons, except possibly gravitons  

themselves (section 6.2.6), as gravitational energy is not part of the Einstein tensor.  
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The starting point of this paper assumes there is a common thread uniting these fundamental 

particles making this possible. Equations are developed that unite the amplitudes of the 

colour and electromagnetic coupling constants with that of gravity. The precision required by 

quantum mechanics for half integral and integral angular momentum allows gravity to be 

included, despite the vast disparity in magnitude between gravity and the other two. This 

combination of colour, electromagnetic and gravitational amplitudes in the same equation is 

possible because of a radically different approach taken in this paper: An approach using 

infinite superpositions of positive and negative integral  angular momentum virtual 

wavefunctions for spin ½, spin 1 and spin 2 particles. The final result is almost identical to 

the Standard Model, with infinitesimal but important differences.  

The total angular momentum can be summed over all wavenumbers ;k  from 0k   to some 

cutoff value
cutoff

k . We will assume (as with many unification theories) that the cutoff for 

these infinite superpositions is somewhere near Planck scale. Firstly imagine a universe 

where the gravitational constant 0G  . As 0G  , the Planck length 0
P

L  , the Planck 

energy  and
P

E  
cutoff

k  also. If we sum the angular momentum of these infinite 

superpositions when 0G   (i.e. from 0k   to )
cutoff

k  we get precisely half integral or 

integral  for the fundamental spin ½, spin 1 & spin 2 particles in appropriate m  states. If we 

now put 0G   the infinitesimal effect of including gravity can be balanced by an equal but 

opposite effect due to the non-infinite cutoff value in .k  A near Planck scale superposition 

cutoff requires gravity to be included to get precisely half integral or integral . (Section 4.2) 

These infinite superpositions have another very relevant property relating to the fact that all 

experiments indicate that fundamental particles such as electrons behave as point particles. 

Each wavefunction with wavenumber k , which we label as k
 , has a maximum radial 

probability at 1/r k  and they all look the same (Figure 1.1. 1.)   

                                     

Figure 1.1. 1  The radial probability of the dominant 6n   for spin ½ wavefunction 6k
 . 

Every wavefunction k
  of these infinite superpositions, interacts only with virtual photons 

(for example) of the same ;k if superpositions representing say an electron are probed with 

such photons (that interact only with wavefunction k
 ) the resolution possible is of the same 

4
*R R

k


  

kr   
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order as the dimensions of ,
k

 both have 1/ .r k  The higher the energy of the probing 

particle the smaller the k


 
it interacts with, the resolution of an observing photon can never 

be fine enough to see any k
 dimensions. Even if this energy approaches the Planck value, 

with a matching k
  radius near the Planck length it is still not possible to resolve it. This 

behaviour is consistent with the quantum mechanical properties of point particles.  

1.1.2 Primary interactions and Secondary interactions 

Supposing that superpositions can in fact build the fundamental spin ½, spin 1, and spin 2 

particles, then what builds the superpositions? Before answering that question, this paper can 

only make sense if we divide the world of all interactions into two categories. 

Secondary Interactions are those we are familiar with, and are covered by the Standard 

Model; but with the addition of gravity, which is not included in the Standard Model. They 

take place between the fundamental spin ½, spin 1 and spin 2 particles formed from infinite 

superpositions. They are the QED/QCD etc, interactions of all real world experiments. 

Primary Interactions we conjecture on the other hand are those that build infinite 

superpositions. They are virtual, and completely hidden to the real world of experiments.  

The majority of this paper is about these primary interactions, and the superpositions they 

build representing the fundamental spin ½, spin 1 and spin 2 particles. Primary interactions 

are between spin zero particles borrowed from a Higgs type scalar field and the zero point 

vector fields. In the 1970’s models were proposed with preons as common building blocks of 

leptons and quarks [4] [5] [6] [7]. In contrast with the virtual particles in this paper some of 

these earlier models used real spin ½ building blocks. Real substructure has difficulties with 

large masses if compressed into the small volumes required to approach point particle 

behaviour. On the other hand with virtual substructure borrowing energy from zero point 

fields the mass contribution at high k  values can be cancelled (section 3.2.1). As in earlier 

models this paper also calls the common building blocks preons, but here the preons are both 

virtual and spin zero. They also now build all spin ½ leptons and quarks, spin 1 gluons, 

photons, W & Z particles, plus spin 2 gravitons in contrast to only the leptons and quarks in 

the earlier models. (See Table 2.2. 1) 

As these preons have zero spin they possess no weak charge, primary interactions (section 

2.2.1) can take place only with the zero point colour, electromagnetic and gravitational fields. 

The three primary coupling constants for each of these three zero point fields are different 

from, (but related to) the secondary coupling constants. The behaviour of primary coupling is 

also entirely different from secondary coupling. Secondary coupling strengths vary (or run) 

with wavenumber k  (the electromagnetic increasing with k  and colour decreasing with k ). 

In contrast, we conjecture primary coupling strengths (or constants) do not run. In this paper 
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virtual preons are continually born with mass out of a Higgs type scalar field, existing only 

for time / .t E   At their birth, they interact while still bare with zero point vector fields at 

this instant of birth 0t  . The primary coupling constants consequently are fixed for all :k  

there is no time for charge canceling or reinforcing, which in secondary interactions forms 

around the bare charge progressively after its birth. The equations work only if this is true, 

and they also work only if the primary colour coupling constant is 1.  This does not seem 

implausible as it simply means that primary colour coupling is certain (sections 2.2.2). The 

ratio between the primary and secondary colour coupling constants labelled C
  is thus (if 

primary colour coupling is 1) the inverse of the secondary (or usual 1

3
  of QCD) colour 

coupling constant at the superposition cutoff @ Planck Energy. (Sections 3.3 & 4.2.2)  

To enable the primary coupling to colour, electromagnetic and gravitational zero point fields, 

preons need colour, electric charge and mass. There are only three preons, red, green & blue 

with positive electric charge, and their anticouterparts. Their mass borrowed from some type 

of scalar Higg’s field, or the time component of zero point fields must always be non-zero. 

This is discussed further in section 1.1.3.  As there are 8 gluon fields, superpositions are built 

with 8 virtual preons for each virtual wavefunction k
 . The nett sum of these 8 electric 

charges is 0, 2, 4, 6   , and never 6  . This leads to the usual 0, 1/ 3, 2 / 3, 1    electric 

charge seen in the real world. Various combinations of these 8 preons in appropriate 

superpositions can build leptons and quarks, colour changing and neutral gluons, neutral 

photons, neutral massive 0
Z  photons and the charged massiveW

  photons. (Table 2.2. 1) 

1.1.3  Photons, gluons and gravitons with infinitesimal mass ( 33
10 eV


 ).  

For many decades after the discovery of the neutrino in the 1930s it was thought to be 

massless, and to travel at velocity c . Despite being in conflict with the Standard Model, 

towards the end of last century evidence slowly accumulated that this may not in fact be true, 

and that the family of 3 neutrinos have masses in the electron volt range. Due to this very low 

mass, and their normal emitted energies, they invariably travel at virtually the velocity of 

light c .  Photons also have always been seen as massless traveling precisely at velocity ,c  

except in the case of the massive W
 & 0

.Z  Massless virtual photons have an infinite range, 

which has always been seen as an absolute requirement of the electromagnetic field. On the 

other hand, this paper requires some rest frame (even if this frame can move at virtually c) in 

which to build all the fundamental particles. Table 6.2 1 suggests photons, gluons and 

gravitons have 33
10 eV


 mass with a range of approximately the inverse of the causally 

connected horizon radius, and velocities sufficiently close to that of light their helicity 

remains essentially fixed. This allows some form of Higgs mechanism to increase this 

infinitesimal mass to the various values in the massive set. These infinitesimal masses are in 

line with some recent proposals [2] [3] where gravitons have a mass of 33
10 eV


  to explain 

accelerating expansion. 
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The virtual wavefunction we use is 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y   

 
an 3l 

wavefunction. This virtual 3l  property is normally hidden. In the same way as scattering 

experiments on spin 0 pions show spin 0 properties, and not the properties of the two 

canceling spin ½ component particles, this 3l   property of the virtual components of 

superpositions is not visible in the real world. Scattering experiments can exhibit only the 

spin properties of the resulting particle. The individual angular momentum vectors 

2 3L  of the infinite superposition all sum to a resulting: ( 3 / 2)
Total

L , 2  or 6  

for spin ½ , spin 1 or spin 2 respectively, in a similar way to two spin ½ particles forming 

spin 0 or spin 1 states.  

The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     has Eigenvalues 2 2 2 2

nk
n kP with

nk
n kP , suggesting it borrows n  parallel k quanta from zero point vector fields provided 

n  is integral. We can see this by letting k  allowing energy E n   by absorbing n  

quanta   from the zero point vector fields (section 2.3.2). As spin 3 needs at least 3 spin 1 

particles to create it, the lowest integral number n  can be is 3. The virtual 3l   property can 

however be used to derive the magnetic moment of a charged spin ½, 1/ 2m    state as a 

function of n . Section 3.5 shows 2g   Dirac electrons need an average (over integral n  

states) of 6.0135n  . Three member superpositions 
k n nk

n

c 
 

with 5,6,&7n   achieve 

this, creating Dirac spin ½ states. We also find that 6n   is the dominant member and each 

superposition k
 needs at least 3 members to make all the equations consistent for Dirac 

particles. Secondary interactions at any wavenumber k  can occur with k
  if integers n  

change by 1 , thus changing the Eigenvalues n kP  by k  where this can be only a 

temporary rearrangement of the triplets of values of n . This is true, whether the interaction is 

with leptons, quarks, photons, gluons, W & Z particles, or gravitons. (Section 3.3) 

1.1.4 Superposition wavefunctions require only squared vector potentials  

The wavefunction 
3 2 2 2

exp( /18) ( , )
nk nk

C r n k r Y    requires an invariant in all coordinates 

spherically symmetric squared vector potential to create it: 
2 2 4 2 4 2

/ 81Q A n k r . There are 

no linear potential terms in contrast with secondary interactions. The primary interaction 

operator is 
2 2 2 2 2ˆ ,P Q A     with no linear potential terms included and Q  simply 

represents a collective symbol for all the effective charges concerned. As an example, the 

dominant 6n   wavefunction of a spin ½ Dirac k
  requires a squared vector potential of 

2 2 4 2 4 2
/ 81Q A n k r 2 4 2

16 k r  (section 2.3.1).  Primary coupling between the 8 virtual 

preons and the colour, electromagnetic and gravitational zero point fields produces a vector 

potential squared value for all infinite superpositions which can be expressed as: 

 
2

2 4 2

02 2
8 8 / (2 ) ( )

 
(1 )

(1 )

( )

( )3

EMP p
im G s c k r ds

ksN

k
Q A

N 



     


  

 


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(Where the length of the complex vector is simply squared here.) The significance of the 

cancelling top and bottom factors ( )sN  is explained in section 2.1.2. Also the cancelling 

(1 ) factors are due to gravity and explained in section 4.2. The primary colour coupling 

amplitude is conjectured to be 1 to each of the eight preons, and
EMP

 the primary 

electromagnetic coupling. This equation applies regardless of the individual preon colour or 

electric charge signs, whether positive or negative (section 2.2.3). The primary gravitational 

coupling is to the particle mass 0
.m
 
The primary gravitational constant is P

G  divided by c  

to put it in the same form as the other two coupling constants. The magnitude of the total 

angular momentum vector of the infinite superposition is ( 1)
Total

s s L . ) This 
2 2

Q A  

without the gravity term generates superpositions with probability ( ) / kN s dk  where s is the 

superposition spin, 1N   for massive spin ½ fermion & massive boson superpositions but 

2N   for infinitesimal mass boson superpositions (Table 4.3. 1, section 6 and its subsections 

cover this more fully). Section 4.2  includes gravity raising the superposition probability to 

/1 )( )(N ks d k  where the infinitesimal  (not to be confused with infinitesimal mass) is 
2

0
2 /m Spin   (in Planck units 1)c G   45

7 10


  for electrons, and 34
10 

 for a 0
Z . 

The k
 superpositions require at least three integral n  members. The following three 

member superpositions fit the Standard Model best (see Table 4.3. 1) 

 

        Spin ½ massive 1N   fermion superpositions                              
5,6,7n

k n nk
c 



  .  

        Spin 1 massive 1N   boson superpositions                                  
4,5,6n

k n nk
c 



  .  

        Spins 1 & 2 infinitesimal mass 2N   boson superpositions         
3,4,5n

k n nk
c 



  .                                      

                  

Below are infinite superpositions 
, ,s m




for only spins ½ & 1. The symbol   refers to the 

infinite sum, s  the spin of the resulting real particle, m  its angular momentum state, and ss  

a spherically symmetric state. Section 3.1.3 explains this format. Also square cutoffs in 

wavenumber k are used here for simplicity.  Infinitesimal mass superpositions are introduced 

in section 6.2. (Complex number factors are not included here for clarity.) 

 

 

 

1/2, 4

5,6,7

1, 2

3,

( )

,

4,5

1
, ,2

0

( )

,

, ,

0

1
Massive              Spin , )

2

2 1
Infinitesimal mass Spin 1,

1

2 

m m

k cutoff

nk ss

n nk nk

nk

k cutoff

nk ss

n nk nk

n

n

m m

n k

c dk
k

c d

N

N k
k

 
  



 
  











  
  

  

  
  

 







 

 

 

(1.1. 1) 

 

In these infinite superpositions the probability that the wavefunction is spherically symmetric 

is always
2 2

1
nk nk

 
   and the probability that it is an m state is 

2

nk
 where nk

 is the 

magnitude of the velocity of the centre of momentum of the primary interactions that 
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generate each nk
 .  This is similar to the superposition of time and spatially polarized virtual 

photons in QED. For example spin ½ has probabilities of 
2 2

1
nk nk

 
   spherically symmetric 

nk
  wavefunctions, and 

2

nk
   ( , 2)

nk
m    wavefunctions. Each k

 is normalized to 1 but 

the infinite superpositions 
, ,s m




are not normalized, diverging logarithmically with k ; the 

same logarithmic divergence that applies to virtual photon emission.  (Real wavefunctions 

have to be normalized to one as they refer to finding a real particle somewhere but this need 

not apply here.) Each member of these spin ½ superpositions has probability (1 ) / 2 ,dk k

and if electrically charged emits virtual photons with probability 4 / .   Ignoring the factor of 

(1 ) 44
1 10 ,


    the overall virtual scalar photon emission probability is the usual

 2 / / .dk k 
 
(Possible implications of the infinitessimal   are discussed in section 10.1.8 )  

Section 3.1 finds that 2m   virtual wavefunctions have 2

nk
 probability of leaving an 2m    

debt in the zero point fields. Integrating over all k  produces a total angular momentum for a 

spin ½ state of  2
( / 2)(1 ) 1 / 2

Cutoff
 

   , (section 3.2.2). If 1/
Cutoff

k  is near the Planck 

length,  
12

(1 ) 1
Cutoff
 


   . A similar integration over all k  for the rest energy of the 

infinite superposition also leads to  2 2 2

0 0
(1 ) 1

Cutoff
m c m c 

     , (section 3.2.1). The 

infinitesimal quantity  vanishes in a zero gravity, zero Planck length universe where 

& .
Cutoff Cutoff

k   
 
In this paper each preon borrows virtual rest mass from a Higgs type 

scalar field. The superposition mass/energy is obtained by summing squared momenta over 

all k . The equations are based on probabilities of these in a similar manner to those for 

angular momentum. This suggests the superposition or equivalent particle mass is both 

energy borrowed from zero point vector, and mass borrowed from Higgs type scalar fields. 

The second half of this paper argues that the limited zero point energies (required to generate 

virtual gravitons) available at causally connected cosmos wavelengths require it to expand 

exponentially in an accelerating manner (Figure 5.3. 4). Section 5.3 finds that the warping of 

spacetime around mass concentrations is consistent with local observers measuring a 

maximum wavelength virtual graviton probability density min min minGk Gk
K dk   where minGk

K

is invariant in all coordinates. The local measurement of 1

min Horizon
k R


  however depends on 

both the cosmic time T and the local metric clockrates
00

g . (Figure 5.3. 9.) This can only 

happen if at any radius r around a mass m, space expands proportionally to m/r in accordance 

with the Schwarzschild solution (Figure 5.2. 2). The first half of this paper is about the 

primary interactions between spin zero preons and spin one quanta that build the 

fundamental particles. The Standard Model is about the secondary interactions between them. 

(The weak force is only between spin ½ particles and thus a secondary interaction. It can not 

be involved in primary interactions.) Apart from infinitesimal effects, such as infinitesimal 

masses, the properties of fundamental particles covered in this paper seem consistent with 

their Standard Model counterparts. All 1& 2N N   superpositions as in Table 4.3. 1 are 

conjectured to cutoff at the Planck energy .
P

E   If this is so both colour and electromagnetic 

interaction energies must cutoff at /
P

E n
18

2.03 10 .,GeV   or  1/ 6  of the Planck 



15 

 

energy. (The expectation value  is 6.0135n   for spin ½ leptons and quarks Eq. (3.5. 16)). 

The electromagnetic and colour coupling constants at this cutoff are consistent with Standard 

Model predictions assuming three families of fermions and one Higgs field. (See Figure 4.1. 

1 & Figure 4.1. 2). Only after attempting to show that infinite superpositions can be (almost) 

equivalent to the Standard Model fundamental particles do we try to connect them with 

General Relativity and the expansion of the cosmos. 

2 Building Infinite Virtual Superpositions 

2.1 The possibility of Infinite Superpositions 

2.1.1 Early ideas 

After World War II there was still much confusion about QED. In 1947 at the Long Island 

Conference the results of the Lamb shift experiment were announced [8]. Some of the first 

early explanations that gave approximately correct answers used simple semi classical 

thinking to get a better understanding of what seemed to be going on. These early ideas 

helped to eventually lead to the QED of today, perhaps in a similar manner to the way Bohr’s 

original simple semi classical explanation of quantized atomic energy levels played such a 

large part in the eventual development of full three dimensional wavefunction solutions of 

atoms, and quantum mechanics. We start this paper with an example of a semi classical Lamb 

shift explanation that seems to lead into the possibility of fundamental particles and infinite 

virtual superpositions being one and the same.  

The density of transverse modes of waves at frequency   is 2 2 3
/d c    and the zero point 

energy for each of these modes is / 2 . The electrostatic and magnetic energy densities in 

electromagnetic waves are equal, thus for electromagnetic zero point fields:  

 
2 2 2 2

0 0

2 3
2 2 2

E c B d

c

    



 
   

    

 and    
4

2 2 2

0 0 2 3
.

2

d
E c B

c

 
 

 
 

 

For a fundamental charge e  using 2

0
/ 4 ,e c   and provided 1,   this gives an 

 

                                 

2 4

2 2 2

2

2
Average force squared of    

d
F e E

c

  

 
   

   (2.1. 1)  

 

Thinking semi classically, for an electron of rest mass m  this can generate simple harmonic 

motion of amplitude r , where 2 2 4 2
F m r  (if 1  ). Solving for 2

r  (where 2
r  is 

superimposed on the normal quantum mechanical electron orbit, C / mc  is the Compton  
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wavelength, and / ) :k c           

2

2 2

2 2

2 2
      .

C

d dk
r

m c k

  

  

 
      

   

Integrating 2
r (directions are random) : 

max

2 2 2

max min

min

2 2
 log( / )

k

Total C C

k

dk
r k k

k

 

 
  . 

The minimum and maximum values for k  are chosen to fit atomic orbits, and a root mean 

square value for r  can be found. Combining this with the small probability that the electron 

will be found in the nucleus, this small root mean square deviation shifts the average potential 

by approximately the Lamb shift. This can also be thought of as simple harmonic motion of 

amplitude ,
C

  occurring with probability (2 / ) /dk k  . It can also be interpreted as the 

electron recoiling by ,
C

  (provided 1
Recoil

  ) in random directions due to virtual photon 

emission with a probability of (2 / ) /dk k  .   

 

2.1.2 Dividing probabilities into the product of two component parts 

This probability (2 / ) /dk k  can be thought of as the product of two terms &A B , where A  

includes the electromagnetic coupling constant , B  includes /dk k , and (2 / ) / .AB dk k   

This suggests that this same behaviour is possible if we have an appropriate superposition of 

virtual wavefunctions occurring with probability B , which emits virtual photons with 

probability A  (by changing Eigenvalues nk
n kp

 
by 1n   ).  For example, if a virtual 

superposition occurs with probability B  ( ) / kN s dk , and has a virtual photon emission 

probability for each member of these superpositions of A 
1

( ) (2 / )N s  
 , then the overall 

virtual photon emission probability remains as above at AB  (2 / ) /dk k  . This applies 

equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided A includes 

the appropriate coupling constant this same logic applies regardless of the type of boson 

emitted. As is usual to get integral or half integral total angular momentum 2s has to be 

integral and section 6.2 argues that N must also be integral.  (This paragraph is simplified to 

illustrate the principle and will later be modified in section 3.3.) 

In section 1.1.4 we said that these wavefunctions are built with squared vector potentials. If 

superpositions of them are to represent real particles they must be able to exist anywhere. 

This is possible only if they are generated by invariant fields. The only fields uniform in 

space-time are the zero point fields, and looking at the electromagnetic field first we can use 

section 2.1.1 above. Consider a vector r  from some central origin O  and a magnetic field 

vector B  through origin ,O  then the vector potential at point r  is   / 2 A B r and the 

vector potential squared is  2 2 2 2
sin / 4A B r  where the angle between vectors &B r is  . 

                         
2 2 2 2

As  averages 2/3 over a spheresin  : / 6  A B r 

  

                (2.1. 2) 
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(This requires the source of these fields to be spherically symmetric, where 2
B  here is the 

magnetic field squared at any point due to the invariant cubic intensity of zero point EM also 

as in section 2.1.1. This is only true at higher frequencies, and we will find later that at 

cosmic wavelengths we need a similarly invariant spherically symmetric source from the 

receding horizon).  Putting Eq’s.    (2.1. 1) & (2.1. 2) together the vector potential squared is 

  

                                               
2 2

e A
2 2 2 2 4 2

2 4 2

4
6 3 3

e B r r d dk
k r

c k

   

  
    

 

                    (2.1. 3) 

As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer 

N in the numerator and denominator:   

                                                            
2 2 2 4 2

.
3

dk
e

s

s
A k r

k

N

N





   
    
   

                       

(2.1. 4) 

But here a vector potential squared term  2 4 2

3
k r

sN





 
 
    

occurs with probability
sN dk

k

 
 
 

. 

Another way of looking at this is that a wavefunction k
  that is generated by a vector 

potential squared term 2 4 2

3
k r

sN





 
 
 

 can occur with 
sN dk

k

 
 
 

probability.  

This is similar reasoning to that used in the semi classical Lamb shift explanation of section 

2.1.1. In the first bracketed term of Eq. (2.1. 4),  is the electromagnetic coupling constant, 

but the same logic applies for the eight gluon and gravitational zero point vector fields where 

we will sum appropriate amplitudes of these and square this total as our effective coupling 

constant in Eq. (2.1. 4). But first we need to look at groups of spin zero preons that could 

build these wavefunctions. What mixtures of colours and electrical charges end up with the 

appropriate final colour and electrical charge for each of the fundamental particles or at least 

the ones we know of? 

 

2.2 Spin Zero Virtual Preons from a Higgs type Scalar Field 

2.2.1 Groups of eight preons that form superpositions 

In this paper preons have zero spin and can have no weak charge. The only fields they can 

interact with (via Primary Interactions that build superpositions as in section 1.1.2) are 

colour, electromagnetic and gravity. In the simplest world there would be just one type of 

preon that comes in three colours, always positively charged say, with their three anti colours 

all negatively charged. We will inded find that this seems to work. Looking at Table 2.2. 1 

we see that a minimum of 6 preons is required to get the correct charge ratios of 3:2:1 

between electrons, and up and down quarks. 
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Table 2.2. 1 Groups of 8 virtual preons forming the fundamental particles. The electric 

charges we measure in the real world are one sixth of the Group electric charges in this table. 

The Higgs boson is discussed in section 10.1.7.  If it is a superposition it would be in the 

neutral group at the top. 

Fundamental 

Particles 

Preon colour Preon electric 

charge. 

Group 

colour 

Group electric 

charge. 

 

Spin ½  

Neutrino family. 

Spin 1  

Photons, 0
Z &  

Neutral gluons.  

Spin 2 Gravitons. 

Any colour +          

its Anticolour     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

 

 

Colourless 

 

 

0 

                         

Spin ½  

Electron family.  

 

Spin 1 .W
  

Any colour +          

its Anticolour     

Antired 

Antired 

Antigreen 

Antigreen 

Antiblue 

Antiblue 

 1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

 

Colourless 

 

-6 

 

 

Spin ½  

Blue up quark 

family. 

Red     

Antired      

Green 

Antigreen 

Green 

Blue 

Blue 

Red 

 1 

-1 

 1 

-1 

 1 

 1 

 1 

 1 

 

 

Blue 

 

 

+4 

 

Spin ½  

Red down 

quark family. 

 

Green     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Antiblue 

Antigreen 

 1 

-1 

 1 

-1 

 1 

-1 

-1 

-1 

Red 

 

-2 

 

Spin 1 

Red to green 

Gluons. 

 

Red     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

Red plus 

antigreen 

 

0 
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To get vector potential squared values that make all our equations work however, we need to 

couple to all 8 gluon fields requiring a total of 8 preons. Table 2.2. 1 has all the basic 

properties required to build infinite superpositions for the fundamental particles. We need to 

remember when looking at this table that from section 1.1.2 the effective secondary charge is 

much less than the primary charge and we have no idea yet of just what effective value the 

primary preon electric charge is.  

Particles only are addressed in the groups of preons in Table 2.2. 1. To get anti particles it 

would seem that we can just change the signs of each preon in the groups of 8, excepting 

those that are already their own antiparticle. The first point to notice however is that both the 

electron and the W
 are predominantly anti preons, yet they are both defined as particles. 

Have we got something wrong? When we look at relativistic masses in section 3.2.1 we get 

the usual plus and minus solutions and Feynman showed us how to interpret the negative 

solutions as antiparticles. If this also applies in anti preons then because they are zero spin, 

and the weak force discriminates between particles and antiparticles by their helicity, this 

discrimination can apply only in secondary interactions. The preon anti preon content of the 

groups in Table 2.2. 1 does not necessarily tell us whether they produce particles or 

antiparticles. We will discuss this further in section 3.2.1, also as of now there is still no good 

understanding of the predominance of matter over antimatter in our universe.  In Table 2.2. 1 

only one example of colour is given for quarks and gluons. Different colours can be obtained 

by simply changing appropriate preon colours. Various combinations of 8 preons in this table 

are borrowed from a scalar field for time /T E   , this process continually repeating in 

time. Conservation of charge normally allows only opposite sign pairs of electric charges to 

appear out of the vacuum. Let us imagine that these virtual preons are building an electron for 

example whose electric charge exists continually unless it meets a positron and is annihilated. 

This charged electron is thus due to a continuous appearance out of and back into the vacuum 

of virtual charged preons in a steady state process existing for the life of the superposition, 

and not conflicting with conservation of charge. If the electron itself does not conflict then 

neither do the borrowed preons that build it. 

2.2.2 Primary coupling constants behave differently and actually are constant 

Q.E.D. tells us that the bare (electric) charge of an electron for example increases 

logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual 

charged pairs) progressively shield the bare charge from a radius of approximately one 

Compton radius C inwards towards the centre. When an electron (for example) is created in 

some interaction the full bare charge is exposed for an infinitesimal time. Instantaneously 

after its creation, shielding due to polarization of the vacuum builds progressively outward 

from the centre of its creation at the velocity of light.   
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For radii ≥ C we measure the usual fundamental charge e . There are similar but more 

complicated processes that occur to the colour charge. Camouflage is the dominant one where 

the colour charge grows with radius as the emitted gluons themselves have color charge. At 

the instant of their birth the preons are bare and at this time 0t   say, all the zero point vector 

fields can act on these bare colour and electric charges as there is simply no time for 

shielding and other effects to build. The primary coupling constants that we use must 

consequently be the same for all values of k in complete contrast to those for secondary 

interactions. We don’t know what this primary electromagnetic coupling constant is so we 

will just call it EMP
 . Also we will find that to get any sense out of our equations the primary 

colour coupling has to be very close to 1. A coupling of 1 is a natural number and simply 

reflects certainty of coupling. Provided the secondary colour coupling can be in line with the 

Standard Model and there does not seem to be any other good reason to pick a number less 

than 1, we will make the (apparently arbitrary) assumption that the bare primary colour 

coupling is exactly 1. (In section 4.1.1 we will find that this seems to be consistent with the 

Standard Model.) 

2.2.3 Primary interactions also behave differently 

Let us define a frame in which the central origin of the wavefunctions k
 of our infinite 

superposition is at rest: The laboratory or rest frame we will refer to as the LF. The preons 

that build each k
 are born from a Higg’s type scalar field with zero momentum in this 

frame. This has very relevant consequences as their wavelength is infinite in this rest frame at 

time 0t  , and after they become wavefunction k
 their wavelength is of the order1/ k  for 

times 0 / 2t E  .  This implies that there could possibly be significant differences in the 

way amplitudes are handled between primary and secondary interactions. 

Let us consider secondary interactions first with an electron and positron for example located 

approximately distance r  apart. For photon wavelengths r  both the electron and the 

positron each emit virtual photons with probabilities proportional to  , but for wavelengths 

r  their amplitudes cancel. Returning to primary interactions, zero momentum preons must 

always have an infinite wavelength which is greater than the wavelengths (or1/ k values) of 

the zero point quanta they interact with, for all 0.k  This implies that we cannot simply add 

or subtract amplitudes algebraically as the charged preons can be always further apart than 

the wavelength of the interacting quanta (except when 0,k   but we will see there is always a 

minimum k value, ie min
0k   in sections 5 & 6). In fact if algebraic addition of amplitudes 

did apply in primary interactions, infinite superpositions for colourless and electrically 

neutral neutrinos would be impossible. So how can infinitely far apart preons of differing 

charge generate wavefunctions of all dimensions down to Planck scale? This can happen only 

if the amplitudes of all 8 preons are somehow linked over infinite space, all at the same time

0t   contributing to generating the wavefunction k
 . This non-local behaviour is not new. 
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Recent experiments have confirmed that what Einstein struggled to come to terms with is in 

fact true; he called it “spooky action at a distance”.  While these experiments are so far 

limited in the distance over which they demonstrate entanglement, there is now wide 

acceptance that it can reach across the Universe. In the same manner wavefunctions covering 

all space can instantly collapse. We want to suggest that this same non-locality applies in 

primary interactions: our 8 virtual preons all unite instantaneously at time 0t   across 

infinite space in generating each k
 . Also the vector potential squared equations that they 

generate must always be the same for all the preon combinations in Table 2.2. 1. This can 

happen only if the amplitudes of all 8 are added regardless of charge sign for primary 

interactions. This applies to both colour and electric charge.  

The opposite is true for the secondary interactions. At time 0t   all 8 preons instantaneously 

collapse into some sort of virtual composite particle that for times 0 / 2t E  obeys 

wavefunction k
 . The dimensions of k

 are of the same order as the wavelength of the 

interacting quanta, and the usual algebraic total electric charge and nett colour charge must 

now apply as in the group charges in Table 2.2. 1. All of this may seem contrary to current 

thinking which has gradually been built up over several centuries of secondary interaction 

experiments; however it may not be so out of place when viewed in the context of the counter 

intuitive results of entanglement experiments. The key point to bear in mind is that the 

predictions of this paper must agree or at least be able to fit the Standard Model, or 

secondary interaction experiments; as we may never be able to look into virtual primary 

interactions, but only observe their effects.   

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to 

both colour and electric coupling, where these two vectors can be at the same complex angle 

or at different angles. The simplest case is if they are in line and we will assume this is true 

for both colour and electromagnetic primary interactions which are both spin 1. This seems to 

work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector 

only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero 

gravity world by simply adding the 8 preon colour vectors of amplitude 1 and the eight 

primary electromagnetic vectors of amplitude
EMP

  together, as all this only works if they 

are all in line.         
   

         The total colour plus electromagnetic primary amplitude is   8 8
EMP

       

                    

           (2.2. 1) 

This equation is always true regardless of signs as in section 2.2.3  

         
2

The colour plus electromagnetic primary coupling constant is        8 8  
EMP

    (2.2. 2) 

Inserting this into Eq. (2.1. 4) we get                                       
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2

2 2 2 4 2
8 8

.
3

EMP dk
Q A k r

sN

s kN





           
  

  

                 (2.2. 3) 

 

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1. 4) as a vector potential 

squared term  

                

2

2 2 2 4 2
 occurring with probability

8

3
 

8
   

EMP dk
Q A

s
k r

k

N

sN





   
   

  (2.2. 4) 

 

     

                       

                     

  

Where Q  is a symbol representing the entire 8 colour and 8 electric amplitudes combined, 

with s the spin and 1N   for massive superpositions, but 2N   for infinitesimal mass 

superpositions. (Table 4.3. 1, section 6 and its subsections cover this more fully.) 

 

2.3 Virtual Wavefunctions that form Infinite Superpositions  

 

2.3.1 Infinite families of similar virtual wavefunctions 

Consider the family of wave functions where ignoring time:   

                                               

                                                          
2 2 2

( ) ( )

( ) exp( /18)

nk

l

nk

U nrk Y

U nrk C r n k r

 

 
  

                             

                                 (2.3. 1) 

    

 U nrk  is the radial part of n k
 ,  Y  the angular part, nk

C a normalizing constant, and we 

will find that l  is the usual angular momentum quantum number. There is an infinite family 

of nk
 , one for each value k  where 0 k   in a zero gravity world.    

  

                                      
1 2 2 2

( ) ( ) exp( /Now put 18 )
l

nk
R nrk rU nrk C r n k r


                         (2.3. 2) 

 

As we are dealing with zero spin preons we use Klein-Gordon equations [9]. The Klein-

Gordon equation is based on the relativistic equation 2 2 2 2 2

0
/E c m c p  and in a spherically 

symmetric squared vector potential the Time Independent Klein Gordon Equation is 

 

                                         

2

2 2 2 2 2 2 2

02
ˆ E
P Q A m c

c
   

 
      

 
                                      

 

(2.3. 3) 
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Using                                   
2 2

2 2

1 ( 1)R l l

R r r





  
 


        we get the Time Independent  

                

2 2 2 2

2 2 2 2

02 2 2
Radial Klein Gordon Equation   

(
 

1)R l l E
Q A m c

R r r c

  
    

  
  

    

   (2.3. 4) 

    

For each nk
 the energy is nk

E a function of &n k , and we will label the rest mass as 0snk
m

 
a 

function of spin s , & ,n k  but also a function of the particle rest mass 0
m  and this becomes  

 

                                              

2

2 4

02

2 2

2 2 2

2 2

( 1)
nk

snk
Q A

E
m

r
c

R l

R r c

l 






 

 
   

    

                  (2.3. 5) 

 

Differentiating ( )R nrk ( )rU nrk

2 2 2

1
exp( )

18

l

nk

n k r
C r

 
  twice with respect to r , multiplying 

by 2 and dividing by R            

                                                  

42 2 2

2 2

2 2 2 24 2
(

81

)

9

1 (2 3)nR l l

R r

lr k

r

nk  
  


                        

 

 (2.3. 6) 

 

Comparing Eq’s. (2.3. 5) & (2.3. 6) we see that l  is the usual angular momentum quantum 

number and the vector potential squared required to generate these wavefunctions is      

                                                               

                                                                   

44 2 4 2

2 2 2 4 2

81 3

n k r n
Q A k r

 
   

 
  

                             

 (2.3. 7) 

   
2 2 2 2

2 2 2

02
The momentum squared i   

( 3)

9
s

2
 nk

nk snk

E l n k
m c

c


  p                     

 

(2.3. 8) 

 

2 2 2 2
For  3 wavefunctions this beco &   me  s

nk nk
n k nl k  p p   

 

(2.3. 9) 

 

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors 

From Eq.’s (2.3. 8) & (2.3. 9) as k  , the energy squared
2 2 2

nk nk
E c p 2 2 2

n  and thus 

 

  energy  considering onlyIf  3  the positive soluti when  on . 
nk

l k E n          (2.3. 10)         
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This suggests that n must be integral. If it is integral when k  , we will conjecture that it 

must be integral for all values of k. This is a virtual or “off shell” process, where energy can 

depart from 
2 2 4 2 2

0
E m c c  p  for time / 2T E   .We can also perhaps think of Eq.(2.3. 

9) as integral n  parallel momentum vector kp  quanta, transferring total momentum

nk
n kp and energy E n   from the zero point fields

 
to generate the virtual 

wavefunction .
nk

  Thus provided 
2 2 4 2 4 2

( / 3)Q A n k r  as in Eq. (2.3. 7) the operator
2 2 2 2 2ˆ ( )P Q A     applied to the virtual wavefunction 

3 2 2 2
exp( /18) ( )

nk nk
C r n k r Y  

produces                        2 22 2 2 2 2 2ˆ ( )
nk nk nk

P Q A n k     , 

where n is integral, but k is continuous as for free particles. Thus we conjecture that: 

 

                      

3 2 2 2

2 2 2 2
Eigenvalues  

exp( /18) ( ) are Eigenfunctions with

 with continuous  but integral  .  

nk nk

nk

C r n k r Y

n k k n

  

p
                  

            (2.3. 11) 

Also there are no scalar potentials involved, only squared vector potentials, so this is a 

magnetic or vector type interaction. Particles in classical magnetic fields have a constant 

magnitude of linear momentum which is consistent with the squared momentum Eigenvalues 

of Eq. (2.3. 11).This also implies that each nk
 is formed from quanta of wave number k  

only and that secondary interactions with nk
 emit or absorb k virtual quanta if n changes 

by 1.  The wavefunction nk
 is virtual and in this sense both the energy nk

E and rest mass 

0snk
m  in Eq. (2.3. 8) are also virtual quantities borrowed from zero point vector fields and a 

scalar Higgs type field. We use these virtual quantities to calculate the amplitude that nk
 is 

in an m state of angular momentum in section 3.1, and in section 3.2 to calculate the total 

angular momentum and rest mass. As in section 2.3.2 above, we can think of nk
n kp  as n  

parallel momentum vectors kp . As spin 3 (or 3l  ) needs at least 3 spin 1 quanta to 

build it, n  must be at least 3. When 3n   we can think of this as 3 of the 8 preons each 

absorbing quanta k  at time 0.t   We will find that a spin ½ state has a dominant 6n   

Eigenfunction where 6 of the 8 preons each absorb quanta k . It needs at least two smaller 

side Eigenfunctions 5n   & 7n   with either 5 or 7 respectively, of the 8 preons each 

absorbing quanta k  respectively at 0t  . (Figure 3.1. 4 illustrates the three n modes of a 

positron superposition.) 

From Eq. (2.3. 7)  
2 2

Q A 

4

2 4 2

3

n
k r

 
 
 

 2 4 2
16 k r  for this dominant 6n   mode. 

Thus using Eq.  (2.2. 4) 

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
 

 2 4 2
16 k r for an 6n  mode. 

Now 1/ 2 & 1s N   for spin ½ fermions and 

2

2 8 8
16

3

EMP




 
 

  if we have only an 6n   

mode. 
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Thus 8 8 24
EMP

     and
1

EMP
 

137.1, but this is true for an 6n   Eigenfunction only, 

and we have a superposition where the amplitudes of the smaller side Eigenfunctions 5n   & 

7n   determine the ratio between the primary to secondary (colour and electromagnetic) 

coupling amplitudes or the value of 
1

3
@

cutoff
k 

 (Section 3.3).  The 2 2
Q A required to produce 

this superposition with amplitudes n
c is, using Eq. (2.3. 7) 

 

                                                                         

5,6,7

4 2 4 2

2 2
*

81
n

n

n

n k r
Q A c c



   

                                         (2.3. 12)                                                                               

Repeating the same procedure as above for three member superpositions using Eq. (2.3. 12) 

we find the strength of EMP
  required increases considerably (see section 4.1 & Table 4.1. 1.)  

As the secondary electromagnetic coupling 
1

@
EMS cutoff

k 
must be constant for all spin ½ 

leptons and quarks the amplitudes of the smaller side Eigenfunctions 5n   & 7n   that 

determine this must also be constant for all the fermions, implying that Eq. (2.3. 12) must be 

the same for all fermions. The same arguments apply to the other groups of fundamental 

particles but we return to this in sections 3.3 where we see that the same also applies with 

graviton emission. 

 

3 Properties of Infinite Superpositions 

3.1 What is the Amplitude that nk
  is in an m state?  

3.1.1 Four vector transformations 

The rules of quantum mechanics tell us that if we carry out any measurement on a real 

spherically symmetric 3l   wavefunction it will immediately fall into one of the seven 

possible states 3, 0, 1, 2, 3l m     [10]. But nk
 is a virtual 3l   wave function so we 

cannot measure its angular momentum. During its brief existence it must always remain in 

some virtual superposition of the above seven possible states and we can describe only the 

amplitudes of these. So is there any way to calculate these amplitudes as they must relate to 

the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero 

point vector fields? First consider the 4 vector wavefunction of a spin 1 particle and start with 

a time polarized state which has equal probability of polarization directions. It is thus 

spherically symmetric, which we will label as ss .  Using 4 vector (t, x, y, z) notation: 

 

                  In frame A, a time polarized or ss  spin 1 state is (1,0,0,0). 

Let frame B move along the z  axis at velocity /v c   in the z direction. 
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                  In frame B the polarization state transforms to ( ,0,0, ).   

But this is 
2 time polarized ss states minus 

2 2   z  polarized or 0m   states      

                  In frame B the probabilities are 
2 ss  

2 2
0m    states.  

Now 
2 2 2 2 2

(1 ) 1         is an invariant probability in all frames and in removing 
2 2   0m   states from 

2  ss  states, the new ratio of spherical symmetry is 
2 2 2 2 2

( ) / 1       . Thus a spherically symmetric state is transformed from probability 

1 in frame A, to 
2

1   in frame B. Also removing 0m   states from spherically symmetric 

states leaves a surplus of 1m   states, as spherically symmetric states are equal 

superpositions of 1 ,m    0 ,m  & 1m   states.  

 

2 2
Thus in Frame B the probabilities (1 ) 1  states are .ss m           (3.1. 1) 

  

We can describe this as a virtual superposition of 
1

1  states.ss m


     
                                                                 

(3.1. 2) 

As 
2

1   we have transverse polarized states, the same as real photons. Now transverse 

polarized spin 1 states can be either left ( 1),m   or right ( 1)m    circular polarization, or 

equal superpositions of (1/ 2) (1/ 2)L R  as in &x y  polarization.  If we think of 

individual spin zero preons absorbing these spin 1 quanta at 0t   they must also have this 

same
2 probability of transversely polarized spin 1 states.  If they then merge into some 

composite 3l  particle (as in Figure 3.1. 4) for time 0 / 2 ,t E   the probability of it being 

in some particular state ( 3, 0),l m  ( 3, 1),l m   ( 3, 2)l m   or ( 3, 3)l m   , must be 

the same
2 . If we look at Eq.’s (1.1. 1) we can see what is behind them. We initially write 

the amplitudes in these three equations in terms of nk
  & nk

 as this is the most convenient 

way to express them. Velocity operators are momentum operators over relativistic masses. 

Our Eigenvalues are 
2 2 2 2

nk
n kp for each &n k , and this allows the velocity operators to 

give constant
2

.
nk

  Later in Eq’s. (3.1. 11) &  (3.1. 12) we write nk
 & nk

 in momentum 

terms. Even though the mass in these operators is virtual, we can still use it to calculate nk
 . 

For each k  and integral n  there will be a constant nk
  and 

2 1/2
(1 ) .

nk nk
 


    As we will 

see, nk
  can be thought of as the magnitude of the velocity of an imaginary centre of 

momentum frame in which these interactions take place. We will also draw our Feynman 

diagrams of these interactions in terms of &
nk nk

  for convenience, even though this is 

unconventional. To proceed from here we define two frames as follows: 

 

1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3 
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The infinite superposition has rest mass 0
m and zero nett momentum in this frame. Each nk

 is 

centered here with magnitude of momentum
nk

n kp . Even though we have no idea of the 

direction of this momentum vector we will define it as the z  direction. The eight preons are 

born in this frame with zero momentum, and can thus be considered here as being at rest or 

with zero velocity and infinite wavelength at their birth. The Feynman diagram of the 

interaction in this frame that builds nk
  is illustrated in Figure 3.1. 3.  

 

2)  The Center of Momentum Frame (CMF)  

This (imaginary) frame is the center of momentum of the interaction that builds nk
 . The 

CMF moves at velocity nk
 relative to the laboratory frame in the z  direction or parallel to 

the unknown momentum vector direction .
nk

p  In this CMF the momenta and velocities of the 

preons at birth and after the interaction are equal and opposite. This is illustrated in Figure 

3.1. 2  again in terms of 0
, , &

nk nk
m   . In the LF the velocity of the preons at birth is zero, in 

the CMF this is nk
 and after the interaction nk

  , where both nk
 and nk

  are in the 

unknown z direction. In the LF the particle velocity ( )
nk nkp

particle   is the simple 

relativistic addition of the two equal velocities nk
  as in Figure 3.1. 1. 

 

                                                               Figure 3.1. 1 

 

3.1.2 Feynman diagrams of primary interactions 

Let us start with   

          
2 1/2 2 2

2

2
( )  and (1 ) (1 )

1

nk

nk nkP nkP nkp nk nk

nk

Particle


     



     


  

(3.1. 3) 

 

If the particle rest mass is 0
m let each preon have a virtual rest mass 

0
/ (8 2 ).

nk
m s   

         

0

0
The eight preons are effectively a virtual particle of rest m s  

2
as

snk

nk

m
m

s
   

 

             (3.1. 4) 

 

The particle momentum in the LF is zero at birth. After the interaction using these equations 

  

    

Laboratory Frame Centre of Momentum Frame Virtual Particle 
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nk

n kp  0snk nkP nkP
m c  0

2
nk

m

s

 
  
 

2
1

2

nk

nk









 
 

2 2
(1 )

nnk k
c 

 
 

   0The particle momentum after the interaction in the F 
2

2
L nk nk

nk

m c
n k

s

 
 p   

   (3.1. 5) 

 

Using Eq. (3.1. 4), in the LF the particle energy at birth is 

                                                               
2

2 0

0
2

snk

nk

m c
m c

s
   

                                                             

(3.1. 6) 

 

In the LF the particle energy after the interaction is using Eq’s. (3.1. 3)  

2 2 2 2 2 20 0

0
(1 ) (1 )

2 2

nk

snk pnk nk nk nk

nk

m m
m c c c

s s


   


     

 

             (3.1. 7) 

 

In the CMF the momentum at birth is using Eq. (3.1. 4)                              

                                                                   0

0
2

nk

snk nk nk

m
m

s


 


    

                   (3.1. 8) 

 

In the CMF the momentum after the interaction is equal but in the opposite direction                            

                                                                                    0      
2

nk
m

s


   

                   (3.1. 9) 

 

In the CMF the energy at birth, and after the interaction is 

                                                                      
2

2 0

0
2

snk nk

m c
m c

s
   

                      (3.1. 10) 

                                                                                               

These values are all summarized in Figure 3.1. 2 and Figure 3.1. 3 but with 1c  .  

From  Eq. (3.1. 5)      nk
n kp 0

2

2

nk nk
m c

s

 
   and   nk nk

 
0

22

2 2

C
nk sn k s

m c
    

(where C is the Compton wavelength). We can now express &
nk nk

  in momentum terms:   

  

                     
0

22
Let  

2 2

C

nk nk nk

nk sn k s
K

m c
     

             (3.1. 11)    

 

                          
2

2 2 2

2
:     and  In 1terms of 

1

nk

nk nk nk nk

nk

K
K K

K
   


 

             (3.1. 12) 

 

Each infinite superposition has fixed .
C  Each wavefunction nk

 of this infinite superposition 

has fixed &n s , thus nk
K k .  
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                                    For example we can put    nk

nk

dK dk

K k
   

              (3.1. 13) 

 

 

These simple expressions and what follows are not possible if
0 0

/ 2
snk nk

m m s , and when 

we include gravity we find
0 0

/ ( 2 )
snk nk

m m s is essential (section 4.2).  

 

 

 

Figure 3.1. 2  Feynman diagram in an imaginary centre of momentum frame. 

 

 

Figure 3.1. 3  Feynman diagram in the laboratory frame. 

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman 

transition amplitude of this interaction tells us that the polarization states of these exchanged 

quanta is determined by the sum of the components of the initial, plus final 4 momentum

( )
i f

p p


 . Ignoring all other common factors this tells us that the space polarized 

component is the sum of the momentum terms ( )
i f
p p and the time polarized component is 

the sum of the energy terms
0

( )
i f

p p .  We have defined our momentum as in an unknown z

direction:  

           

 8 preons at birth:   

After merging:  

     After merging:  

 8 preons at birth:  
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0
The ratio of   polarization to time polarization amplitudes i

( )
s 

)
 
(

f

z

i f

i
p

z
p p

p




    

        (3.1. 14) 

 

 

In the CMF ( ) 0
z

i f
p p  , thus an interaction in the CMF exchanges only time polarized, or 

spherically symmetric 1l   states.  In the LF the ratio of z (or 0)m   polarization, to time 

polarization in the LF is
2

,
nk

             

                                      where    0

0

0

( ) 2

( ) 2
f

z

i f nk nk

nk

i nk

p p m

p p m

 





 


 

                                   
(3.1. 15) 

 
 

From section 3.1.1 these are probabilities of  
2

nk
 ss  

2 2

nk nk
  0m  states, or as 1l   here  

2
(1 )

nk
ss  +

2

nk
 1m    states.  

            

In the LF this is a virtual superpos
1

( 1 ) statition of  es. 
nk

nk

ss m


            

                

               (3.1. 16) 

 

From section 3.1.1 as these quanta from the scalar and vector zero point fields build each nk


this implies that: 

          

In the LF  has virtual superposit
1

ion amplitudes   states.
nk nk

nk

ss m 




    

  
(3.1. 17) 

 

From section 3.1.1 appropriate 1, 1l m    superpositions can build any 3,   state.l m Figure 

3.1. 4 is an example of such a nk
 for 5,6,&7n  3, 2l m    states. 

 

3.1.3 Different ways to express superpositions 

We have expressed all superpositions here in terms of spherically symmetric and m  states for 

convenience and simplicity. We could have expressed them in the form: 

 

1
3 2 1 0 1 2 3 2

7
nk

nk

m m m m m m m m


                        
 

Which is equivalent to (as above ignoring complex number amplitude factors for clarity)   

                

1
2 where we have put m 2 in this example.

nk nk

nk

ss m 


       

Because all these wavefunctions are virtual they cannot be measured in the normal way that 

collapses them into any of these Eigenstates, it is more convenient to use the method adopted 

here which is similar to QED virtual photon superpositions. 
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Figure 3.1. 4  Eight preons forming 2m    states as part of a positron superposition. 

There is no significance in which preons absorb quanta in the above. 
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3.2 Mass and Total Angular Momentum of Infinite Superpositions 

 

3.2.1 Total mass of massive infinite superpositions 

We will consider first the total mass of an infinite superposition, and to help illustrate, 

consider only one integral n Eigenfunction nk
  at a time; temporarily assuming that the 

amplitude n
c of each nk

 has magnitude 1
n

c  . Each time nk
  is born it borrows virtual mass 

from a scalar Higgs field and virtual energy from vector zero point fields. Each time nk
  is 

born the virtual mass that it borrows is exactly cancelled by an equal debt in the Higgs scalar 

field so this should sum to zero for all k. But what about the momenta borrowed from the 

zero point fields, do these momenta also leave momentum debts in the vacuum? From section 

2.3.2 as k  , 
2 2 2

nk nk
E c p 2 2 2

n   or nk
E n   and n  quanta of energy   and 

momentum k  are absorbed.  We know that in some unknown direction ,
nk

np k which 

implies these n  absorbed quanta must leave a cancelling debt in the opposite direction of 

( )
nk

debt n p k in the vacuum. But this is true only as k   &
2

1
nk

   and the virtual 

quanta energy transferred X
E  . So what happens when

2
1?

nk
   Our wavefunctions 

nk
  are generated from a vector potential squared term 2

A  derived in section 2.1.2 which in 

turn came from a 2
B  type term as in section 2.1.1. As discussed in section 2.3.2  the

 
Eigenvalues 

2 2 2 2

nk
n kp  confirm the constant momentum squared feature of magnetic type 

interactions. Also in section 2.1.1 the scalar virtual photon emission probability is directly 

related to the force squared term 2 2 2
.F E  Magnetic type coupling probabilities are related 

to a magnetic type force squared term 
2 2 2 2 2 2 2 2

/F B c E     , where from section 3.1.2 

and Eq’s. (3.1. 14) & (3.1. 15) the ratio of this scalar to magnetic coupling is
2

.
nk

  Thus when 

k   and the exchanged energy X
E  , 

2

nk
n  quanta k are absorbed from the vacuum 

and:       

                  
2

  We can expect a momentum debt of ) (
nk nk

debt n p k   (3.2. 1) 

 

We could sum 2

nkp & 2
( )

nk
debtp  but both vectors nk

p and ( )
nk

debtp are antiparallel in the 

same unknown direction. We can pair them together giving a nett momentum per pair of:   

 

             
2

2 2
( ) ( ) ( at wavenumb . r ) e1 nk

nk nk nk nk

nk nk

n
nett debt n k

 
     

pk
p p p k  

(3.2. 2) 

 

We have said above that the mass of each virtual particle is cancelled by an equal and 

opposite debt in the Higgs scalar field so we can now use the relativistic energy expression  

             
2 2 2

0

( )
k

n nk

k

E nett c




p times the probability of each pair at each wavenumber k.  

We will initially look at only 1N   massive infinite superpositions in Eq. (2.2. 4).  
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Thus using probability / /sN dk k s dk k   , also Eq’s. (3.1. 11), (3.1. 12),(3.1. 13),&(3.2. 2). 

 

            

2 2 2

0

( )

k

n nk

k

s dk
E c nett

k






  p

2 2 2

2

4

0 nk

n k s dk
c

k




 
2

2 4

0 2 2

0

4
(1 ) 2

nk nk

nk nk

K dK
m c

K K




  

                                          2 2 4 2 4 2

0 0 02

0

1
 or  

1
n n

nk

E m c m c E m c
K



 
    

 
  

 

                (3.2. 3) 

 

This energy is due to summing momenta squared and it must be real, with a mass 0
m  for 

infinite superpositions of Eigenfunctions .
nk

  These superpositions can form all the non 

infinitesimal mass fundamental particles.  The equations do not work if the mass 0
m  is zero. 

(We will look at infinitesimal masses in section 6.2.)  Negative mass solutions in Eq. (3.2. 3) 

must be handled in the usual Feynman manner, and treated as antiparticles with positive 

energy going backwards in time. If they are spin ½ this also determines how they interact 

with the weak force.  

3.2.2 Angular momentum of massive infinite superpositions 

We will use the same procedure for the total angular momentum of 1N   type infinite 

superpositions with non infinitesimal mass in Eq. (2.2. 4).  

Wavefunctions nk
 3 2 2 2

exp( /18) ( , )
nk

C r n k r Y     have angular momentum squared 

Eigenvalues 2 2
12L and the various m  states have angular momentum Eigenvalues

z
mL . We will treat both angular momentum and angular momentum debts as real just as 

we did for linear momentum. Even though m  state wavefunctions are part of superpositions 

they still have probabilities just as the linear momenta squared above and it seemed to work. 

Using exactly the same arguments as in section 3.2.1 , if nk
  is in a state of angular 

momentum zk
mL , then it must leave an angular momentum debt in the vacuum of

 
2

( )
zk nk

debt m L  (or as in section 3.2.1) ( ) ( )
zk zk zk

nett debt L L L .  

   

     
2 2

2
( ) (1 ) (1 )   (if  is in state )zk

zk nk nk zk zk

nk

nett m m 


    
L

L L L   
     (3.2. 4) 

 

But from Eq. (3.1. 17) the probability that zk
L is in an m  state is also

2

nk
 so that  

 
2

2

2
Including this extra probability term: ( )  at wavenumber .nk

nk zk

nk

nett m k





L   
   (3.2. 5)                                    

For an 1N   type infinite superposition
0

( ) ( )

k

z zk

k

s dk
Total nett

k






 L L .  

2

2

0
2

nk
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dk
sm

k







   

Using Eq’s. (3.1. 11) to (3.1. 13) 
2

2 2

0

( )
(1 )

nk nk

z

nk nk

K dK
Total sm

K K




L  

2

0

1

2 1
nk

sm

K



 
  

 
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                                          ( )       or    
2 2

z

sm s
Total m m m   L  

                 (3.2. 6)  

                     

Where m  is the angular momentum state of the infinite superposition and m  the state of nk
 .  

Thus for spin ½ particles with s 
 
½ in Eq.(3.2. 6) / 4m m   but mcan be only   ½, 

implying the m  state of nk
 that generates spin ½ must be 2m   . An 1N   massive spin 1 

particle has 1s   with / 2m m  . ( 2N   is covered in section 6.2.) This is summarized in 

the following three member infinite superpositions ignoring complex number factors. 

 

  
1/2, 1/2 2
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,
1

2 , ,

07
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2

k
nk ss

n nk nk

nkkn
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
 
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 
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  
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  (3.2. 7) 

 

       
1, 2

4,5,6

,

, ,

0

1
Massive ( 1) Spin 1, 

k
nk

m

ss

n nk nk

n

m

n kk

N c dk
k


  







 

 
   

  
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  (3.2. 8) 

 

The spin vectors of each nk
 with 2 3L , and their spin vector debts in the zero point 

vector fields, have to be aligned such that the sum in each case is the correct value: 

3 / 2L  , 2L or 6L  for spins ½ , 1 & 2 respectively. Gravity (the   term) is 

included in Eq. (1.1. 1) in our summary also spin 1 in Eq. (3.2. 8) is for 1N  . 

Spherically symmetric massive 1N   spin 1 states are a superposition of three states 

1
1 0 1 ,

3
m m m             and using Eq. (3.2. 8) can be formed as follows 
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    (3.2. 9) 

3.2.3 Mass and angular momentum of multiple integer n superpositions  

In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions nk
 . For 

superpositions 
k n nk

n

c  , we replace 
2

nk
K with

2

k
K . Equation (2.3. 9) appears to 

suggest 
2 2 2 2 2 2 2

*
k n n

n

c c n k n k p  and 
2

k
k np . In section (3.5.1) we 

discuss why
2

k
k np but *

k n n

n

k c c n k n  p . Thus using Eq. (3.1. 11) 

         

2 2 2 2
2 2 2 22

  &  but   
2 2 2

C C C

k k k

k s k s k s
K n K n K n     

(3.2. 10)  
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Replacing
2

nk
K with

2 22 2
/ 2

k C
K k s n  in the key equations (3.2. 3) & (3.2. 6)  does not 

change the final results. The laws of quantum mechanics tell us the total angular momentum 

is precisely integral  or half integral / 2 .  Looking at the above integrals used to derive 

total angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) also s  must 

be exactly ½ or 1 for spin ½ & spin 1 massive particles respectively, in Eq.  (2.2. 4) our 

probability formula. Also these integrals are infinite sums of positive and negative integral  

that are virtual and cannot be observed. If an infinite superposition for an electron is in a spin 

up state and flips to spin down in a magnetic field, a real 1m    photon is emitted carrying 

away the change in angular momentum.  This is the only real effect observed from this 

infinity of ( 3, 2)l m    virtual wavefunctions all flipping to ( 3, 2)l m   states, plus an 

infinite flipping of the virtual zero point vector debts. Also Eq’s. (3.2. 3) & (3.2. 6) are true 

only if our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at 

high energy Planck scale cutoffs in section 4.2 and in section 6.1 low energy cutoffs near the 

radius of the causally connected horizon.  

 

3.3 Ratios between Primary and Secondary Coupling 

3.3.1 Initial simplifying assumptions 

This section is based on a special case thought experiment that tries to illustrate, hopefully in 

a simple way, how superpositions interact with one another; in the same way as virtual 

photons interact with electrons for example. It is unfortunately long and not very rigorous, 

but it illustrates how, in all interactions between fundamental particles represented as infinite 

superpositions, the actual interaction is between only the same k single wavenumber 

superpositions of each particle. We will later conjecture that the interacting virtual particle is 

a single wavenumber k  superposition only and not a full infinite superposition. Only real 

particles whose properties we can measure are full infinite superpositions. The full properties 

do not exist until measurement, just as in so many other examples in quantum mechanics. 

This will be clearer as we proceed. It is also important to remember here that because 

primary coupling constants are to bare charges (section 2.2.2), and thus fixed for all k, while 

secondary coupling constants run with k, that the coupling ratios can be defined only at the 

cutoff value of k applying to the bare charge (sections 4.1.1 & 4.2.2). From Table 2.2. 1 there 

are 6 fundamental primary charges for electrons and positrons. But electrons and positrons 

are defined as fundamental charges. In other words what we define as a fundamental electric 

charge is in reality 6 primary charges. Of course we can never in reality measure 6 as their 

effect is reduced by the ratio between primary and secondary coupling. Because 

electromagnetic and colour coupling are both via spin one bosons their coupling ratios are 

fundamentally the same but because of the above they are related simply as 2
6 36:1 .       
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1 36

          =      
Colour EM

 
  

                (3.3. 1) 

               

We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.6)  

              
(Secondary) (Secondary)3

(Primary) 3 (Primary)

1 1
         and       

Colour EMS EMS

Colour Colour P EM EM EMP

  

     
      

  (3.3. 2) 

 

 

The secondary coupling constants 3
 &  

EMS S
 

 
are the bare charge values, both at the 

fermion interaction cutoff near the Planck length Eq. (4.2. 11). Also we assumed in section 

2.2.2  that 3
1;

P
   thus from Eq.(3.3. 2)  

 

                                       
1 1 18

3 3
@ 2.029 10

C S cutoff
k GeV   

            (3.3. 3) 

 

In other words provided 3
1,

P
   the ratio C

 (or )
Colour


 is also the inverse of the colour 

coupling constant 3
  at the high energy interaction cutoff near the Planck length. In this 

respect C
 or Colour

  is the fundamental ratio we will use mainly from here on. From the 

above paragraphs to find the coupling ratios we need secondary interactions that are between 

bare charges. But this implies extremely close spacing where the effects of spin dominate. If 

the spacing is sufficiently large the effects of spin can be ignored but then we are not looking 

at bare charges. However we can ignore the effects of shielding due to virtual charged pairs 

by imagining as a simple thought experiment, an interaction between bare charges even at 

such large spacing.  We can also simplify things further by considering only scalar or 

coulomb type elastic interactions at this large spacing. We are also going to temporarily 

ignore Eq. (3.3. 2) and imagine that we have only one primary electric and or one colour 

charge. Consider two superpositions and (due to the above simplifying assumptions) imagine 

them as spin zero charges. QED considers the interaction between them as a single covariant 

combination of two separate and opposite direction non-covariant interactions (a) plus (b) as 

in the Feynman diagram of Figure 3.3. 1 below. The Feynman transition amplitude is 

invariant in all frames [9]. So let us consider a special simple case in a CM frame where we 

have identical particles on a head on (elastic) collision path with spatial momenta:                                          

                                                        a a b b
      p p p p          (3.3. 4)     

From Eq. (3.3. 4) the initial and final spatial momenta are reversed with mirror images of 

each other at each vertex. Also in this simple special scalar case the transferred four 

momentum squared is simply the transferred three momentum squared, where ignoring the 

minus sign for 
2

q  in what we are doing here for simplicity:
  

    
  

                                         
2 2 2 2 2

( ) ( ) 4 4 .
a a b b a b

q p p p p      p p   
           (3.3. 5)  
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Figure 3.3. 1 Feynman diagram of virtual photon exchange between two spin zero particles 

of charge e .   

Figure 3.3. 2  All Eigenfunctions nk
 in the groups of three overlap at a fixed wavenumber k.  

If we look at Figure 3.3. 2 we see that at any fixed value of k, all modes nk
  in the groups of  

three overlapping superpositions for the various spins ½, 1 & 2 occupy very similar regions 

of space (provided they are all on the same centre.) The directions of their linear momenta are 

unknown but let us imagine some particular vector k  that is parallel to the above vectors

a b
p p . As we are considering only scalar interactions, all these modes must be spherically 

symmetric (as in section 3.2.2 for spins 1 & 2, and for spin ½ provided  or in turn 
nk

k  is small 

enough the probability that it is not spherically symmetric can be extremely low) and at a 

fixed value of k  they have momenta n k . Also as they overlap each other we can imagine 

units of  k quanta somehow transferring between these superpositions so that the values of 

n  in each mode can change temporarily by 1  for times /T E   . The directions of these 

 

  

  

(a) (b) 

The Feynman diagram is drawn with 

a vertical photon line representing 

the superposition of two opposite 

direction and non covariant 

processes  (a)  plus  (b).  

The exchanged 4 momentum is:    

    . 

 

  

  

 
Spin ½ Fermion  

superpositions 

  

Infinitesimal mass 

spins 1 & 2  

Boson superpositions 

  

   

 
  

 

 

  

3
( 3)

k
n    

Massive spin 1  

Boson superpositions 
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momentum transfers causing either repulsion or attraction depending on the charge signs of 

the superpositions at each vertex, whether the same or opposite. 

 

3.3.2 Restrictions on possible Eigenvalue changes 

Before we look at changing these Eigenvalues by 1n    we need to consider what 

restrictions there are on these changes.  

From Eq. (2.3. 12) superposition k
  requires 

2 2
Q A

4 2 4 2

*
81

n n

n

n k r
c c  and Eq. (2.2. 4) tells 

us the available   

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
 

     occurs with probability   
k

sN dk
 .  

For very brief periods the required value of 
2 2

Q A  can fluctuate, such as during these changes  

of momentum, but if its average value changes over the entire process then Eq.  (2.2. 4) tells 

us that probability /sN dk k changes also, and we have shown in section 3.2.1 that this is not 

allowed. For example in a spin ½ superposition 5 6 7
, , ,

k k k
   the average values of

5
c ,

6
c &

7
c  must each remain constant. This can happen only if n  remains within its pre-existing 

boundaries of (5 7)n  . For example if 7
 adds k , it can create 8

 , but
8

c  must average 

zero, which it can do only if it fluctuates either side of zero, and n
c  cannot be negative. 

Similarly 4
c  must average zero, thus 4

  & 8
  are forbidden states. Keeping the average 

values of n
c  constant is also equivalent to a constant internal average particle energy (we 

have shown in section 3.2.1 that rest mass is a function of
2

* .
n n nk

c c p ). By changing these 

Eigenvalues by 1n    there are only four possibilities; 6
 & 7

  can both reduce by  k

quanta, 6
 & 5

  can both increase by k quanta. If 6
  becomes 7

 , 7
c  also increases and

6
c decreases, but then 7

 has to drop back becoming 6
,  with 7

c  decreasing back down and

6
c increasing back up in exact balance. If we view this as one overall process the average 

values of both 6
c and 7

c remain constant but fluctuate continuously. We can use exactly the 

same argument if 5
  increases which has to be followed by 6

  dropping, where if we view 

this as one process again, the average values of both 5
c and 6

c  remain constant. This is 

similar to a particle not being able to absorb a photon in a covariant manner, it has to reemit 

within time / .T E   With spherical symmetry the momentum .n p k  If we change n  

by 1  the sign of n p k determines the direction of the momentum transfer .p  In the 

above if 5 6k k
 

 
then returns 6 5

,
k k

  and n p k  keeps the same sign during this 

process, there is no nett momentum transfer and there is a probability of this, but it is not the 

probability we need right now. (We discuss this possibility in section 5.3.8 when looking at 

spin 2 graviton exchanges which don’t appear to exchange 3 momentum).  However consider 

the process as in Figure 3.3. 3.  To get a net momentum transfer the momenta have to be in 

opposite directions for each half of this process. (Conservation of momentum allows this 
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only if there is an equal and opposite transfer of momentum at the other vertex of the 

interaction.) The problem with this is that a total transfer of 2  p k implies superpositions 

k
 interact with virtual 2k photons. Section 3.5 shows that interactions only with virtual k 

photons give the correct Dirac spin ½ magnetic energy. However just as transversely 

polarized photons are equal left and right polarization superpositions / 2 / 2,L R
 
we 

can perhaps regard the Figure 3.3. 3 process as a similar equal superposition / 2 2.a b     

 

6

 

5

  a







k

k
 produces  p k , but there is another  p k  if returning via 

5

    

6

  b

 



 

k

k

 

Figure 3.3. 3 

 

The figure 3.3.3 process becomes the superposition 
2 2 2 2

a b  
  

k k
  

    (3.3. 6) 

 

 

We have two equal 50% probabilities of states a & b producing the required total .  p k  

Also as from the above paragraphs the average values of 5
c and 6

c remain constant:   

 

        5 6
The probability of transitions  must be the same in either direction.              (3.3. 7) 

 

As spherically symmetric states have momentum n p k :       

We can also think of  as a superposition / 2 / 2.n n n    p k p k k         (3.3. 8) 

 

3.3.3 Looking at just one vertex of the interaction first 

In Table 4.3. 1 and section 6.2 we introduce infinitesimal rest mass photons and gluons as 

superpositions of 3 4 5
, ,

k k k
    where 2N   in Eq.  (2.2. 4). Consider just one vertex of an 

infinitesimal rest mass spin 1 photon superposition 3 4 5
, ,

k k k
   interacting with a spin ½ 

superposition 5 6 , 7
,

k k k
   at the same .k  Looking at one possibility first, 4  5  

&  
k k

  for spin 

1 and 6  7  
&  

k k
  for spin ½, we can apply the Figure 3.3. 3 process to get a nett momentum 

transfer. For this combination of Eigenfunctions there are four possible ways of getting the 

momentum transfer as in Figure 3.3. 4. In each of these 4 cases the amplitude for this to 

happen includes the factors 4 5 6 7
.c c c c  
 
Let us temporarily imagine 4 5 6 7

. 1.c c c c    Then 

n p k as in a of Figure 3.3. 3 with an amplitude of 1 / 2  from Eq. (3.3. 8) transfers 

 p k also with an amplitude of 1 / 2 , which is the required first half of our 

superposition Eq.(3.3. 6)
 

/ 2 / 2.a b
 
Similarly n p k as in b  of Figure 3.3. 3 
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gives the second half. It would thus seem that our amplitude is simply 5 6 6 7
.c c c c  
 
However 

from Eq. (3.3. 7) there is a 50% probability of the transitions 5 6
   in either direction, or 

an extra 1 / 2  amplitude factor for 5 6
   in either direction, similarly an extra 1 / 2  

amplitude factor for 6 7
.   These two extra 1 / 2  factors reduce the amplitude 

4 5 6 7
 toc c c c  

4 5 6 7
 / ( 2 2)c c c c    4 5 6 7

/ 2.c c c c     Thus adding the four cases in 

Figure 3.3. 4 together and treating all other factors as 1: 

 

      Figure 3.3. 4 process amplitude factor is 4 5 6 7 4 5 6 7
 4 ( ) / 2 2c c c c c c c c              (3.3. 9) 

 

 

Figure 3.3. 4 

The four possibilities in Figure 3.3. 4 are all between the same sets of Eigenfunctions  

4 5
&

k k
  for spin 1, 6 7

&
k k

  for spin ½. But there are also four different sets of these A, B, 

C & D, between groups of four Eigenfunctions as in Figure 3.3. 5; with their amplitudes from 

Eq. (3.3. 9) below each relevant box, which we also label as A, B, C & D. (Subscripts a refer 

to spin ½ and b to spin 1.) 

 

 

                                  A                           B                         C                           D 

 

                

           

     

Amplitudes:  4 5 6 7
2 ,

b b a a
A c c c c  3 4 6 5

2 ,
b b a a

B c c c c
 4 5 6 5

2 ,
b b a a

C c c c c
  3 4 6 7

2 .
b b a a

D c c c c
  
 

Figure 3.3. 5 
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Spin 1   Spin ½  

   5           7 

    

   4           6 

     

   3           5               

   

Spin 1   Spin ½  

   5           7 

    

   4           6 

     

   3           5               

   



41 

 

3.3.4 Assumptions when looking at both vertexes of the interaction  

Because we are looking at an interaction between identical spin ½ fermions each vertex has 

the same groups of Eigenfunctions A,B,C&D as in Figure 3.3. 5. From section 2.2.2 and 

Figure 3.1. 4 the three Eigenfunctions forming each of the interacting particles are born 

simultaneously. It would thus seem reasonable to assume that the amplitudes of each group of 

three Eigenfunctions have the same complex phase angle. The two fermions and one boson 

can be at different complex phase angles to each other but each one individually is a 

superposition of three Eigenfunctions at the same complex phase angle. Thus the four 

amplitudes A,B,C&D from Figure 3.3. 5 (A,B,C &D each comprising two fermion amplitudes 

and two boson amplitudes) must all have the same complex phase angle. Similarly the four 

amplitudes , , &A B C D    of vertex 2 in Figure 3.3. 6  also have a common phase angle.  

 

Eigenfunction 

Groups 

           A            B            C           D 

    Vertex 1  Amplitude  A   Amplitude  B  Amplitude  C  Amplitude  D 

    Vertex 2  Amplitude A     Amplitude B    Amplitude C     Amplitude D   

Figure 3.3. 6 

We are also going to assume that Eigenfunctions A of vertex 1 interact only with 

Eigenfunctions A of vertex 2 and Eigenfunctions B of vertex 1 interact only with 

Eigenfunctions B of vertex 2 etc. Eigenfunctions A of vertex 1 do not interact with 

Eigenfunctions B of vertex 2 etc. Thus if all other amplitude factors are 1: 

  

                     The total interaction amplitude AA BB CC DD           (3.3. 10) 

 

Apart from a different complex phase angle this is equivalent to: ( & , &A A B B   etc. all 

differ by the same complex phase angle.)   

  

                          
2 2 2 2

Total interaction amplitude A B C D        (3.3. 11) 

 

 

 
2 2 2 2 2 2 2 2

Interaction probability ( )* ( )A B C D A B C D        

  

    (3.3. 12) 

 

Using 
2 2

( * ) ( * )( * ) etc. this is equivalent toA A A A A A   

 

                                
2

Interaction probability ( * * * * )A A B B C C D D       (3.3. 13) 
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From Figure 3.3. 5 4 5 6 7
2 ,

b b a a
A c c c c 3 4 6 5

2 ,
b b a a

B c c c c
4 5 6 5

2 ,
b b a a

C c c c c
3 4 6 7

2 .
b b a a

D c c c c  

 

 

5 5 5 4

22

4 5 6 7 3 4

4 4 4

6

5 6 7

5 4 5 6 5 3 4 6 7

Putting   etc. &  etc.   this is equivalent to

( * * * * ) 16

                

* , *

                        

* 4

 

b b a a b b a a b b a a

a a

b

a b b b b b a

b a

a

a
A A B B C C D D P P P P P P P P P P P

P c c P c c A A P P P P

P P P P P   





 

 

   
2 2

4 3 5 6 5 7
         = 16 ( ) ( )

b b b a a a
P P P P P P 

 

 

Then using 3 3 4 4 5 5 5 5 6 6 6 6
* * * * * * 1

b b b b b b a a a a a a
c c c c c c c c c c c c       the interaction probability is 

                                      
 

      
2

4 4 4 4

4

6

2 2

6 6 6
* (1 * (1*( * * * * ) 2 )) *

b b b b a a a a
A A B B C C c c c c cc c cD D      (3.3. 14)               

We have assumed to here that all other amplitude factors are 1. However at each vertex there 

are both fermion and boson superposition probabilities from Eq.  (2.2. 4). Writing the 

superposition probability at each vertex /sN dk k  as 1/2 1
/ ,s N dk k  1 2

/s N dk k  for clarity 

where 1 1 
spin 1 ,  1 is etc.s N N   Including these factors (if all other factors are one) in Eq. 

(3.3. 14) our overall probability at wavenumber k is  

 
2

1/2 1 6

2

1 2 4 4 46 6 46
2 * (1 * 2 (1) * * )

b b ba ba a a
s N c c c c s N c c c c

kk

 


 









 

 

   
22

1/2 1 6 1 2 4 4 4 46 6

4

6
2 *2 * (

.
(

(1 )1 * ) *

)

a a a b ba b b
ss N c c c c N c c c c

k


  

 

The momentum per transfer is a total of  k and using Eq’s.   (3.3. 5), (3.3. 6) & Figure 3.3. 3 

we have 
4 4

( ) q k  (then putting 1 ) the interaction probability:  

 

 

 
   

2

1/2 1 6

2

1 2 4 4 46 6 4

4

6
2 *2 * ( )1 () 1* *

a a b b ba a b
s N c cs N c

q

c c cc c


 
  

    (3.3. 15)
 

  

This is the scalar interaction probability between two spin ½ fermions exchanging 

infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions  are 

effectively spin zero, imagining them as bare charges and all other factors being one. Going 

through exactly the same procedure but similarly exchanging spin 2 infinitesimal rest mass 
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scalar gravitons (with 2
2N N  for clarity) the gravitational interaction probability 

between fermions becomes (using subscript c for spin 2) if all other amplitude factors are 1:  

 

    
   

2

2 2 4 4

2

1/2 1 6 6 6 4 46

4

2 *
 for fermion

2 *
s.

1 * *( (1) )
a a c c c ca a

s N c c s N c c cc c c

q





  

  (3.3. 16) 

 

 

And if for example two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass  

with 2
2N N  ) the interaction probability becomes if all other amplitude factors are 1:

 
      

       
   

2

1 2 4

2

2 24 4 4 44 4

4

4
2 *

 for 2 pho
(12 *

tons.
( )* 1 * )

b b b b c c c c
s N c cs N c c c c c c

q
N


   

(3.3. 17) 

 

 

If two massive 1N   photons (as in Figure 3.3. 2) exchange spin 2 gravitons the interaction 

probability becomes if all other factors are 1: 

 

 

        
   

2

1 1 5

2

2 25 4 4 45 4

4

5
2 *

 for 1 pho
(12 *

tons.
( )* 1 * )

b b b b c c c c
s N c cs N c c c c c c

q
N


  

 

(3.3. 18) 

 

 

General Relativity (section 1.1.1) tells us the emission of gravitons is identical for both mass 

and energy. Keeping all other factors (such as mass/energy) in Eq’s. (3.3. 16), (3.3. 17) & 

(3.3. 18) constant, the exchange probabilities must be the same in each. We can thus put them 

equal to each other and cancel out the red terms:

   

       

1 2 4 4 4 4 1 1 5 5 1/2 1 65 5

5 5 5 5

6 6

4

6

4 4 4

 

                                                    or

   

                   

2 * (1 * )

2 * (1

2 * (1 * )

        4 *

2 * (1 * ) 

(1 * )  * ) 

b b b b

b b b b

a a a ab b b b

b b b b

s N c c c c

c c c c

s N c c cs N c c c c

c c c

c

c





 

6 6 6 6
       

                        

   

         1  S         pin 1 

* (1 * )

1  Sp    in    2  Spin         1 1/2     

a a a a
c c

NN

c c

N



 





 

 

(3.3. 19) 

 

 

Now assume that all other factors (other than coupling constants) are 1, and remember that 

we are simplifying with a thought experiment by looking at spin ½ superpositions sufficiently 

far apart so we can treat them as approximately spherically symmetric or effectively spin zero 

even if they are supposed to be bare charges with spin. Under these same scalar exchange 

conditions QED tells us that with electrons for example:  

  

            The probability of scalar or coulomb exchange in Eq (3.3. 15). 
2

4

4
= .   

q


  

  (3.3. 20) 
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Let us temporarily ignore the fact that gluons have limited range, and imagine our thought 

experiment applying to colour charges exchanging gluons. The   of Eq. (3.3. 20) becomes 

the usual colour coupling 3
 . To get the fundamental coupling ratio labelled as C


1

3
 

  

@
cutoff

k we substitute the  of Eq.  (3.3. 20) with
1

C
 


 as we have assumed 

3
(Primary) 1.    

Also substitute 1/2 1
2 1,  2 2,s s 

 1 2
1 & 2N N   and equate Eq’s. (3.3. 15) &  (3.3. 20) 

    

                        

   

  

1 2

4

2

6 6 6 6

2

4 4 4 4

4 4 46 6 6 46

4

1

4 * (1 * )

4 * (1 *or  2

* ( 4( )1 * )

* ( * ) )1

b b b b

b b b b

a a a a

a

C

Ca a a

q

c c c c

c c c c

c c c c

c c c c

q









 






  

 

(3.3. 21) 

 

 

But from Eq. (3.3. 19) the blue and green terms are equal (also the magenta terms) and we 

can solve for the fundamental coupling ratio by combining Eq’s. (3.3. 19) & (3.3. 21).  

 

      

4 4 6 6 6 65 5 54 4 5

1  Spin 1 

Massive Phot

1  Spin 1/2

                  

                                    2  Spin 1

Ph Fermiootons or Gluons         

 

ons 

2 * (1 * )

ns

* (14 * (1 * ) * )
b a ab ab b bb bb a

N

c c c

N N

cc c c cc cc c



 








1

2

                                                                                                            

C
 

 

(3.3. 22) 

 

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the 

six primary electric charges of Eq. (3.3. 1) because of the way electric charge is defined. 

Equations (3.3. 19), (3.3. 21) & (3.3. 22) tell us that for any interactions between two 

superpositions, the inverse coupling ratio always involves the product of the central 

superposition member probability by the probability of the other two members combined

N spin   of the first superposition, times the equivalent product for the other superposition.  

In section 4 we introduce gravity and solve these ratios. Despite all the simplifications and 

lack of rigorousness, the above equations are surprisingly consistent with the Standard 

Model, provided there are only three families of fermions. Even though we used gravity to 

derive Eq.(3.3. 19) we leave discussing the gravity coupling ratio till section 6.2.6.  

 

3.4 Electrostatic Energy between two Infinite Superpositions 

3.4.1 Using a simple quantum mechanics early QED approach 

In section 3.3 we have shown that fermion superpositions can exchange boson superpositions 

in the same way as electrons can exchange virtual photons for example. Providing the 

superposition amplitudes are appropriate, the coupling constants can be just as in QED, 

though we will look further at this in section 4.1.1. So it might seem that evaluating 

electrostatic energy between superpositions is unnecessary. However when we look at gravity 
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we find that the spacetime warping around mass concentrations appears to be strongly related 

to cosmic wavelength virtual graviton probability densities. Virtual particle exchange 

probabilities, in QED/QCD etc, use perturbation theory to calculate particle scattering 

crossections, and electron g factor corrections with incredible precision; but as we later focus 

on virtual graviton probability densities, it is more appropriate here to use a simple, but only 

approximate, quantum mechanical method based on virtual photon probability densities to 

find the scalar potentials between two charges (or infinite superpositions). This same method 

also allows a simple solution to the magnetic energy between superpositions in Section 3.5, 

where we modify relevant equations in a simple manner. We later use some of these same 

equations when looking at why borrowing energy and mass from zero point fields, requires 

the universe to expand after the Big Bang, and distort spacetime around mass concentrations.  

We assume spherically symmetric 3l   superpositions emit virtual scalar photons in this 

section and 3, 2l m    superpositions emit virtual 1m    photons in section 3.5. As 

section 3.3 has shown that we can achieve the same electromagnetic coupling constant   we 

can use the scalar photon emission probability (2 / )( / )dk k  covered in section 2.1.1. From 

section 3.3 we can also see that the effective average emission point has to be the center of 

superpositions. For a virtual photon / 2E T   , and the range over which it can be found 

is roughly r T   1/ 2 1/ 2E k    when 1c  . The radial probability of finding the 

centre of the spin 1 superposition representing the interacting virtual photon decays 

exponentially with radius as 2kr
e
 . The normalized wavefunction   for such a virtual scalar 

photon of wave number k emitted at 0r   is:  

 
( )

2 2
 @ time 0.

4 4

kr i kr t kr ikr
k e e k e e

t
r r




 

    

    

                          kr  

Figure 3.4. 1 Radial probabilities of 6k
 and the exponential decay with radius of a virtual 

photon of the same k  value 2
* 2 .

kr
R R ke


 These curves look the same for all k , applying 

equally to virtual photons, gravitons and to large k  value gluons etc.  

Radial probability of finding the virtual photon 

superposition centre of the same k value. 

4 *R R

k




  
Dominant fermion virtual wavefunction 6k

   
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Wavefunction   is spherically symmetric as scalar photons are time polarized. Figure 3.4. 1 

plots the radial probabilities of the exponentially decaying with radius virtual photon and the 

dominant 6n   mode of its relating superposition .
k

  The effective range of a wavenumber 

k  virtual photon is of a similar order to the radial probability dimensions of 6
.

k
  For 

simplicity in what follows we locate two superpositions (which we refer to as sources) in 

cavities that are small in relation to the distance between them. The accuracy of our results 

depends on how far apart they are in relation to the cavity size. Consider two spherically 

symmetric sources distance 2C  apart emitting virtual scalar photons as in Figure 3.4. 2 

where point P is 1r  from source 1, & 2r  from source 2. Let 1  be the amplitude from source 

1, and 2  be the amplitude from source 2 and for simplicity and clarity let 0t  .  

 

                  
1 1 2 2

1 2

1 2

2 2
Thus            &   

4 4

kr ikr kr ikr
k e k e

r r
 

 

   

    
  (3.4. 1) 

 

 

Consider    1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* * * *             

Now 1 1*    &   2 2*    are just the normal probability densities around sources 1 & 2 as 

though they are infinitely far apart but the work done per pair of superpositions k  on 

bringing 2 sources closer together is in the interaction term: 1 2 2 1* *    .   
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 
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1 2
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A r r B r r e kB

r r
   




        

  (3.4. 2) 

  

Real work is done when bringing superpositions together and we can treat these interacting 

virtual photons as having real energy kc  .  Using virtual photon emission probability

(2 / )( / )dk k   from section 2.1.1   

                                

2
Energy per virtual photon Probabil   Probability 

2
ity

dk
kc

c
d

k
k









 
  


 


  

  

(3.4. 3) 
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Figure 3.4. 2 

Including Eq.(3.4. 3) the interaction energy @ k  is thus ( 1 2 2 1* *     )
2 c

dk




 
 
 

 and 

using Eq. (3.4. 2) the interaction energy @ k  is 
2 c

dk




 
 
 

 
1 2

4
cos( )

4

Akk
e kB

r r


.  

The total interaction energy density due to 1 2 2 1* *     for all k  is   

 

                                                    
1 2 0

2 4
cos( )

4

Akc
ke Bk dk

r r



 




   
   (3.4. 4) 

 

                                                     

2 2

2 2 2

0

cos( )
( )

Ak A B
ke Bk dk

A B


 




   

 

     (3.4. 5) 

 

Where               
2 2 2 2

1 2 1 1 2 2( ) 2A r r r r r r       &  
2 2 2 2

1 2 1 1 2 2( ) 2B r r r r r r    
 

  

                     
2 2 2 2 2 2 2 2

1 2 1 1 2 2 1 2Thus      ( ) 2   & 2( )A r r r r r r A B r r             (3.4. 6) 

 

                                            
2 2

2( )r C   as cos(180 ) cos      

                                                   
2 2 2 2

and    4( )A B r C      (3.4. 7) 

 
 

 

 

Putting Eq’s. (3.4. 4), (3.4. 5),  (3.4. 6) &  (3.4. 7) together 
2 2

1 2

2 2 2 2 2 2

4

( ) 16( )

r rA B

A B r C




 
  

                                                                  

0

cos( )
Ak

ke Bk dk





1 2

2 2 2
4( )

r r

r C
            

 

    

Source 1 Source 2 

 

 

Point P 
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1 2 0

2 4
cos( )

4

Akc
ke Bk dk

r r



 





1 2

2 4

4

c

r r



 
 1 2

2 2 2
4( )

r r

r C
       

  

                       
1 2 0

2 4
cos( )

4

Akc
ke Bk dk

r r



 




 2 2 2

2 1 1

4 ( )

c

r C



 



                                      

   (3.4. 8) 

 

 

This is the total interaction energy density of time polarized virtual photons at point P  due to 

1 2 2 1* *     for all k  and there are no directional vectors to take into account. We will 

use similar equations for the vector potential ( 1m   ) photons for magnetic energies but will 

then need directional vectors. Equation  (3.4. 8) is the energy due to the interaction of 

amplitudes at any radius r  from the centre of the pair. It is independent of ,  and to get the 

total energy of interaction we multiply by 
2

4 r dr for layer dr  and integrate from 0 .r    

  

The total interaction energy is        1 2 2 1

0 0

2
( * * )

c
dk


   



 

 
2

4 r dr    

Using Eq.  (3.4. 8)                                       
2 1

4

c

 


2

2 2 2

0

4

( )

r dr

r C





  

Thus                                 1 2 2 1

0 0

2
( * * )

c
dkdv


   



 

   
2 c




2

2 2 2

0
( )

r dr

r C




  

  

                                                              

2

2 2 2

0
( )

r dr

r C






1

2 2C




 

                                    

                              The interaction or potential energy is  
2

  
c c

C R

 
   

 

  (3.4. 9) 

 

 

If 2R C  is the distance between the centres of our assemblies, this is the classical potential. 

The procedure used here with small changes, simplifies the derivation of the magnetic 

moment; we reuse some equations, but in a slightly modified form taking polarization vectors 

into account. We also reuse some of these simple but approximate derivations when looking 

at gravity in Section 5. 

 



49 

 

3.5 Magnetic Energy between two spin aligned Infinite Superpositions 

In this section we are going to consider two infinite superpositions that form Dirac spin ½ 

states.  We will look at the magnetic energy between them when they are both in a spin up 

state say along some z axis as in Figure 3.5. 1. We are not looking at the magnetic energy 

here when they are both coupled in a spin 0 or spin 1 state. That is, both Dirac spin ½ states 

have their 3 / 2  spin vectors randomly oriented around the z axis with / 2  components 

aligned along this z axis. Also in this section we will be dealing with transversely polarized 

virtual photons and must take account of polarization vectors. In section 3.2.2 and Eq. (3.2. 7) 

spin ½ states are generated only from 3, 2l m   states and as transversely polarized photons 

are superpositions of 1m   photons they can only be emitted from these 3, 2l m   states, 

the remaining states are spherically symmetric and cannot emit transversely polarized 

photons. We don’t yet know the value of amplitudes nc  so we will derive the magnetic 

energy in terms of these. We will then equate this energy to the Dirac values assuming a g  

value of 2 before QED corrections; this allows us to evaluate in section 4.3  the amplitudes

nc  in terms of the ratio EM
 between primary and secondary electromagnetic coupling. We 

can then evaluate in section 4.1  the primary electromagnetic coupling constant EMP
 in terms 

of the ratio EM
 . (Section 3.5 uses the same format as Chapter 18, “The Feynman Lectures on 

Physics” Volume 3, Quantum Mechanics [11].)   

 

 

 

 

 

 

 

 

 

                                                     Figure 3.5. 1 

An 3, 2l m   state can emit a right hand circularly (R.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this be temporarily R . 

An 3, 2l m    state can emit a left hand circularly (L.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this also be temporarily L . 

First rotate the z axis about the y  axis by angle   (call this operation S R ) then use

(1/ 2)x R L       and multiply on the right by operation S R . 
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The amplitude to emit a transversely polarized photon in the x  direction is thus 

                                  
1

2
x S R R S R L S R                                            

Where 2 2
3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosR S R S            

 
is the 

amplitude  an 3, 2l m   state remains in an 3, 2l m   state after rotation by angle  .   

Also   2 2
3, 2 3, 2 (1 / 4) 2 2 cos 4sin 3sin cosL S R S             

 
is minus the 

amplitude that an 3, 2l m   state is in an 3, 2l m    state after rotation by .  

 

 Putting this together                     
2

1 2 sin cos 2

2 2
x S R

 
                                                 

  (3.5. 1) 

 

An 3, 2l m   state can also emit an ( 1)m    photon in the z  direction but it will now be 

left hand circularly polarized. Let this amplitude be temporarily: L . 

Similarly an 3, 2l m    state can emit an ( 1)m    photon in the z  direction which is right 

hand circularly polarized. Let this amplitude be temporarily: R . 

 

 We can go through the same procedure as above to get
cos 2

2
x S L


                       

           (3.5. 2) 

 

This amplitude Eq. (3.5. 2) is for a photon emitted in the opposite direction to amplitude Eq. 

(3.5. 1) but cos2 cos2(180 )    and we can simply add these two amplitudes. Let us 

assume however that an 3, 2l m   state has equal amplitudes to emit in the z  & z  

directions of / 2R  and / 2L .  

 

With these amplitudes; 
1 cos 2 cos 2

2 22
x S R x S L

 
        cos 2              

       (3.5. 3) 

 

 

Eqation (3.5. 3) is the angular component of the amplitude for a transverse x  polarization in 

the new z direction where x x & z z   . When 0   or 180 the on axis amplitude 

for transverse polarization is one as expected ignoring other factors. Using the same 

normalization factors (we check the validity of this in section 3.5.2 we can still use the 

amplitudes and phasing of our original time mode photons Eq’s.  (3.4. 1) but instead of 

including polarization vectors we will for simplicity just use the cosine of the angle ( )   

between them (as in Figure 3.5. 2 ) as a multiplying factor. Including the angular factor Eq. 

(3.5. 3) in our earlier scalar amplitudes Eq’s.  (3.4. 1)  we have for our new wavefunctions:                                             
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1 1 2 2

1 2

1 2

2 2
cos 2    &  cos 2

4 4

kr ikr kr ikr
k e k e

r r
   

 

   

    
  (3.5. 4) 

 

 

The transverse polarized photons from sources (1) & (2) have polarization vectors 1x  and 

2x  at angle to each other ( )  , (Figure 3.5. 2) and the complex product becomes: 

 

         1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* ( * * )(cos( ) *                 

 

Where the interaction term is now: 1 2 2 1( * * ) cos( )        and as in the scalar case 

(section 3.4.1) but now using Eq’s. (3.5. 4)    

1 2 1 2
( ) ( )

1 2

1 2

2
* cos( ) cos 2 cos 2 cos( )

4

k r r ik r rk
e e

r r
       



   
    

1 2 1 2
( ) ( )

2 1

1 2

2
* cos( ) cos 2 cos 2 cos( )

4

k r r ik r rk
e e

r r
       



   
  

               

 

         1 2 2 1

1 2

4
( * * ) cos( ) cos 2 cos 2 cos( )

4

Akk
e kB

r r
       




   cos( )         

  (3.5. 5) 

 

                         (Where as in section 3.4.1, Eq. (3.4. 2) 1 2 1 2&A r r B r r    . )  

 

 

 

 

 

 

 

 

 

Figure 3.5. 2  Two sources 2C apart, both with 
2

( 2)nk m     states along the joining line, 

&   are the respective angles to P ,  1
r  & 2r  are the respective distances to point P. 

 

3.5.1 Amplitudes of transversely polarized virtual emmited photons 

In the laboratory frame nk
  has amplitude nk to be in an 2m    state (section 3.1). For a 

multiple integer n superposition k n nk

n

c  . At each fixed wavenumber k we cannot 

C C 

 
 

 

 

 
  

Source 1 Source 2 

Point  
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distinguish which integer n a virtual photon comes from, so we must add amplitudes from 

each individual integer n superposition. To keep integrals simple we will assume that

1nk   or that spacing 2C is very large, and our interacting k  values are very small. 

(We can make a comparison with the Dirac values at any large spacing so accuracy need not 

be affected.) Thus if 1nk  & 1nk  , we can approximate Eq. (3.1. 11) as   

 

0 0

2 22
 

2 2 2 2

nk c c

nk nk nk nk

s nk s nkn k s
K

m c m c
       

p
 for spin ½ fermions. 

                Adding amplitudes for multiple integer  superpositions
2

c

k

n k
n    

  (3.5. 6) 

 

(When deriving Eq. (3.2. 10) we said
2

   
k k

k n and not k n p p . How do we 

justify this? When 1nk   as above nk n k  
nk

p  So adding ampitudes nk to get k
  

is equivalent to adding nk
p  to get 

k
p  and not adding 

2 2 2 2

nk
n kp to get

2
.

k
k np  If 

this is true when 1nk   it must be true for 0 1.)nk    

 

3.5.2 Checking our normalization factors 

Let us pause and check the reasonableness of all this and our normalization factors. From 

Eq’s.  (3.4. 1) for scalar photons 
2

2

2
*

4

kr
k e

r
 



 
 

 

   (emission probability
2 dk

k




) gives a  

            Scalar k
 emission probability density

2

2

2 22
*

4

kr
k e

r

dk dk

k k
 



 

 


   

   
   

.  

 

The transversely polarized probability density, using Eq’s. (3.5. 4) &   (3.5. 7) plus
2

k  is                               

 

Transverse emission probability density 
2

2

2

2 2 2
* cos 2

4

2 2
nk

r

nk

k
k e

r

dk dk

k k

 
 


 

 

 
  

 

  

 

(Where 1 2
2 2 & .r r   ) If we now consider the on axis 0   case the transverse polarized 

on axis emission probability density at k  is: 

 

2

2

2 22

4

kr

k

k dk

k

e

r




 

 
 
 

2

k  
2

*
dk

k




   

Just as in QED the factor
2

k is the factor we need for this on axis emission probability 

density ratio between transverse and scalar polarization. This justifies using the same 
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normalization constant 2 / 4k  for both the scalar and magnetic wavefunctions. We seem to 

be on the right track and using the same virtual photon emission probability and energy kc  

as in Eq. (3.4. 3) for both the scalar and transverse polarization cases ie 

 

  
2

Energy per transverse photon Probability   Probability 
2dk

kc
c

k
k

d








 
  


 


 
  (3.5. 7) 

 

 

Multiplying Eq. (3.5. 5) by Eq. (3.5. 6) squared, and Eq. (3.5. 7) we get the transverse 

interaction energy @ wavenumber k :  

                                    
2

1 2 2 1( * * ) cos( )k       
2 c

dk




 
 
 

                             

                                   

22 2

1 2

4
cos 2 cos 2 cos( )

4 4

C Akn k k
e kB

r r
 




 
 
  

cos( ) 
2 c

dk




 
 
 

 

Rearranging this:       
2

1 2 2 1( * * ) cos( )k       
2 c

dk




 
 
 

                    

                        =  

2 2
2 Cn c


1 2

cos 2 cos 2 cos( )

4 r r

   



 3
cos( )

Ak
k e kB dk

 
 

                  
    (3.5. 8) 

 

 

As in the scalar case we integrate over k  first but now with a 
3

k term due to the inclusion of 

the
2

k factor which is approximately proportional to
2

k from Eq. (3.5. 6).  

Using     1 2 1 2    &    A r r B r r        and    Eq’s.    (3.4. 6) & (3.5. 6) 

   

                                  
3

0
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Ak

k e kB dk


 
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2 2 2 2 2
1 2

2 2 4

2 ( )3
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r r r C

r C
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 

 
    

 And thus:                      
2

1 2 2 1

0

( * * ) cos( )k      



 
2 c

dk



           

          =   

2 2
2 Cn c


1 2

cos 2 cos 2 cos( )

4 r r

   




 

2 2 2 2 2
1 2

2 2 4

2 ( )3

8 ( )

r r r C

r C

  
 

 
           

    (3.5. 9) 

 

 

Equation (3.5. 9) is the magnetic interaction energy density at point P for all wave numbers .k    

Figure 3.5. 2 is a plane of symmetry that can be rotated through angle 2 around the axis of 

symmetry (the joining line along the axis of the 2 spin aligned sources).  To evaluate the total 

magnetic energy density over all space we just multiply by 2
4 sin .r d dr     
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We thus integrate Eq. (3.5. 9)   2
4 sin .r d dr   =    

           

       

2 2 /2 2 2 2 2 2

21 2

2 2 4

1 20 0

3 2 ( )cos 2 cos 2 cos( )
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(3.5. 10) 

 

Now 
2
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  
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2
sinr d dr  can be reduced to the  

single integral:   

1 2
2

3 3 2
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1 (7 5 ) 1 14 16
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1 38

x x
x dx

xC x x

  
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 
  which can be also expressed  

as an infinite series in p  (to not confuse with superposition value n ):  

3

1
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3

1 (160 51 )
.

6 28C

 
                                                            

 

                                             
3

1 (160 51 )
(Putting 2  )    .

6 2
R C

R

 
    

  (3.5. 11) 

 

                       This infinite series is approximately  
3

1

54(1.0045062....)R


                 

  (3.5. 12) 

 

Putting Eq.(3.5. 12) into Eq.(3.5. 9) the total magnetic interaction energy over all frequencies 

and all space for 2 spin aligned infinite superpositions is:     

                                             

2 2
3
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Cn c
U




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3

1

54(1.0045062....)R
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 

 

              
2 2

3
We will call this   superpositions

72 (1.0045062....)
 

Cn c
U

R

 
  
  

  

(3.5. 13) 

 

 

We can equate this magnetic energy to the classical value assuming the Dirac value of 2g   

for spin ½ (No QED corrections have been applied so it must be 2g  ). For the arrangement 

of spins as in Figure 3.5. 1 the Dirac magnetic energy between two spin ½ states is  

                                       

                                                         
2

2 3

2
Dira =

4
c

o

U
c R





 
  
 

 

(3.5. 14) 

 

 

Using the Dirac magnetic moment
0 02 2 2

Cece e c

m m c
      the Dirac magnetic energy is    
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2

3
(Dirac)

2

C c
U

R

 
   

 

    

The approximation used in deriving Eq. (3.5. 6) 
2 2 2

    for 
2

1   is true only when

CR  . This error in 
2  is of the order of 

2 2
/C R  and rapidly tends to zero with 

increasing R . There is no upper limit on the value of distance R we can choose. Thus 

comparing our estimate of the magnetic energy with Dirac’s value when CR  . 

  

             

2 2

3

2

3
(Superpositions) 

72 (1.0045062...
o(Dir r

.
c)

)
a

2

C Cc
U

c
U

R

n

R

  
 

 
 

 


 




  

(3.5. 15) 

 

 

                All symbols cancel except n  leaving:        
2

36(1.0045062.....)n   

 

The expectation value n  in our superposition is slightly more than 6n   our dominant 

mode. This is why we have used a three member superposition centred on this dominant

6n   mode. The two side modes 5n   & 7n  are smaller so that:   

 

                         
5 7.,6,

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n



         (3.5. 16) 

 

This is for Dirac spin ½ particles. This mean value of n creates a 2g   fermion which QED 

corrections (which are secondary interactions) increase slightly to the experimental value. In 

section 4.1 we solve the primary electromagnetic coupling constant in terms of ratio EM
  

using Eq. (3.5. 16). It is important to remember this magnetic energy derivation applies to 

two infinite assemblies (or particles) localized in small cavities in relation to their distance R  

apart. They must be both on the z axis with spins aligned (or anti aligned) along this z  axis 

as in Figure 3.5. 1 & Figure 3.5. 2. Also the agreement with Dirac and in what follows is 

possible if superposition k
  interacts only with virtual photons of the same wavenumber .k   

4 High Energy Superposition Cutoffs 

4.1 Electromagnetic Coupling to Spin ½ Infinite Superpositions 

Equation (3.5. 16) is the key requirement for spin ½ superpositions to behave as Dirac 

fermions, allowing us to solve 
1

EMP



 as a function of coupling ratio    using Eq. (3.5. 16).  

   

                                    
5 7.,6,

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n



    
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5 5 6 6 7 7 5 5 6 6 7 7

7 7 5 5

6.01350345  

0.0

Thus  5 * 6 * 7 * but  6 * 6 * 6 * 6

 and                    1350345   * *

c c c c c c c c c c c c

c c c c

     

 
 

    

As 7 7 5 5 6 6
* * 1 *c c c c c c    we can now solve for 7 7 5 5

*   &   *c c c c  in terms of 6 6
*c c  

              6 6 6 6

7 7 5 5

* *
* 0.50675172    &     * 0.49324827

2 2

c c c c
c c c c             

       (4.1. 1) 

  

From Eq. (2.3. 12) the 
2 2

Q A required to produce this superposition with amplitudes n
c  is  

                                  
2 2

Q A 
5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



  and using Eq. (4.1. 1) 

                
5,6,7

4

5 5 6 6 7 7
*  625 * 1296 * 2401 *

n

n

n
c c n c c c c c c



    6 6
1524.991 217 *c c                          

Thus 
2 2

Q A 
5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



   2 4 2

6 6
18.82705 2.67901 *c c k r  is the required vector  

potential squared to produce this spin ½ superposition.  From Eq.  (2.2. 4) with s   ½ &

1N   for massive fermions 
2 2

Q A

2

2 4 2
2 8 8 )

3

EMP

k r




 
 

 is the available
2 2

Q A .  

Equating required and available:
2

2 8 8 )
EMP

 
   6 6

18.82705 2.6790 *3 1c c   

                                                        
2

1 )
EMP

 
   6 6

1.386256 0.197258 *c c                                           

                                                         
2

6 6
1.386256 0.197258 * 1

EMP
c c    

 
                          

  (4.1. 2) 

 

From Eq’s. (3.3. 1) & (3.3. 22), 
6 6 6 6
* (1 * ) 2 / 6 2 /

C EM
c c c c   

 
and we can solve for 

EMP
 as a function of either EM

 or .
C

  We then use Eq. (3.3. 22) again to get 
1

@ .
EMS cutoff

k 
 

Now both EM
 and C


 
are fundamentally the same ratio differing only by 36:1, because 

electron superpositions have six primary charges whereas we define them as one fundamental 

charge (section 3.3.1) and quarks have only one colour charge (Table 2.2. 1). Because 
1

3C
 


  at the cutoff near P

L
 
it is more convenient to work with.  From Eq. (3.3. 22) 

 

                     6 6

1 1 2
* 1 4

2 2
C

c c


      and there are two solutions for each .
C

    

One has 6 6
*c c  dominant with two smaller 5 5

*c c  & 7 7
*c c side modes, the other is the reverse 

with 6 6
*c c the minor player and two larger 5 5

*c c  & 7 7
*c c  side modes. As the values for 

EMP
 with 6 6

*c c
 
dominant fit the Standard Model very closely, we include only these. (This 



57 

 

only applies to spin ½ fermions and in Table 4.3. 1 spins 1 & 2 boson superpositions have 

minor centre modes.) Table 4.1. 1 shows these dominant 6 6
*c c  mode results for 

1

3C
  


 
at 

various possible cutoffs in the range 50 51
C

   , as this range fits the Standard Model.  

Of course there can be only one solution for this cutoff.   

 

Coupling Ratio 
C

       6 6
*c c  

1

EMPrimary
 

  
1

Secondary
@

EM cutoff
k 

 

         50.00 0.723607  75.4414          104.7798  

         50.20 0.724497  75.5447          105.3429  

         50.40 0.725378  75.6472          105.9060  

        50.4053             0.725401   75.6499           105.9210   

         50.60 0.726250   75.7488           106.4692   

         50.80 0.727115  75.8497          107.0324  

         51.00 0.727970   75.9499           107.5956   

Table 4.1. 1  Possible 1
coupling ratios  versus  in the range   = 50 51.

EMSecondaryC C
  

   The 

yellow row corresponds to the interaction cutoff energy in Figure 4.1. 2 & Eq. (4.2. 11).   

4.1.1 Comparing this with the Standard Model 

In the real world of Standard Model secondary interactions the electromagnetic force splits 

into two components 1 2
&   at energies greater than the mass/energy of the 0

Z  boson or 

91.1876 .GeV [12]. However we want to compare these Standard Model couplings with 

the values derived in Table 4.1. 1 at the 18
2.0288 10 .GeV   cutoff of Eq.    (4.2. 11). 

Assuming three families of fermions and one Higgs field the SM [13] predicts   

                                    

1

1

1

2

1

3

4.1
58.98 0.08 log

2 91.1876

19
29.60 0.04 log

6 2 91.1876

7
8.47 0.22 log

2 91.1876

e

e

e

Q

Q

Q
















  

  


  

 

       

       

 (4.1. 3) 

 

1 1 1

1 2

1 1 2 1 1 2

1 2  

5
The weak force split obeys              

3

3
Also   &  where is the Weinberg angle.

5

EM

EM W EM W W
Cos Sin

  

      

  

   

 

 

  

 

 (4.1. 4) 

  

Combining Eq’s. (4.1. 3) & (4.1. 4)        

 

                  1 1 1

1 2

5 11
127.90 0.173 log

3 3 2 91.1876
EM e

Q
  



  
    


 

                                                                                                       

  (4.1. 5) 

 

 

Figure 4.1. 1 plots these four inverse coupling constants. Figure 4.1. 2 plots the intersection 

of 
1

SecondaryEM
 

predicted in Table 4.1. 1 and the Standard Model prediction for 
1

EM



 in Eq.   

(4.1. 5). It would initially seem in Figure 4.1. 2 that there is an unusually large error band in 
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the predicted results. However
1 1

 / 2.8
EMSecondary

  
    is approximately constant in this 

table and the error band in the Standard Model colour coupling
1

3
 of 0.22 

  in Eq’s (4.1. 3) 

translates into the larger error band for
1

EMSecondary
 

 of 0.22 2.8 0.62     in Figure 4.1. 2. 

 

 

 

Figure 4.1. 1 Standard Model based on three families of fermions and one Higgs field. 

 

Figure 4.1. 2  A close up of the intersecting region of the Standard Model Eq. (4.1. 5) and 

Table 4.1. 1 predictions. This fermion interaction cutoff is perhaps more consistent with the 

Standard Model than we might expect; as we have assumed, for simplicity, a square 

superposition cutoff at Cutoff
k .  An exponential cutoff of some type is much more likely. 
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1 18

3
50.405 0.22@ 2.029 10 .GeV 

      
1

1
 

  

1

2
 

  

 in .Q GeV    

Figure 4.1. 2 

is a close up  

of this region. 

Possible values for

1
(Secondary)

EMS



  

from Table 4.1. 1 

18
Fermion interaction cutoff 2.029 10 . Planck

E
GeV

n
    

 

Standard Model 

1 1 1

1 2

5

3
EM

    
   

Figure 4.1. 1 expanded 

 in .Q GeV    

 Planck Energy

n
  

1 1 1 18

1 2

5
105.934 0.173@ 2.029 10 .

3
EM

GeV    
        
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4.2 Introducing Gravity into our Equations 

4.2.1 Simple square superposition cutoffs    

In section 3.2 we looked at single integer n superpositions of nk
  initially for clarity, and 

later found multiple integer n superpositions gave the same results; we will do the same here. 

We also found in Eq’s. (3.2. 3) & (3.2. 6)  that the integrals for both angular momentum and 

rest masses are of similar form. They both ended up including the term 

 

    
2

0

1

1
nk

K



 
 
 

which if nk
K cutoff    becomes 

2

0

1

1

nkK cutoff

nk
K

 
 
 

and this is equal to  

   

 2

2 2 2

1 1 1
1

1 1 1 1 / ( ) 1

nk

nk nk nk

K cutoff

K cutoff K cutoff K cutoff 
   

   
  

            (4.2. 1) 

 

    

where using Eq. (3.1. 11) the infinitesimal 
2 2

0

2 2 2 2

21

( )
nk cutoff

m c

K cutoff n k s
    

            (4.2. 2) 

 

 

For integral or half integral angular momentum precision is required but Eq. (3.2. 6) now 

gives us ( )
z

TotalL
2

0

1 1

2 1 2 1

nkK cutoff

nk

sm sm

K 

 
  

  
 . So can the effect of gravity increase 

our probabilities from 
dk

sN
k

  to (1 )
dk

sN
k

  ?  We will initially address only massive 

infinite superpositions where 1N   in Eq. (2.2. 4).  

The first question we need to address is what is the effective preon mass to be used when 

coupling to gravity? In Eq. (3.1. 4) we said the preon rest mass is 
0

/ (8 2 )
nk

m s for each of 

the 8 preons that build a spin ½ particle of rest mass 0
m . Now gravity couples to the total 

mass including the kinetic energy. It also couples to other terms in Einstein’s energy-

momentum tensor, but we conjecture that in primary interactions such as this (section 1.1.2), 

gravitons only couple to the mass/energy, and the equations are consistent only if this is so. 

(Sections 6.2.1 & 6.2.3 also discuss this further.) 

At the start of the interaction each preon mass is 
0

/ (8 2 )
nk

m s and after the interaction 

(Figure 3.1. 3) it is 
2

0
(1 ) / (8 2 )

nk nk
m s  . Let us think semi classically again and see where 

it leads us. We have been using magnitudes of velocities as they are the most convenient way 

to express our equations even if not the conventional language of quantum mechanics. The 
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interaction with the zero point fields takes the momentum of each preon from zero to 

0
2 / (8 2 )

nk nk
m c s   (Figure 3.1. 3). While this happens as a quantum step change let us 

imagine it as a virtually infinite acceleration from zero velocity to 
2

2 / (1 )
nk nk

  , which is 

the relativistic velocity addition (see Figure 3.1. 1)  of 2 equal steps of .
nk


  

At the half way 

point after one step the velocity is nk
 (the velocity of the CMF, the preon mass has increased 

to
0

/ (8 2 ).m s  We can imagine this as being like the central point of a quantum interaction. 
 

We will conjecture this midway point preon mass
0

/ (8 2 )m s  is the mass value that gravity 

acts on and we will see that it is indeed the only value that fits all equations. Also it does not 

make sense to choose either of the end point masses. We can also get reassurance from the 

properties of the Feynman transition amplitude which tells us in Eq. (3.1. 15) 

0

0

0

( ) 2

( ) 2
f

z

i f nk nk

i nk

p p m

p p m

 







 nk

  and the ratio of space to time polarization in the LF is
2

.
nk

  

This centre of momentum velocity tells us the key properties of the interaction. We will thus 

assume we have 8 preons in each nk
  of effective gravitational mass 

0
/ (8 2 )m s  with 

effective total gravitational mass
0

/ 2m s . To put the gravitational constant in the same form 

as the other coupling constants we need to divide it by c . The gravitational coupling 

amplitude is thus 
0

/ (2 )
P

m G s c  to the gravitational zero point field, where 
P

G is the 

primary amplitude for a Planck mass to emit or absorb a graviton. Now this gravitational 

amplitude can be regarded as a complex vector just as colour and electromagnetism. We 

assumed for simplicity, as they are both spin 1 field particles, that colour and 

electromagnetism are parallel. Spin 2 gravity could be at a different complex angle to the 

other two. In fact the equations only have the correct properties if gravity is at right angles to 

colour and electromagnetism. Putting Primary G Secondary
G G   we conjecture that:    

   

0 0

0

/ (2 ) / (2 )

                                               

The gravitational coupling

     

 am

   

plitude 

                                

is 

 / (2 )

P G S

G

im G s c im G s c

im G s c





 

 
  

     

     (4.2. 3) 

 

Where we have put the secondary gravitational coupling constant to a bare Planck mass s
G  

in Eq. (4.2. 3) equal to the measured gravitational constant G and temporarily labelled the 

ratio between the primary the primary and secondary gravitational constants as G
  and return 

to this in section 6.2.6. So modifying Eq’s. (2.2. 1) to (2.2. 3) by adding Eq.  (4.2. 3)   

 

                     
2 2

Q A

2

0 2 4 2
8 8 / (2 )

.
3

EMP G
im G s c sN dk

k r
sN k

 



           
  
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2 2

Q A

2

2 4 2
8 8 ) (1 )

.
3

EMP sN dk
k r

sN k






           
  


 where 

2

0

2
2 (8 8 )

G

EMP

m G

s c






 
 


 

Our previous wavefunctions k
 required

2 2
Q A

2

2 4 2
8 8 )

3

EMP

k r
sN





 
 

  from Eq. (2.2. 4). 

Thus primary graviton interaction can increase the probability of our previous wavefunctions

k
 by 1    as required to obtain precision in our integrals for / 2 &  if .

nk
K cutoff    

 

Using Eq.(4.2. 2) now put
2 2

0

2

2

0

2 22 2
2

2

()

1

(8 )8 nk cut

G

EMP off

m G

s

m c

K cutoff snc k







 
  


   

  (4.2. 4) 

 

 

Thus                                            
2

4 (8 8 )

G

EMP

G

c





 



2

2 2 2
( )

cutoff

c

n k


 

  

                                                   
3 2 22

1

( )256(1 )

G

cutoffEMP

G

c n k









    

                                       
2

2

3 2 22

1
But    and    

( )256(1 )

G P

P

cutoffEMP

LG
L

c n k





 
 


                                                

          
2

2 2

256(1 )
         For 1 single integer  superpositions   

( )

EMP

G

cutoff P

N n
n k L





   

    (4.2. 5) 

For 1N   superpositions k n nk

n

c  , we can use the logic of section 3.5.1; replacing 
2

nk
K

with
2

,
k

K  and 2
n  with 

2
n  in Eq. (4.2. 4), so that Eq.  (4.2. 5) becomes     

             

                
2

2 2

256(1 )
For 1 multiple integer  superpositions   

( )

EMP

G

cutoff P

N n
n k L





   

  (4.2. 6) 

 

If we now go back to Eq’s. (2.3. 9) & (2.3. 10) as k   the energy squared
2 2 2

nk nk
E c p  

2 2 2
n  .  Again using the logic of section 3.5.1 for multiple integer n superpositions the  

expectation value for energy squared as k   is 
22 22 2 2 2

k k
E c n k c p thus  

 

        For multiple integer  superpositions as ,    
k k

n k E c n kc  p    (4.2. 7) 
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4.2.2 All N = 1 superpositions cutoff at Planck Energy but interactions at less 

It is reasonable to assume that the cutoff superposition energy cannot exceed the Planck                                            

energy Planck
E (at least for square cutoffs) and that this is true for all 1N   superpositions. 

(Section 6.2.1 discusses N = 2 superposition Planck
E cutoffs.) So for simple square cutoffs: 

 

( )
1 multiple integer  superpositions cutoff ener  gy

k cutoff cutoff Planck
N n E n k c E       (4.2. 8) 

                           This can be written as      cutoff Planck

Planck

c
n k c E

L
       

   For  1 multiple integer  superpositions
1

           & 1
cutoff cutoff P

Planck

n k n k Ln
L

N    
   (4.2. 9) 

  

 1 multiple integer  superposition interaction cutoff energy  Planck

cutoff

E
N n ck

n
   

  (4.2. 10) 

 

Using Eq.   (4.2. 10) with Planck energy 19
1.22 10 .GeV and 6.0135n  from Eq.(3.5. 16) 

for simple square cutoffs (also see Figure 4.1. 2). 

 

                
18

Interactions between 1 fermions cutoff @ 2.0288 10 .N GeV        (4.2. 11) 

 

From Table 4.3. 1 we see that all other particles such as photons, gluons and gravitons etc. 

have 6n   and thus higher interaction cutoff energies than fermions ie. 
18

2.03 10 .,GeV   

but < .
P

E   Putting 18
2.0288 10 .GeV  in the Standard Model equations (4.1. 3) & (4.1. 4). 

 

                             

1 1

1

1 18

1

1

2

1

3

2

@ 2.0288 10 . 34.4179 0.08@ ( )

  ............................... 48.5707 0.04....................

  ............................... 50.4053 0.22.....................

5

3
EM

GeV k cutoff





  





  



 









 



1
........ 105.934 0.173................... 

 

 

 

   (4.2. 12) 

Real world high energy secondary interactions only involve 1 2 3
, &   , but spin zero primary 

interactions do not involve the weak force. Table 4.1. 1 can thus only predict 
1

105.921
EM

 
  

at the cutoff compared to the Standard Model combination of 
1 1

1 2
(5 / 3)  


1

EM



  

105.934 0.173   of Eq. (4.2. 12).  (See Figure 4.1. 1 & Figure 4.1. 2). Also using Eq’s. (3.3. 

3) & (4.2. 12) we get the primary to secondary fundamental coupling ratio C
 . 

 

      
1 18

3  
Coupling Ratio @ 50.405 0.22  (ie.@  2.0288 10 .)

C cutoff
k GeV  

     

 

   (4.2. 13) 

The secondary coupling constants in Eq. (4.2. 12) can be thought of as those to the bare 

colour and electromagnetic charges. 
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If we now put Eq. (4.2. 9) into Eq. (4.2. 6) we get 
2

2

2 2

256(1 )
256(1 )

( )

EMP

G EMP

cutoff P
n k L


 


     

 

From Eq’s.(4.1. 2) and Table 4.3. 1 we find (1 ) 1.115
EMP

 
 
and Eq.(4.2. 6) becomes                                 

                                                    
2

256(1.115) 318.3
G

       (4.2. 14) 

 

Using Eq. (4.2. 3) 318.3
G

    is the ratio between the primary graviton coupling to bare 

preons, and the normal measured gravitational constant (Big G). In other words the primary 

graviton coupling to preons is (Primary) (318.3) .
G

G    (Section 5.1.2, Eq. (5.1. 7)) defines 

the secondary graviton coupling between Planck masses G
  and  Eq.   (5.3. 14) finds that   

1
G

   so as in Eq.(6.2. 8) the primary to secondary graviton coupling ratio is 1
G

  and

318.3
G

   .) When 318.3
G

    in Eq.(4.2. 4) the contribution from gravity (the   in Eq.(4.2. 

4)) cancels any deficit in primary interactions (the   in Eq.(4.2. 4)) if these superpositions 

cutoff at Planck energy, which we argue is true for all 1N   superpositions. (Sections 6.2 & 

6.2.1 discuss 2N   superposition P
E  cutoffs.) To enable high energy interactions 2N   

(infinitesimal mass) bosons must also cutoff at Planck energy just as 1N   superpositions do, 

or as in Eq.   (4.2. 10). Figure 4.2. 1 plots radial probabilities for all 3,4,5,6&7n   Planck 

Energy cutoff modes. They are identical as the radial probability
8 2 2 2

( / 9)
R

P r Exp n k r  , 

but from Eq. (4.2. 7) 1nk   in each Planck energy mode, so they all have radial probability
6 8 2

8.74 10 ( / 9)
R

P r Exp r


   . 

 

 

 

 

 

 

 

 

 

 

 

Despite each 3,4,5,6&7n   mode having Planck energy the probability in every case of 

being inside the Planck region is virtually zero at 7
8.9 10


  .  

 Radius in Planck units. R
ad

ia
l 

P
ro

b
ab

il
it

y
 

Planck region 

     Figure 4.2. 1 

 

All Planck energy n modes look identical 
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4.3 Solving for spin ½, spin 1 and spin 2 superpositions 

Superpositions with 2N   are covered in section 6.2 but Eq.(4.2. 13) and Eq. (3.3. 22) 

extended by keeping N s  constant as in Eq. (4.4. 1) allow us to solve various combinations 

of spins ½, 1 or 2 and 1N   or 2N  . 

           

4 4

1
2

6 6 6 6

1
2

5 5 5 54 4

                          

         

    ( 2) (Sp ( 1) (Spin 1)   

or ( 2) (Spin )     

( 1) (Spin )

* (1

in 1)

or (

         

 

1) (Spin 2)

4 * 2 * (1 *(1

      

) ) * )

 

*  
b b b bb b a a ab b a

N

N

c c c c

N

N

c c

N

c cc c c c

 

 

  







 

 



                     2 /  2 / 50.4053 0.199194
C

  

       

 

   (4.4. 1) 

 

Starting with spin ½ we can solve this to get 6 6
* 0.7254c c   as the dominant value.  

Putting 6 6
* 0.7254c c   into Eq.(4.1. 2) or alternatively using Table 4.1. 1 

 1
2

6 6
1.386256 0.1 75.64997258 * 91

EMP
c c     

 
 

 

          (4.4. 2) 

From Eq.  (2.2. 4) the available 
2 2

Q A

2

2 4 2
8 8 )

3

EMP

k r
sN





 
 

 with probability 
sN dk

k


  

where we ignore the infinitesimal factor of (1 )  due to gravitons. And from Eq. (2.3. 12)                                           

                          

2

4 2 4 2

2 2 2 4 2

4

8 8 )
*

81 3

* 1367.58 for (spin 1/2 1)  

                    683.79  for (spin 1 1) or (spin 1/2 2)

                    341.9    for (spin 1 2) or (sp

EMP

n n

n

n n

n k r
Q A c c k r

sN

c c n N

N N

N





 
 

 

   

    

  





in 2 1)    

                    170.95  for (spin 2, 2) by extension.

N

N

 

 

 

 

  

 

   (4.4. 3) 

 

The same primary electromagnetic coupling EMP
  builds all fundamental particles, allowing 

Eq.(4.4. 3) to be true. Using Eq’s  (4.4. 1),(4.4. 3) & * 1
n nn

c c   we get Table 4.3. 1. We 

define the coupling ratio for gravitons 23, 200
G

   in Eq.(6.2. 8) section 6.2.6, where we 

also solve infinitesimal mass graviton superpositions. In Table 4.3. 1 three member 

superpositions fit the Standard Model best. In section 4.1 we solved spin ½ superpositions 

with a dominant centre mode 6 6
*c c that fitted the Standard Model. However when solving 

for spins 1 & 2 we must initially comply with Eq. (4.4. 1) which defines interaction 

probabilities (see Eq. (3.3. 22) and final paragraph section 3.3.4). We must also comply with 

Eq.(4.4. 3) which determines centre or side mode dominance. In this table we have also 

included a massive 1N   spin 2 graviton type Dark Matter possibility interacting only with 

2N   spin 2 gravitons. There are other possibilities which we have not included. To this 

point this paper has attempted to demonstrate that infinite superpositions can behave as the 

Standard Model fundamental particles.  
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The methods used may seem unconventional, but it is important to remember that primary 

interactions are very different to secondary interactions (see sections 2.2.2 & 2.2.3).These 

methods are however based on simple basic quantum mechanics and special relativity. There 

is also surprising consistency with the Standard Model. If the principles behind the outcomes 

of these derivations are at least on the right track, and fundamental particles can be built by 

borrowing energy and mass from zero point fields then, as we will see in what follows, this 

may possibly have some significant and profound consequences.  

 

  Mass Type Spin  N 3 3
*c c

 
4 4

*c c

  
5 5

*c c

 
6 6

*c c

 
7 7

*c c

 
 Infinitesimal mass gravitons    2  2 0.8317 0.0039 0.1644   

 Infinitesimal mass bosons    1  2 0.4847 0.0526 0.4627      

 Massive (dark matter?) gravitons     2  1 0.4847 0.0526 0.4627   

 Massive bosons    1  1  0.0134 0.8878 0.0988  

 Massive fermions    ½   1   0.1305 0.7254 0.1441 

 Table 4.3. 1  Approximate probabilities for various possible superpositions. 

5 The Expanding Universe and General Relativity 

5.1 Zero point energy densities are limited 

If the fundamental particles can be built from energy borrowed from the spatial component of 

zero point fields and this energy source is limited, (particularly at cosmic wavelengths) there 

must be implications for the maximum possible densities of these particles. In section 2.2.3 

we discussed how the preons that build fundamental particles are born from a Higg’s type 

scalar field with zero momentum in the laboratory rest frame. Infinitesimal mass particles 

such as gravitons borrow their mass from the time component of the same zero point fields.In 

this frame they have infinite wavelength and can borrow from anywhere in the universe. This 

suggests there should be little effect on localized densities, but possibly on overall average 

densities in any universe. So which fundamental particle is there likely to be most of? 

Working in Planck, or natural units with 1G   and a graviton coupling constant between 

Planck masses of one, there are approximately 61
10M   Planck masses within the causally 

connected observable universe. Their average distance apart is approximately the radius OH
R  

of this region. Thus there should be approximately 2 122
10M  virtual gravitons with 

wavelengths of the order of radius OH
R  within this same volume. No other fundamental 

particle is likely to approach these values, for example the number of virtual photons of this 

extreme wavelength is much smaller. (Virtual particles emerging from the vacuum are 

covered in section 6.2.3.) If this density of virtual gravitons needs to borrow more energy 

from the zero point fields than what is available at these extreme wavelengths does this 

somehow control the maximum possible density of a causally connected universe?   
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5.1.1 Virtual Particles and Infinite Superpositions 

Looking carefully at Section 3.3 we showed there that, for all interactions between 

fundamental particles represented as infinite superpositions, the actual interaction is only 

between a single wavenumber k  superposition of each particle. We are going to conjecture 

that a virtual particle of wavenumber k  for example is just such a single wavenumber k

member. Only if we actually measure the properties of real particles do we observe the 

properties of the full infinite superposition. The full properties do not exist until 

measurement, just as in so many other examples in quantum mechanics. We will use this 

conjectured virtual property below when looking at the probability density of virtual 

gravitons of the maximum cutoff wavelength. These virtual gravitons would be a 

superposition of the three modes 3,4,5n   as in Table 4.3. 1, but of a single wavenumber k  

only. Time polarized, or spherically symmetric, versions we conjecture (See section 7.1.1) 

are a further equal (1 / 3)  superposition of 2,0, 2m     states of the above 3,4,5n   mode 

superpositions. A spin 2 virtual graviton in an 2m    state is simply a superposition of the 

three modes 3,4,5n  as above but all in an 2m    state. 

   

5.1.2 Virtual graviton density at wavenumber k  in a causally connected Universe 

From here on we will use Planck units 1c G   .  When we looked at scalar potentials 

between electric charges in section 3.4 we used time polarized virtual photons in a simple 

example that works for both photons and gravitons, using field energy densities rather than 

exchanged 4 momentum. However in quantum field theory, scalar or coulomb forces are due 

to exchanged 3 momentum with time polarized photons (or gravitons), but gravitational 

forces appear to be due to changes in the metric, and not exchanged 3 momentum. However, 

in the meantime we will continue to use time polarized graviton densities as earlier with 

photons, discussing exchanged momentum in section 5.3.8 . Also if observers, at the centre of 

their universe, are moving at a peculiar velocity P
  relative to comoving coordinates, the 

average velocity of all mass in the universe is moving with the opposite velocity P
 . Over 

all thin spherical shells of matter at the same radius, they can choose pairs of small areas in 

opposite directions. The spatially polarized vectors due to their velocity exactly cancel for all 

pairs. Central observers see only time polarized gravitons regardless of peculiar velocity. This 

is the same as magnetic vectors cancelling at the centre of long current conductors. Spin 2 

gravitons couple to the stress tensor in contrast to 4 currents for spin 1. Because of the above 

the only important term is the mass/energy density 00
T (or simply  ) or its transformed value 

in any other coordinates, as flow of momentum density terms cancel out. We can thus use the 

same wavefunctions for time polarized graviton densities as we did for photons. Using

1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2* * * *          
 
we showed in section 3.4.1 (see 

Figure 3.4. 2) that the interaction term for virtual photons but now for gravitons is  
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                                  1 2
( )

1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

  (5.1. 1) 

 

This equation is strictly true only in flat space but it is still approximately true if the 

curvature is small or when 2 / 1m r  , which we will assume applies almost everywhere 

throughout the universe except in the infinitesimal fraction of space close to black holes. In 

both sections 3.4 & 3.5, for simplicity and clarity, we delayed using coupling constants and 

emission probabilities in the wavefunctions until necessary. We do the same here. There will 

also be some minimum wavenumber k which we call min
k where for all min

k k  there will be 

insufficient zero point energy available, and Eq. (5.1. 1) cuts off exponentially. We will find 

that this maximum wavelength is where min
1 / ( 1 / )

OU ObsevableUniverse
k R R  . In Section 6 we 

find gravitons have an infinitesimal rest mass 0
m of the same order as this minimum 

wavenumber min
k . At these extreme k values this rest mass must be included in the 

wavefunction exponential term. It is normally irrelevant for infinitesimal masses. Section 6.2 

looks at 2N  infinitesimal rest masses finding
2

min
1

k
K  . Using Eq.(3.1. 11) with 1c   

 

 2 2
2 min

min 2

0

1
2

k

s n k
K

m
   and for spin 2 gravitons 

2 2

min

0 min2

0

1  or  
n k

m n k
m

          
   

 (5.1. 2) 

From Table 4.3. 1 we find    

                       For 2N   spin 2 gravitons 3.33n     so that   0 min
3.33m k    (5.1. 3) 

 

This virtual mass 0
m  increases the E  term in / 2E T    for a virtual graviton from 

E k   to 
2 2

0
E k m    when 1c  .  This reduces the range 1

r T E


     over which 

it can be found, which is controlled by the exponential decay term kr
e
 in its wavefunction. 

This term becomes
2 2

0k m
e
 

as we approach min
.k  So we can define a k  using Eq.  (5.1. 3)  

        

       
22 2 2 2

min min min i

2

m n0 min
11.09   and   11.09 3.4  77k k kk k m k k k             (5.1. 4) 

 

The normalized virtual graviton wavefunction in Eq.  (3.4. 1)      

       A massless with infinitesim
2 2

 al become mass  
4

s
4

kr ikr k r ikr
k e k e

r r


 

   
   

(5.1. 5) 

 

 

Thus the massless interaction term in Eq. (5.1. 1) becomes with this infinitesimal mass 0
m  

 
                       1 2

( )
1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
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

 
    

     

  (5.1. 6) 

 



68 

 

Let point P  in Figure 5.1. 1 be anywhere in the interior region of a typical universe. . Let the 

average density (or its equivalent transformed value) be 
U

  (subscript U for universe ) Planck 

masses/energy density per unit volume. Consider two spherical shells initially in comoving 

coordinates around the central point P of radii
1 2

&r r  and thicknesses 
1 2

&dr dr  with masses 
2

1 1 1 1
4

U U
dm dv r dr     & 

2

2 2 2 2
4

U U
dm dv r dr     

 

 

 

 

 
 

 

 

 

 

 

 

Now we expect the graviton coupling constant  to be 1
G

   between Planck masses, but we 

will assume we don’t know this and solve it in Eq.(5.3. 14) to find it appears to be true.  

 

        The Secondary graviton coupling constant between Planck masses 
G

        (5.1. 7) 
 

Section 3.4.1 in Eq. (3.4. 3) used a scalar emission probability (2 / )( / )dk k  which becomes

(2 / )( / )
G

dk k   between Planck masses. But we must include 2 2

min
(1 [ 0.61 / ] ) Exp k k  as 

an exponential cutoff min
@ k  as in Eq. (6.2. 7). Now distant galaxies recede at light like and 

greater velocities, but quantum interactions are instantaneous over all space.  Thus as we 

integrate over radii 
1 2

& 0r r     we can still use the same equations as if the distant 

galaxies are not moving. (The vast majority of mass is moving relatively slowly in these 

comoving coordinate systems and we return to this important comoving coordinate property 

in section 5.3.1). Using this new coupling probability between Planck masses

(2 / )( / )
G

dk k   we can now integrate over both radii 1 2
&r r ; but to avoid counting all pairs 

of masses 1 2
&dm dm  twice, we must divide the integral by two. The total probability density 

of virtual gravitons at any point P in the universe at wavenumber k is using Eq.(5.1. 6) 
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Expanding 1 2 1 2 1 2
cos ( ) cos cos sin sink r r kr kr kr kr   , then using: 
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From Eq.(5.1. 4) 
2 2 2 2

0 min
11.09k k m k k     and we can write Eq.(5.1. 8) as 
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(5.1. 9) 

 

 

As we think minG
K  will prove to a spacetime invariant we will write this as follows. 
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min min min min 4
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0.149
Cutoff wavelength Probability Density  where U
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G

Gk Gk
K dk K
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 (5.1. 10) 

5.2 Can we relate all this to General Relativity? 

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic 

time T it also assumes there is always some value min
k where the borrowed energy density 

min minGk ZP
E E  the available zero point energy density min

@ k . We have initially assumed 

comoving coordinates, but at peculiar velocities our spherical shells become ellipses and our 

equation min min minGk G k
K dk  should remain true at any peculiar velocity, also in all 

coordinates as we hope to show later. So what happens if we put a small mass concentration 

1
m  at some point?  The gravitons it emits must surely increase the local density of min

k

gravitons upsetting the balance between borrowed energy and that available. However 

General Relativity tells us that near mass concentrations the metric changes, radial rulers 

shrink and local observers measure larger radial lengths. This expands locally measured 

volumes lowering their measurement of the background minGk
 . But clocks slowdown also, 
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Central observer 

at point P 
1

r   

increasing the locally measured value of min
k .  Let us look at whether we can relate these 

changes in rulers and clocks with the min min minGk G k
K dk   of Eq. (5.1. 10). 

 

5.2.1 Approximations with possibly important consequences  

Let us refer back to Eq. (3.4. 2) and the steps we took in section 3.4.1 to derive it; but now 

including 
2 2

0 min
11.09k k m k k     as in Eq.(5.1. 4)  
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Assume that space has to be approximately flat with errors 
1/2

1 (1 2 / ) / .m r m r     If we 

now focus on Figure 3.4. 2 , equation (5.2. 1) is the probability that a virtual graviton of 

wavenumber k is at the point P if all other factors are one. Let us now put a mass of 1
m  

Planck masses at the Source 1 point in Figure 3.4. 2 or as in Figure 5.2. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also assume that the point P is reasonably close to mass 1
m (in relation to the horizon radius) 

at distance 1
r  as in Figure 5.2. 1 and the vast majority of the rest of the mass inside the 

causally connected or observable horizon OH
R  is at various radii r, equal to 2

 r  of Eq.(5.2. 1) 

where 2 1
r r r   and thus 1

cos[ ( )]k r r cos( )kr   & 1 2( )
.

k r r k r
e e

   
  This is equivalent to 

localizing General Relativity to much smaller than horizon radii, but still to vast cosmic radii. 

 Only under these conditions can we approximate Eq. (5.2. 1) as 

 
1 2 2 1

1

4
* * cos( )

4

k rk
e kr

r r
   




     

    (5.2. 2) 

 

The background gravitons are time polarized and we are effectively looking at the scalar 

potential of this central mass relative to the rest of the universe, so this is a time polarized or 

scalar interaction with no directional effects due to spatial polarization. We can consider 

Spherical shells thickness dr   

& mass 
2

4
U

dm r dr   

 Mass 1
m   

 r   

Radius 1
r r   

                                                                                                

Figure 5.2. 1 
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simple spherical shells (again initially in comoving coordinates) of thickness dr  and radius r 

around a central observer at the point P which have mass 
2

4 .
U

dm r dr   At each radius r 

the coupling factor including an exponential cutoff is 
2 2

min0.61 /
(( / ( / )1 ) 2 )

G

k k
dke k


  between 

Planck masses. Again assuming instantaneous quantum coupling as if space is not expanding: 

       

2 2 2 2
min min0.61 21/ 10.61 /2 2

Coup (1ling facto ) 1 )r 4(G Gk k k
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km mdk dk
d rem dr

k k
e


 




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 
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(5.2. 3) 

 

Including this coupling factor in Eq. (5.2. 2)    
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(5.2. 4) 

  

This is virtual graviton density at point P due to each spherical shell. (Ignoring the relatively 

small number of particularly min
k  gravitons emitted by mass 1

m  itself 
1 1
*

m m
  , (Section 8). 

Integrating over radius 0r    the virtual graviton density at wavenumber k using 

Eq’s.(5.1. 4) & (5.2. 4) 
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  (5.2. 5) 

 

 

Now
2 2 2 2 2

0 min
11.09k k m k k       and if min
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min min
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  (5.2. 6) 

 

 

Equation (5.1. 10) hypothesizes min min minGk G k
K dk  . In a metric far from masses where

g  ,  min
k  has its lowest value. As we approach any mass min

k  increases to min
k  where 

we use green double primes when g   to avoid confusion with the min
&k k   of Eq.(5.1. 

4).  At a radius r  from mass m  the Schwarzchild metric is 
1/2

(1 2 / )m r


  for the time and 

radial terms. Radial rulers shrink and clocks slow, measured volumes and frequencies both 
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increase locally as 1
m

r
  .  

                        Thus both 1
V V m

V r

 
   and also 

min

min 1
m

k

k

r


    if r m  

                        Then using min min minGk G k
K dk    &  m m minin niG kGk

K dk   
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   (5.2. 7) 

 

 

So in this metric the total number of min
k gravitons is the original ( )g 

minGk
  of Eq. 

(5.1. 10) plus the extra due to a local mass of Eq. (5.2. 6), but we have to divide this number 

by the increased volume to get the new density n minmi
(1 )

Gk Gk

m

r
   . Thus using Eq. (5.2. 7) 
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(5.2. 8) 

 

We can now put Eq’s. (5.1. 9) & (5.2. 6) into (5.2. 8) and dropping the now unnecessary 

subscripts, the graviton coupling constant G
 and exponential cutoff

2 2
min0.61 /

1 ( )
k k

e


  cancel: 
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(5.2. 9) 

 

(Strictly speaking we should be using mink
dk   in the top line of this equation but the error is 

second order as we are approximating with r m . We will do this more accurately below 

for large masses.) In any metric both min
&

U
k transform their values but 2

min
/

U
k   is 

invariant. For the above to be consistent with General Relativity this suggests that:  

 

 “At all points inside the horizon, and at any cosmic time T, the red highlighted part is 2  in 

Planck units. This is simply equivalent to putting 2
/ 1G c G c   ”. Thus we can say 

             

2

2

min 2

min

(0.8823) 0.8823

Where the parameter  is in radians, and  is close to 1

The average density of the universe 

.

U
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k
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k R


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 

  

 

   

  (5.2. 10) 

 

Putting Eq. (5.2. 10) the average density U
 into Eq. (5.1. 10) gives minGk

 & minGk
K . 
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(5.2. 11) 

 

 

If our conjectures are true, this is the number density of maximum wavelength gravitons 

excluding possible effects of virtual particles emerging from the vacuum. In section 6.2.3 we 

argue these do not change the minGk
K  of Eq. (5.2. 11). However minGk

K   does depend on the 

graviton coupling constant G
  between Planck masses, but G

  cancels out in Eq. (5.2. 9).  

It does not affect the allowed universe average density U
  in Eq. (5.2. 10).  

 

5.2.2 The Schwarzchild metric near large masses 

At a radius r  from a mass m  (dropping the now unnecessary suffixes) the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms which can be written as  

                              
00
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1 1 1

1 2 1/
M

M

rr
g

m r g 



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
 

(5.2. 12) 

 

Velocity M
 ( 1c  ) is that reached by a small mass falling from infinity and

1

M
 

is the metric 

change in clocks and rulers due to mass m . We are using green symbols with the subscript M 

for metrics g  as we did for min
k  above. The symbols 

1

M
 

help clarity in what follows. 
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 Using these symbols min min minmin min min
  &      & 

GkM M Gk M
k dk dkk               (5.2. 13) 

In sections 5.1.2 & 5.2.1 we approximated in flat space. The wavelength of min
k  gravitons 

span approximately to the horizon. They fill all of space. We can think of the non flat space 

around even a large black hole as an infinitesimal bubble on the scale of the observable 

universe. The normalizing constant of a min
k wavefunction emitted from a localized mass is 

only altered very close to this mass. Over the vast majority of space it is unaltered. Only close 

to this mass will local observers measure min minM
k k   due to the change in clocks. There is 

also a local dilution of the normalizing constant due to the change in radial rulers. We will 

consider both these changes in two steps to help illustrate our argument. Now repeat the 

derivation of minGk
  as in section 5.2.1 but with a large central mass as in Figure 5.2. 1.  
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            At the point P consider Eq. (5.2. 2) 1 2 2

1

1* * cos )
4

4
(

k r
kr

r r
e

k


   


 


 .   

The red part is the normalizing factor discussed above where we will initially ignore the 

dilution due to the local increase in volume. In deriving Eq. (5.2. 2) we ignored the 

exponential decay term and phase angle term from the local mass as (even in the space 

around large black holes) min 1

min 1& cos( ) 1
k r

ke r


 . The green &k r kr  terms are phase angles 

that are virtually fixed by the time they approach even large black holes, as they apply to the 

vastly distant masses, and only increase infinitesimally in any local metric. So treating them 

as fixed and ignoring the dilution factor this equation is unaltered. As the exponential cutoff 

is unchanged we are left with the coupling factor 

 

          min
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2
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min
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G G
d k

kk
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 
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





in the changed metric.  

 

Dropping the now uneccesary subscripts and temporarily ignoring dilution factors and clock 

changes we can rederive Eq’s (5.2. 4), (5.2. 5)  & (5.2. 6) to get with large masses: 
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Using Eq, (5.2. 11) min
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2
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K dk k

r
   

Using 
2 2
M

m

r
   and to help illustrate metric changes we temporarily include the factor 2

M
   

                         Before metric changes   min min

2 2

min
 

M MGk Gk
K dk     (5.2. 14) 

 

The total min
k graviton density before metric changes is the original min min minGk Gk

K dk  plus 

the extra min min
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 (5.2. 15) 

 

 

If we now increase the volume to that in the new metric, the new volume is 
Mrr

g   times 

the original volume. So in the new metric we must divide this value by M
  to get 
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min min

min min min min m n
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Diluted (To a t l) Gk

Gk GM M M

M

k Gk

K dk
K dk K dk  


     but in the new 

metric, time changes make min minM
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   In the new metric 2min
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(5.2. 16) 

 

If for example 2
M

  , frequencies are doubled so min min
2k k  , the number density of 

gravitons ( minGk
  min

2
Gk

 ) is doubled, but so is the measurement of a local small volume 

element, which is now 2V  . The above equations tell us that the original minGk
 background 

gravitons which occupied one unit of volume is now compressed into 1/2 a unit of volume 

and the remaining 3/2 units of volume is taken up by the gravitons due to the central mass. 

Figure 5.2. 2 illustrates this. The metric adjusts itself so that minGk
K (the cutoff wavelength 

graviton probability constant) is an invariant number, and this should be true in all metrics at 

any peculiar velocity (See Figure 5.3. 9 also.) What we have done in this section is only true 

if the increase in measured volume is equal to the increase in measured frequency. In the 

Schwarzchild metric this is equivalent to saying that 1
rr tt

g g  or 1g  .  We discuss 

angular momentum in section 7. 

 

 

 

 

 

 

 

 

 

 

5.3 The Expanding Universe 

Section 5.1.1 describes virtual gravitons as superpositions of the three modes 3,4,5n   at a 

single wavenumber k  as in Table 4.3. 1 which also tells us 3.33n  . Equation (3.2. 1) tells 

us 
2

( )
k k

debt n p k  is the debt of k  spatially polarized quanta they borrow. 

Equation (5.1. 2) tells us  
0 min

m n k  &   Eq. (3.1. 4) says they borrow from time polarized 

quanta a mass 
0 0 min

/ ( 2 ) / (2 ) / (2 )m s m n k     for spin 2 gravitons. Equation (6.2. 2) tells 

us that min
@ k for gravitons 2 2

min min
2 &  1/ 2   . From this we can see that min

@ k , the 

spatially polarized debt is 2  larger that the time polarized debt.  

The background gravitons that originally occupied one 

unit of volume are compressed into 1/2 a unit of volume as 

number densities are doubled in this new metric. 

     Figure 5.2. 2 An infinitesimal local volume in a metric where 2
Mrr

g   .  

 

Measured local volumes double, & 3/2 units of volume   

the increased number density equals the extra maximum 

wavelength gravitons at that point due to a central mass. 
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So we only need to consider the spatially polarized debt when equating quanta available to 

quanta required, as when these are equal there is a small surplus of time polarized quanta. 

However to plot these curves near min
k k we need the number density of gravitons at any 

wavenumber  k , so rewiting Eq. (5.1. 9) using Eq.(5.2. 10) for 
2 4

min
/

U
k & Eq.(5.2. 11   
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 (5.3. 1) 

 

min
Both blue boxes are one when  / 1k k x  .      Using Eq’s. (3.1. 11),  (3.1. 12) & (3.2. 10)          
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wavenumber k quanta. But wavenumber k virtual quanta last for time / 2T k  , whereas 

the time the superposition lasts is / 2T E  . We are borrowing Energy Time   or Action, 

and the superposition energy 
2 2

min
11.09E k k k   as in Eq. (5.1. 4) lasts for a shorter time 

when k  is near min
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(5.3. 2) 

 

But the density of zero point modes available min
@ k is 

2 2

min
/k dk  . Even if 1

G
   this is too 

small by about
2 2

min
1/

OH
k R . However the area of the causally connected horizon 

2
4

OH
R

suggests possible connections with Holographic horizons and the AdS/CFT correspondence 

[14], but in a very different way. 
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5.3.1 Holographic horizons and red shifted Planck scale zero point modes 

Malcadena proposed AntiDesitter or Hyperbolic spacetime where Planck modes on a 2D 

horizon are infinitely (almost) redshifted at the origin by an (almost) infinite change in the 

metric. In contrast we have assumed flat space on average to the horizon. In section 2.2.3 we 

defined a rest frame in which preons with zero momentum and infinite wavelength build 

superpositions. If we also have a spherical horizon with Planck scale modes, but receding 

locally at the velocity of light, these Planck modes can be absorbed by infinite wavelength 

preons (from that receding horizon) and red shifted in a radially focussed manner inwards. 

We will argue in what follows, that at the centre where the infinite superpositions are built, 

approximately 1/6 of these Planck modes can be absorbed from that horizon with 

wavelengths of the order of the horizon radius. This potential possibility only exists because 

zero momentum preons have an infinite wavelength. If any source of radiation recedes at 

velocity /v c   the frequency/wavenumber reduces as  (1 )
observer source

k k     where
2 1/2

(1 )  
  .  In the extreme relativistic limit 1   & we can put1       .  

                          

 

2

2 2

Putting 1  implies 1  and 1 2

             1

1

2  and 1 / 2

Thus 

 

(1 )
2 22

Observer

Source

k

k

      

    

 
 





 

       

  

  

   

       

         (5.3. 3) 

 

There is always some rest frame travelling at nearly light velocity that can redshift Planck 

energy modes into a min
1 /

OH
k R  mode and also many other frames travelling at various 

lower velocities that can redshift Planck energy modes into any min
k k  mode .  This is 

special relativity applying locally. But in sections 5.1.2 & 5.2.1 we used the fact that clocks 

in comoving coordinates tick at the same rate.   So how does Eq.(5.3. 3) help? Space between 

comoving galaxies expands with cosmic or proper time t and is called the scale factor ( )a t . It 

is normally expressed as ( )
p

a t t   and we will start at time 0
t T with time T  now.                                                   

                     Thus 
1

( )
p

a t pt


 and the Hubble parameter
( )

( )
( )

a t p
H t

a t t
   

    (5.3. 4) 

 

We have been assuming to here that space is flat on average and will use the properties that in 

flat space at the current time the coordinate, proper and comoving distances are all equal. 

Writing the present scale factor normalized to one so that ( ) 1a T   implies ( ) /
p P

a t t T , we 

can get the causally connected horizon radius and the horizon velocity V. Using Eq.(5.3. 4)  

0 0

0

0
The horizon radius if &  constant.

( ) 1 1

T T

p

OH p

T T

T Tdt dt T
R T T T p

a t t p p


    

    
       (5.3. 5) 

 

0

0
In flat space horizon velocity  then using ( )  for ( ) :

T

pOH

p

T

dR d dt
V T d u v u dv v du T T

dT dT t

 
        

  

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1

( ) 1 .  But  is the Hubble constant at time . 

In flat space the horizon velocity 1 ( )  regardless of how  behaves.

p

pOH OH

OHp p

OH

dR RT p p
pT R T

dT T T T T

V H T R p


   

 

 

      (5.3. 6) 

 

 

The Hubble flow velocity of a comoving galaxy on the horizon is ( )
OH

V H T R  and thus from 

Eq.(5.3. 6) the horizon velocity is always 1V V   .  In other words the horizon is moving at 

light velocity relative to comoving coordinates instantaneously on the horizon as measured by 

a central observer. Now clocks tick at the same rate in all comoving galaxies but clocks 

moving at almost the horizon light velocity (relative to comoving coordinates instantaneously 

on the horizon) will tick extremely slowly or as 1/   from Eq.(5.3. 3) as special relativity 

applies locally in this case. Thus Planck modes on the receding horizon will obey Eq’s.(5.3. 

3) as seen in all comoving coordinates. Let us now imagine an infinity of frames all travelling 

at various relativistic velocities relative to comoving coordinates instantaneously on the 

horizon and radially as seen by central observers. We can think of these as spherical shells on 

the horizon all of one Planck length thickness as measured by observers moving radially with 

them. Transverse dimensions do not change for all radially moving observers and the 

effective surface area of all these shells is
2

4
OH

R . The internal volume of all these shells as 

measured in rest frames by observers moving radially with them as each of these observers 

measures their thickness R  as one Planck length is 

 

                        2 2
Rest frame internal shell volume  4 4

OH OH
V R R R       (5.3. 7) 

We want the zero point quanta available where these quanta have Planck energy E  lasting 

for Planck time T  such that / 2E T   . Before redshifting a single zero point quanta 

thus has Planck energy (temporarily using a single primed k  that is not the k  of Eq. (5.1. 4)) 

where 1k   before redshifting and k after redshifting. The density of modes in this shell is 
2 2

/k dk   (where each quanta & the superposition it builds both last for time / (2 )T E   ) 

 

          
2

2

k dk



 
  quanta, which we will write as zero point quanta density 

3

2

d

k

k k



 


. 

  (5.3. 8) 

 

At Planck scale 1k   and redshifing to k  then using Eq’s.(5.3. 3) / 2k k   & 

/ 2dk dk  .  Thus / /dk k dk k   .  As 1k   Eq.  (5.3. 8) becomes 

 

         
3

2 2

1 1
Planck Scale Quanta Density before redshifting

dk dk

k k 






  

  (5.3. 9) 
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Multiplying density by volume ie. Eq’s. (5.3. 7) &   (5.3. 9) gived the total Planck scale  

quanta inside the rest frame shell as 
2

2
4

1
OH

R
dk

k
  . Two thirds of these quanta are transverse 

and one third radial, so only 1/ 6  of these quanta are available for redshifting radially 

inwards.  

After redshifting to wavenumber k , in flat on average space in a thought experiment, we can 

imagine them forming spherical standing waves, with a central spherical first node at radius

/ 4 / 2R k   , where   is the De Broglie wavelength of momentum k  particles or 

waves. The polarization directions are spherically symmetric (as required to build infinite 

superpositions in their rest frame, see section 5.3.7), forming virtual spin 1 quanta with a 

radial probability of 
2

2 cosk kr   . Inside this sphere the expectation value of the radius  

that a quantum is at is / 4r k  as 
2

cos 1/ 2kr  , so the expectation value of the 

probability density is  

 

3
3

3

m

2 2 2

in

3

2 2 2

2 cos 2 cos ( / 4) 16 1.62

4

1.62

4 ( / 4 ) 4 44 OH

k kr k k k k k

Rkr k



     
   

 
 
 

 where we have used min OH
k R   

 

This is the average probability density of a single quantum. So the total density is this single 

quantum probability density, times the number from the horizon; but we also need to divide 

by 2 as we are only considering the spatially polarized or vector half. Again using

min OH
k R   the total quanta density becomes, after dividing by the two factors of  2 & 6  

 

3 2
3

2

3

min min mi

2

2

2

n

2

@ 2 2

1 1.62
 where

1 1

2 6
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dR
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k k
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k
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  

   
    



 
 
 

 





 
   

 Density of vector quanta available after redshifting 
2

@ 2

2

7.4
Quanta k

dkx



   

 (5.3. 10) 

 

Now an observer at the centre of all this sees space being added inside the horizon at the rate 

of the horizon velocity  1 ( )
OH

V H T R   as in Eq.(5.3. 6). We will conjecture that the space 

added in one unit of Planck time inside the expanding horizon also creates the source of these 

zero point quanta that we can borrow. Thus Eq. (5.3. 10) becomes  

 

  

2
2 2

2

@ 2 2

min

2

2

2

min

Density of quanta available
7.4 7.4

(1 )
                                                 where  

7.

 

4

Quanta k

OH

V k V
dk x dk

k

H R k
x dk x

k


 



  
  

 

  
 

        

  (5.3. 11) 
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5.3.2 Plotting available quanta densities and required quanta densities 

               

               

                    

 

 

 

 

 

 

 

    
min min mi

2

nmin2

2

min min

  Quanta required 0.055

Where 0.055 is the "Quanta required @ Co

Quanta available  =
7.4

 &  nstant "
4

G Qk

Qk G G

dk K dk
V

dk

V
K k




 

 







  

  

  (5.3. 12) 

 

Equation (5.2. 10) 

2

2
the average density of the 0.univ 8823erse  

U

OH
R




  allows us to solve  

the present value of min OH
k R   .  Using WMAP data for Baryonic and Dark Matter density 

124
5.6 10

U
 

   in Planck units & the radius 
61

2.7 10
OH

R    Planck lengths ( 9
46.5 10 

light years) puts
2

0.42
U OH

R   in Planck units so 
2 2

0.8823 0.42
U OH

R     now.  

min
k  

Figure 5.3. 1 plots Eq’s.(5.3. 2) & (5.3. 11)as a function of min
/x k k  Going through similar 

procedures for the time mode quanta as for space modes, we have plotted both time and space. 

An exponential
2

0.61x
e


cutoff fits available and required reasonably for min
k k  in both cases; 

also showing there should be an adequate supply of time mode quanta from the horizon for all  

infinitesimal mass particles. The spatial mode crosses @ min
k k . Both plots always look the 

same at all cosmic times T. And, in any metric only the value of min
k changes.  It only works   

in an expanding flat universe. Equating required and available spatial modes @ min
k k  

 

 

Spatial mode quanta 

available from horizon 

 

Spatial mode quanta required  

with 
2

0.61
(1 )

x
e


  cutoff 

 

min
k   

 

min

k
x

k
   

 

Time mode quanta  

available from horizon 

Time mode quanta required  

with 
2

0.61
(1 )

x
e


 cutoff 
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            min
Using -CDM model & WMAP data    0.69 now

OH
k R       (5.3. 13) 

 

                  
  

 

                                       Figure 5.3. 2  Plots
2 2

0.8823
U OH

R      

The CDM  model &WMAP data Horizon velocity 1 ( ) 1 3.37 4.37
OH

V H T R      if 

( ) 1/H T T  now, and putting this and 0.69   into Eq. (5.3. 12) we can get an approximate 

value for the graviton coupling constant G
 .  

 

  

2 2

G

2

V (0.69) 4.37 2.08
Using -CDM model & WMAP data 0.52

4 4 4

             Or, as is more probable 1, and we should expect  V 4
G





 
    

  

 

     

  (5.3. 14) 

 

 

Using the current CDM  model and WMAP data with 2
2.08V  , puts G

  in the right 

ball park, suggesting that our approximate analyses is not too far off the mark, and that we 

can perhaps turn it around to show we should expect 2
V 4  . The CDM  model has to 

be fine tuned for flatness requiring a critical density. It also has to have a fixed ratio of Dark 

Energy to total matter to get the observed accelerated expansion. The current figures are 

5%  Baryonic 23%  Dark matter and the rest Dark energy. This puts the ratio of Dark 

Matter to Baryonic as   4.5 to 1 whereas it can be as much as 9 or even 10 to 1 in some 

galaxies. If for example it was approaching 10 to 1 then 2
V 4   at the current horizon 

velocity and horizon radius we used above.  However the most important part of the above is 

that 2
V  has to be constant, and as we will see this naturally leads to exponential expansion. 

In the next section we will find slightly different values for both the horizon radius and 

velocity, which combined with a smaller increase in Dark matter of about 6.5 to 1 , can give
2
V 4  . And it all only works in flat on average space. 
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min
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2

2
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U OH
R 
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5.3.3 A possible exponential expansion solution in flat space  

In flat on average space we can simplify things greatly. We have equal coordinate, proper and 

comoving distances at the current time. Let the scale factor be a then density
3

1

a
   and Eq. 

(5.2. 10) average universe density

2

2
0.8823

U

OH
R




 or 

2

2 3

1
U

OH

K
R a




   where 0.8823K    

 

                           Thus     
3 2 2 2/3 2/3

a KR a K R
        where OH

R R    (5.3. 15) 

 

The Hubble parameter H is 

     

1/3 2/3 2/3 5/3

2/3 2/3 2/3 2/3

(2 / 3) (2 / 3) 2 1 1
   

3

dR dK R K Ra dR ddt dtH
a K R K R R dt dt

  

 

    
         

  

 

2
     Thus the Hubble Horizon velocity @  is 

3
OH

dR R
R V H R

dt

d

dt

 
     

  


 

(5.3. 16) 

 

We can also write Eq.  (5.3. 14) 2
164 a constant

G
V    , hence 

2
2 0dV d V     .  

Thus  
1

2

1dV

V dT

d

dT






  and Eq.(5.3. 6) tells us that the Horizon velocity OH
dR dR

V
dt dt

  .  

 

Equation (5.3. 6) also tells us that 1V H R V      so we can write Eq. (5.3. 16) as  

 

      
2 2

3( 1) 2
2

d

d

R R dV
V

V tt
V

d

 
  




  

 
 3

R dV
V

V dt
       ( 3)

dV V
V

dt R
   

  (5.3. 17) 

We will look for an exponential increase of the horizon velocity so / 0dV dt  and 3 .V      

 

Let us try first a simple 3 ( )V Exp bt with 3V  for all values of & 0b t  .     

Also simply put          
0 0

 3 ( )
t t

R Vdt Exp bt dt        thus    
3[ ( ) 1]Exp bt

R
b


 .  

Putting this value for R   plus 3 ( )V Exp bt  &  3 3[ ( ) 1]V Exp bt    into Eq. (5.3. 17)  

                ( 3) 3 ( ) 3[ ( ) 31]
3[ ( ) 1]

( )
V b

V Exp bt Exp bt
R Exp b

dV
bExp bt

d tt
      


.  

But 3 ( )V Exp bt and again  3 ( ) 3 ( )
dV d

Exp bt bExp bt
dt dt

  . Thus Eq’s. (5.2. 10) &  (5.3. 14) 

are consistent with 3 ( )V Exp bt for positive b . 

        A possible expansion solution is 3 ( )V Exp bt  & 
3[ ( ) 1]Exp bt

R
b


 , 0.b    

(5.3. 18) 
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In flat space this should be consistent with the local special relativity requirement for OH
R  but  

does
0

3[ ( ) 1]
@ time ( )

( )

T dt Exp bT
R T a T

a t b


   ? Equation (5.3. 15) 

3 2 2
a KR


  gives the 

scale factor 
2/3 2/3

a K R
  & Eq,  (5.3. 14) says

2
1/V   so the scale factor

1/3 2/3
.a V R   

From Eq.(5.3. 18), ignoring the constant factors 3 & b, ( )V Exp bt  &  ( ) 1R Exp bt   

            

1/3 2/3

0

1/3 2/30

1/3 2/3

( )

( ) [ ( ) 1]

The scale factor ( ) ( ) [ ( ) 1]  and  
( )

            =
( ) [ ( ) 1]

3[ ( )
                                                        

T

T

dt
a t Exp bt Exp bt R

a t

dt

Exp bt Ex

a T

Ex
p b

p
t

Exp bT

bT Exp bT 

  










1]

b

 

 

 

(5.3. 19) 

And Eq.(5.3. 18) appears to be a consistent exponential expansion for both V and R.  

From Eq.   (5.3. 14)  we showed   
1

2

1dV

V dT

d

dT






. Using Eq.(5.3. 18) 3 ( )V Exp bt  &  

3 ( )
dV

bExp bt
dt

 implies ( / 2)K Exp bt    . The current CDM /WMAP value 0.69   

from Eq.(5.3. 13) and our best guess of 0.48b   from Figure 5.3. 3 yields 

 

                             min
0.88 ( 0.24 ) in radians

OH
k R Exp t       (5.3. 20) 

 

This simple exponential expansion starting at the Big Bang is very different to current

-CDM  models keeping the Hubble parameter / 2 / 3H a a t   constant (if 1  ) until 

Dark Energy starts to take effect. Current  -CDM models put the Hubble parameter as 

/ 1/H a a T   at present (based on 
9

13.8 10T   years). In the plots below we put 
9

13.8 10  years 1T    , with OH
R  or radius R  becoming multiples of 1T  . Using Eq.(5.3. 

6) 1 ( )V H T R  , Figure 5.3. 3 plots the Hubble parameter by time ( 1)T   now as a 

function of the exponential time coefficient b showing if 0b   that  always 2 / (3 )H t  as in 

current cosmology at critical density with no dark energy. Also if 1/H T now the best 

guess is 0.48b  . This yields 3.85R T  or 15%  greater than current cosmology. Figure 

5.3. 4 plots horizon velocity which @ 4.85V   now is also 11%  greater. The current 

CDM  model puts Baryonic matter at 5%  and Dark matter at 23%  but if we make 

this ratio say about 6.4 to 1, the total matter density of the universe increases from 28%  to 

37% , and 
U

 increases as 37 / 28 1.32 . Now 
2 2

0.8823
U OH

R     and if OH
R  is 15% 

greater, then 2 2 2
1.32 1.15 1.75 0.47 0.825        as 2

0.47   in current CDM  

models.  If 4.85V    then 2
4V    which fits our model. Figure 5.3. 5 plots scale factor 

based on 0.48b  , but of course the actual value of b or rate of change with time must be in 

agreement with the redshifts currently observed when looking back towards the big bang. 

These could well change b and radius R. Figure 5.3. 6 plots the transition to positive 

acceleration of the scale factor showing the effect of changing the value of b.  



84 

 

           

 

 

 

 

 

Time t    

  

 

0

0

0
0

In flat space only, shaded area 

                 3 (0.48 )

3[ (0.48 ) 1]
                 

0.48

                 ( )  if 
( )

T

T

T

T

R Vdt

Exp t dt

Exp T

dt
a T T T

a t








 







  

Figure 5.3. 4 

 

Time t    

  Figure 5.3. 5 

 

  

0.48 is based on

1
Hubble  now

and is best guess. 

b

T





  

  

Time t    

 

0.8

0.5

0.3

b

b

b







  

     Figure 5.3. 6 

 

H
u
b
b
le

 
  

     Figure 5.3. 3 

 
b    

    Hubble parameter  

1/H T  now if 0.48b   

 always 2 / 3H t  if 0b    



85 

 

These plots show an 15% increase in Horizon Radius, an 11% increase in Horizon

Velocity, which if combined with an increased Dark Matter to Baryonic Matter ratio

of 6.5 (versus the -CDM ratio 4.5) give

 

  
2 2

s the required  (0.91) 4.85 4V   

 

                        

                    
Figure 5.3. 7 Plots min

1.155 ( 0.24 )
OH

k R Exp t    to 10 times the age of the universe. 

 

5.3.4  The radiation dominated era up to the transition 

  

           
 

 

In the mass dominated era the density 
3

1/ a  , and in the preceding radiation dominant era

4
1/ a  . We can repeat section 5.3.3 with horizon velocity 2 ( )V Exp ct , & horizon radius 

0 0
 2 ( )

t t

R Vdt Exp ct dt    2[ ( ) 1] /Exp ct c  . The horizon velocity starts @ 2V   and 

horizon radius @ 2R t  with a scale factor 1/2
a t  and is the value used in current models 

of this era before transition, which predict results in close agreement with the current 

measurements of normal matter in the universe. At the start of the matter dominated era, 

3V  , and one possibility is 2 (0.4 )V Exp t , where time is normalized to one at the end of 

this era. This exponential expansion can, with some smooth transition, continue on into the 

3 (0.48 )V Exp t  of the matter era, with the normalization of time then changed to the current 
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Figure 5.3. 8 A possible radiation dominated exponential expansion in flat space. 
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cosmos age. If 1
G

   as in Eq,   (5.3. 14) with 2V  ,  has to be 1.4   initially to get

2
4.V  By the end of this era when the horizon velocity has increased to 3V  , has 

exponentially reduced to 1.155  to keep 2
4V  . Because the transition time is so small 

in relation to the 10
10  year age of the universe, this era has insignificant affect on all our 

above graphs.  

 

 

5.3.5 Peculiar velocities and non-comoving coordinates 

We have up to here been focussing more on comoving coordinates for simplicity. Velocities 

relative to comoving coordinates are usually referred to as peculiar velocities, so, does all our 

previous work still apply in non-comoving coordinates? The average momentum of the 

universe is zero in comoving coordinates and all background gravitons are time polarized. As 

explained in section 5.1.2, if we move at a peculiar velocity, equal and opposite 

gravitomagnetic vectors all sum to zero, resulting in zero spatially polarized gravitons, just as 

the magnetic field is zero at the centre of long circular conductors with uniform currents. 

Thus the background, at the centre of any observer’s universe, in non-rotating spacetime, 

always contains only time polarized or spherically symmetric min
k gravitons, regardless of 

peculiar velocities. We can think of a box of these min
k gravitons fixed in comoving 

coordinates. It will have a 3 volume density 3

min min min

V

Gk Gk
K dk  as we have previously 

calculated. (The superscripts here are for convenience only, and nothing to do with tensors.) 

If we now move relative to it at peculiar velocity P
  it will shrink in size as 

1 2
1

P P
 

   so 

that it’s new 3 volume density 3

mi minn min

V

Gk Gk
kK d   , where mn inmi

/
P

dkdk    is the local 

increase in wavenumber min
k . If we repeat our derivations of the background 3 volume 

density, and the extra emitted by local mass concentrations, we find they also both increase 

by  mn inmi
/

P
dkdk    with no change in the ratio /  , so all our logic is unchanged at any 

peculiar velocity. But all this, is the same as saying that at any peculiar velocity, and in any 

metric, the 4 volume density of min
k gravitons is Invariant at any cosmic time T. 

 

 

5.3.6 Invariant 4 volume cosmic wavelength graviton densities 

Define 
3 min min

min

Gravitons Gravitons

3Volume

V

Gk

k k

x y z
  

  
  and as 4 volume x y z t x y z t             

           
4 min min min

min

Gravitons Gravitons Gravitons

4Volume   

V

Gk

k k k

x y z t x y z t
   

          
  is an invariant.  

We will define 4 volume min
k  graviton density at any point in space-time as 
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4 3

min min

4

min

4 Volume Density      3 Volume Density  

but only in commoving flat space coordinates, however 

 is invariant in all coordinates and in any metric.

V V

Gk Gk

V

Gk

 





 

  (5.3. 21) 

This is equivalent to dividing min
k  , in any metric, at any peculiar velocity, by MP

   thus 

returning it to flat space comoving value min
k at any cosmic time T. Similarly Eq. (5.2. 16)  

              2min

min min2

3

min min min min
(Total)

V

Gk Gk G

M

kM Gk
K K K

dk
dk dk 




    in comoving coordinates, 

which can be written as  

             3 3

min min m

in

in

m

2
 (Total)

V V

Gk Gk Gk

M

d
K

k






   , becomes using invariant 4 volume notation    

            4 min

min min min min min

2

n2 mi
(Tot ) al

M

M

V

Gk Gk Gk Gk

dk
K K dk K dk


     which can be written as 

            4 4min

min min min2
(Tot l a )

V V

Gk G G

M

k k

dk
K 


     

Where  4

min mi

2

min n
 

M

V

Gk Gk
K dk   ;       3

min m n

2

mini
   

M

V

Gk Gk
dkK   ;        

min

min
x y z t

dk x y

k

z t

d    
 

    






 

As both 4 4

min min
  &    

V V

Gk Gk
  are invariant, their ratio is also invariant in any coordinates, and at 

any peculiar velocity at any particular cosmic time. But the flat space comoving value of min
k

decreases with cosmic time. We also know that 2
2 / 

M
m r  is always true. 

 

5.3.7 Cosmic wavelength graviton action densities and spherical symmetry 

In deriving Eq.(5.3. 2) we said that each 
min

k  graviton always borrows a fixed amount of 

action, where Action E T    per graviton is constant but min
E k  .  So if four volume 

density
min

4 
Gk

V  is invariant the four volume action density required by 
min

k  gravitons must 

also be invariant. In Eq (5.3. 11) we calculated the 
min

k action or quanta density available 

from the horizon in comoving coordinates. But if we move at a peculiar velocity P
 , both 

energy E  and time T increase as P
 , so the four volume action density available from this 

source should increase by 2

P
  and not be invariant, appearing to destroy our logic. (If there is 

more action available than what is required by min
k  gravitons there is nothing to keep their 

density controlled.) If we go back to the building of superpositions, in their rest frame, they 

have a wave equation generated from a vector potential squared, or 2
A  term  Eq. (2.3. 7). 

This can only come from a spherically symmetric source of spatially polarized quanta. At 

high frequencies this spherically symmetric source is the invariant vector potential squared 

portion of the local zero point fields. At low frequencies this source is from the receding 

horizon, but it must also be spherically symmetric (see section 5.3.1). We derived Eq. (5.3. 

11) in comoving coordinates where the spatially polarized source from the horizon is 

spherically symmetric as required to build superpositions in their rest frame. But it is not 

spherically symmetric at peculiar velocities. Equation (3.1. 1) shows that if we move at a 
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peculiar velocity P
  relative to a spherically symmetric spin one source, its probability of 

being spherically symmetric reduces as 2
1/

P
 . But the 4 volume action density increases as 

2

P
  so these two factors cancel. Exactly the same happens in any metric. The 4 volume 

min
k

spin one quanta action density from the horizon increases as 2

M
  but the spherical symmetry 

probability drops as 2
1/

M
 , and both these effects cancel again.   

Spherically symmetric 4 volume 
min

k action density available from the receding horizon is 

always invariant at any particular cosmic time in a region of space. (At any cosmic time it 

depends on the value of 
min

k in comoving flat space but decreases with cosmic time.) 

So our hypothesis is that at any point in spacetime: Gravity is consistent with the spherically 

symmetric 4 volume action density available from a receding horizon always being equal to 

the spherically symmetric 4 volume 
min

k action density required by gravitons; with both 

remaining invariant in any coordinates.  

We will use the superscript ss  for spherically symmetric invariant 4 volume densities. 

 

     
4

min min

4

min

4

min

Define Invariant Spherically Symmetric 4 Volume Action Density as 

Where  action a 0.48( ) requiredvailable    by  gravitons.

     This equation is true in any coor i

 

d

  

VSS

Qk

VSS

Gk

VSS

Qk
k



 

nates, and at any point in spacetime.

 

   

  (5.3. 22) 

  

5.3.8 If Gravity is due to metric changes then what about exchanged momentum? 

Let us now consider exchanging 
min

k  time polarized gravitons between Planck masses (or in 

fact between any masses) instead of simply considering 
min

k  graviton densities. As we have 

noted many times, by far the vast majority of gravitons in the universe are near
min

k , so we 

will only look at the effect of 
min

k  exchanges. If the 4 volume densities of both spherically 

symmetric
min

k action available, and 
min

k  gravitons are invariant everywhere, each mass is 

interacting with the rest of the universe in a spherically symmetric manner. Quantum field 

theory tells us that coulomb or scalar forces are due to the exchange of virtual photon 3 

momentum. Assuming virtual gravitons are no different, and this exchange is happening in a 

spherically symmetric manner, there can be no nett force in any direction due to these 

exchanges, but only momentum squared terms. If two masses are orbiting each other they 

will also be exchanging higher frequency gravitons, and this would seem to be not in a 

spherically symmetric manner. If there is a nett force this would cause a deviation from their 

geodesic paths which has never been observed. Section 3.3.2 mentions a possible such 

interaction between superpositions with no 3 momentum exchanged, and maybe this is what 

happens with spin 2 interactions, but only time will tell. Einstein always thought gravitational 

forces were fictitious, that gravity was due to metric changes only, and not exchanged 

gravitons. If in time, our hypothesis proves to be true, he may well prove to have been 

correct. 
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5.3.9 An infinitesimal change to General Relativity at cosmic scale 

We started everything here in flat space with no mass concentrations. So, uniform densities 

don’t curve space. We introduced mass concentrations and space has to curve around them so 

as to keep our spherically symmetric 4 volume
min

k  action densities, required and available, 

invariant. If we think of the mass in the universe as a dust of density U
 essentially at rest in 

comoving coordinates we can define a tensor (Background)T . In comoving coordinates 

(Background)T has only one non zero term 00
(Background)

U
T  . In any other coordinates 

this same (Background)T  tensor is transformed by the usual tensor transformations that 

apply in GR. If these coordinates move at peculiar velocity P
  then 

2

00
(Background)

P U
T   

2

00
(Background)

P
T . The same transformation happens in any metric but with 2

M U
   . We 

argue that Eq. (5.3. 22) is consistent with the infinitesimally modified Einstein field equations 

  

                          
4

1 8
(Background)

2

G
G R g R T T

c
    


       

  (5.3. 23) 

This infinitesimal modification is only relevant in the extreme case as T approaches 

(Background)T . Far from mass concentrations (Background)T T  . Space curvature, in 

these remote voids, is in general somewhere between slightly negative and zero; but the 

causally connected universe is always flat on average regardless of the value of .  Equation 

(5.3. 23) is also consistent with Eq. (5.2. 11) min min minGk Gk
K dk  at all cosmic times. If there 

is no inflation, in flat comoving coordinates, at the Big Bang or slightly after, (using 

min OH
k R  ) min

k starts at just under one and is always close to the inverse of the causally 

connected horizon radius. It is also close to the inverse of cosmic time T . It is always at its 

minimum far from mass concentrations, but increases with the slower clock rates in the local 

metric around mass concentrations as in Figure 5.3. 9. 
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min
10k




  
 now 

At any cosmic time T  in any coordinates, and in any metric, 

in the infinitesimal band min
dk , min min minGk Gk

K dk   is always 

true. minGk
K is a constant scalar, but the measurement of min

k  

depends on both local metric clockrates and cosmic time T . 

 

 Figure 5.3. 9 
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5.3.10 Is Inflation really necessary in this proposed scenario? 

 

There are two main reasons, usually given, for why inflation is necessary:  

 

(a) The average flatness of space.  

(b) The almost uniform temperature of the cosmic microwave background from regions that 

were initially out of causal contact.  

 

If we put (Local) (Background)T T  in Eq.(5.3. 23) the right hand side is identically zero, 

and 
1

0
2

G R g R      on average throughout all space. The average curvature of all 

space must be zero and space is compelled to be flat on average.  

In section 5.3.3 we found that space has to expand exponentially as in Eq. (5.3. 18) and 

plotted in Figure 5.3. 4. The actual value of the constant b  in  3 ( )V Exp bt  has to fit 

experimental observations. But if it is some fundamental constant, which does not seem 

unreasonable, it must be the same for all comoving observers. If this is so the physics is 

identical for all such observers, regardless of whether they are in causal contact.  Provided we 

can assume identical starting points everywhere, of say the Planck temperature at cosmic time 

0T  , then apart from quantum fluctuations, the average background temperature should be 

some function of cosmic time T  for all comoving observers, or at least up to the time the 

universe became transparent. The physics controlling this should be identical in each 

comoving frame. Causal contact should not be essential for this. Inflation only guarantees 

that the starting temperature is uniform everywhere when it stops at approximately 0.T   It 

also has to assume identical physics everywhere from 0T   for about the first 375,000 years, 

or until the universe is transparent. This is virtually identical to what we are proposing in the 

scenario in this paper. 

 

6 Further Consequences of Infinite Superpositions 

6.1 Cosmic Wavelength Superposition Cutoffs 

In section 4.2 when we introduced gravity, for the lower limit in our integrals we assumed

min
0k  , and then in section 5 showed that there is a lower limit min

0k   .  It turns out that 

for massive 1N   superpositions the effect of this is negligible in comparison to the high 

frequency cutoff cutoff
k   , which we showed gravity can address in section 4.2. For 

infinitesimal rest mass 2N  superpositions we cannot however ignore the effect of min
0k  .  

 



91 

 

6.1.1 Quantifying the approximate effect of min
0k  on infinite superpositions 

If we look again at section 4.2.1 we can repeat what we did there as follows. Initially to 

illustrate these effects we will consider only 1N   superpositions where we can say that  

 

   

min

min

2

m2 2 2

min

in2

When  &   0 and thus

1 1 1 1
1 1

1 1 1

(for

1
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1
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nkCutoff nk

K c
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nk nk nkCutoff ffK

NK K

K K K
K

K




  

 
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

 


 
 

    

     

    

  (6.1. 1) 

Our earlier infinitesimal 
2

min2

1
nk

nkCutoff

K
K

      and from Eq. (3.1. 11)
2

2 2 2

2
nk C

n s
K k .  

For spin ½ fermions for example 2
/ 2 9n s  . Also 

2 2
1/

Cutoff P
k L  and 

2 2

min
1/

OH
k R so that  

Putting   as the original 2
1/

nk
K cutoff at the Planck

E of Eq. (4.2. 2) and  as due to minnk
K   

                   
2 2 22

2 2 2 2

2

2

min2

9 ( ) ( )

9 9
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2
2
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9
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P

C

OH
L R

  

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 
    







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  (6.1. 2) 

 

 Eq. (6.1. 2) is for spin ½, but the numerical factor 9 only changes slightly for spins 1 & 2.  In 

Planck units
61

10
P OH

L R  , but for electrons say
2 44

6 10
C
  , so the effect is of order 

4 56 26 1
/  /10 10 10  

  which we have been ignoring. We cannot ignore this however in 

the case of infinitesimal rest masses as we will see. 

 

6.2 Infinitesimal Masses and N = 2 Superpositions 

Looking again at angular momentum and rest masses in section 3.2 the key factor in our final 

integrals is in Eq. (6.1. 1). Using Eq.  (3.1. 12) we can rewrite Eq. (6.1. 1) as 

 

                                                 

min

2 2 2

min

1 1 1

1

nk

nk

K cutoff

nk nk nkCutoffK
K  

 
  

 
                                 

 

           (6.2. 1) 

 

With massive 1N   superpositions as above the difference between 
2

min
& 1

nk
  is vanishingly 

small, i.e.
2

min
( 1) 1/

nk
     and as in section 6.1.1 this first term is of much less significance 

than the
2

nkCutoff
  term. Now define an approximate equality between 

2

min
&

k
N  using Eq.  

(3.1. 12) as follows 

 

                                                          
2 2

min min
1

k k
N K   

 
      (6.2. 2) 
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In section 3.2 we derived angular momentum and rest masses for only massive or what we 

called 1N   particles. To get integral angular momentum we had to assume in deriving Eq. 

(3.2. 6) that the minimum value of min
 or 0

nk nk
K K  . For massive 1N   particles such as the 

fermions the error in this assumption (as in section 6.1.1) is 
25

10


  times smaller than , 

which for an electron is already 
45

10 
  due to the high frequency cutoff @

18.31
10 .GeV  

(We allowed for this 
45

10 
 when we included gravity in section 4.2.)  From section 6.1.1 

above we approximated
2 2 2

min
 as 9 /

nk C OH
K R for a spin ½ fermion. So we can express Eq. 

(6.2. 2) in terms of this approximation for fermions with non infinitesimal mass 

                                              
2 2

2

2

min 2 2

77

2

9 9
1 1    as    

9
For example an electron has 10

0
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O

C C

k

OH OH
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R R
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



 
    







  

                   

 

                   (6.2. 3) 

       

 

For the massive particles it appears we can safely say that 1N  . Even if neutrino masses 

were as low as
4

10 eV


 then 
592

min
1 10 .

k
 

   If the mass is too small however Eq. (6.2. 1) 

tells us we cannot get the correct angular momentum unless something else changes. 

Infinitesimal increases above 1 of the order of 
50

10


 or so can be handled perhaps by a 

small change in the actual high frequency cutoff details, but this probably does not allow 

massive particles to be much less than sub micro electron volts. So if massive particles are a 

group with 1N  , then it would not seem unreasonable to imagine there could possibly be 

another group with 
2

min
2 1

k
N K    implying that 

2

min
1.

k
K   Repeating the derivation 

of Eq. (3.2. 6) but with 
2

min
2 1

k
N K    and for clarity and simplicity let cutoffnk

K   .   
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       (6.2. 4) 

 

 

Provided we have doubled the probability of superpositions as in Eq. (2.1. 4) from 

1( ) /Ns dk k  to 2( ) /Ns dk k , the final angular momentum results in Eq’s. (3.2. 6) & 

(6.2. 4) are identical. The same is true for rest mass calculations.  For multiple integer n 

infinite superpositions if 2N   then the expectation value
2

min
1

k
K  .  

We thus conjecture that all 2N   infinite superpositions have
2

min
1

k
K  .  

From Table 4.3. 1 

               2N  infinitesimal rest mass spin 1 superpositions have 3.98n   

               2N  infinitesimal rest mass spin 2 superpositions have 3.33n   

 

Using Eq’s. (3.1. 11) and Eq.(5.2. 10). 
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2

2 2 2 2

min min

2

m

2 2

min

in

15.82
  or  0.355  for Spin 1

2 2

11.09 2
                                

1

1  or  0.300  for Spin 2   
2

OH

C C C

OH

C C

k

n s R
k k

R
k

K   


 









  

 

  (6.2. 5) 

 

Using the value for 0.65   from Eq. (5.3. 13) based on WMAP data which also puts the 

horizon radius at  
9

46 10   light years 
61

2.7 10
OH

R    Planck lengths.   

 

  Spin       n      Compton Wavelength c
      Infinitesimal Rest Mass 

    1       3.98             0.55
OH

R           34
8.3 10 .eV


   

    2       3.33             0.46
OH

R           34
9.8 10 .eV


   

          Table 6.2 1 Infinitesimal rest masses of 2N   photons, gluons & gravitons.  

 

These Compton wavelengths and rest masses are the present values, reducing slowly but 

exponentially with cosmic time T. They are based on WMAP data where 1   and could be 

slightly different if 1  and 2
4V   as in Eq.  (5.3. 14). They also depend on the actual 

value of b in the exponential expansion 3 ( )V Exp bt . These infinitesimal rest masses limit 

the range of virtual photons and gravitons to approximately the horizon. The graviton rest 

masses above are also close to recent proposals for the accelerating expansion of the cosmos 

[2] [3]. 

 

6.2.1 Cutoff behaviours for N = 1 & N = 2 superpositions 

Equation (6.2. 1) can be written for both 1N   & 2N   superpositions using the results of 

sections 4.2 & 6.2 as follows  

                   
min

min

2

min

2

min

2 2

2 2

1 1 1 1
     when 

1 2(1 )

1 1 1 1
 =           when 

1

2

1
1

2

1

nk

nk

nk

nk
n

K cutoff

nk nkCutoffK

K cutoff

nk

nk nkCutoffK k

K
N

N
K

 

 



 
   

  

 
  




  


  

 





 

       

       (6.2. 6) 

 

(We should be using expectation values, but for clarity we simply imply them.) We have 

shown in section 6.2 that 2

min
1/ 1/ 2

k
   when 2N  , but in reality it is Eq. (6.2. 6) that 

must be true. In section 4.2 we showed that for 1N   superpositions the primary coupling of 

gravity to preons infinitesimally increased the interaction probability by   (1to )    where  

 

from Eq. (4.2. 4)      
2 2

0

2

2

0

2 22 2
2

2

()

1

(8 )8 nk cut

G

EMP off

m G

s

m c

K cutoff snc k







 
  


.  

 

In the 1N   case this meant that any deficits due to a non infinite cutoff were exactly 

balanced by the contribution from gravity, but in the 2N   case this infinitesimal correction 
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is out by a factor of two. However Eq. (6.2. 6) tells us that exactness can be maintained in the 

2N  case by an infinitesimal change from 2

mi minn

2
 to 1/1/ 1/  22 1/

kk
   . Thus both 

1N   & 2N  superpositions can cut off at Planck energy as in section 4.2.2.  The low 

frequency cutoff for all superpositions must be at min
/

OH
k R   if they are to affect gravity. 

 

6.2.2 An exponential cutoff at cosmic wavelengths 

We used a square cutoff above for min
k  but an exponential cutoff is most probable. As 

superposition wavefunctions are squared exponentials we will use a similar type cutoff 

finding that it fits quite well (see Figure 5.3. 1). Going over what we did in Eq.(6.2. 4) and  

  

2

2 2

0.61

min i

2 2

1 0m n

Putting    then using   0.25 0.249991
(1 )

 
1 )

(

(

1 )
x

n

x x

x x

k

nk

xdx xdx

x x

Kk e
x

k K

 







  






    

 

  An exponential cutoff of 
2

0.61
(1 )

x
e


 min
@ k is   the same as a square cutoff min

@ k  (6.2. 7) 

  

6.2.3 Virtual particle pairs emerging from the vacuum and space curvature 

For almost a century it has been a puzzle why spacetime is not massively curved by Planck 

scale zero point energy densities. However space appears to be flat on average regardless of 

this massive Planck scale zero point energy density so something must be different and what 

is it?  In section 5.1.1 we conjectured that virtual particles are just single wavenumber k  

superposition members, whereas real particles are full infinite superpositions of all 

wavenumbers k  from min
k  to Planck

k . We assumed this was true in all of section 5.  We are 

going to raise this claim to be the actual difference between virtual and real particles. Only 

full infinite superpositions have real properties that can be measured (such as measured 

mass/energy) rather than implied. Because min
k virtual gravitons are such single members 

they couple to min
k members of full infinite superpositions. On the other hand virtual particles 

out of the vacuum, are mainly short lived high k single value members that will not couple to

min
k , if our claim above is true. The density of min

k virtual pairs from the vacuum is virtually 

zero as it is based on the Lorentz invariant supply of local zero point fields, not from the 

receding horizon (see sections  6.2.4 & 6.2.5 below). But this is not the full story. The virtual 

particles that dress electrons and quarks for example add mass to the real particles. In fact the 

majority of the proton and neutron mass is due to the virtual gluons interacting between 

quarks. If  short lived virtual particles somehow contribute to the mass of full infinite 

superpositions, then these virtual particles indirectly contribute to the min
k virtual graviton 

coupling, which is based on the actual mass of the infinite superposition as in Eq. (3.2. 3). 

The conservation of energy or in reality 4 momentum says that what we call “real matter or 

energy” can last for close to the age of the universe. It will have mass and by definition it can 

be weighed. It can move around, even close to the speed of light, but it is conserved. 
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Gravitons that last this long we have called min
k gravitons and they can only couple to real, or 

long lasting energy/matter that can be weighed in whatever manner. The rotating dark matter 

in galaxies we cannot weigh directly, but it contributes to the theoretical weight of a galaxy.  

We have to allow for this mass when studying galaxy dynamics. The particle beams in 

accelerators have real energy which can be temporarily converted into virtual particles. The 

total energy or 4 momentum is always conserved, but can fluctuate for time 1/T E   . The 

long term average is what counts. In this sense the mass of short lived virtual particles can 

contribute to min
k virtual graviton coupling, just as it does in the virtual particle dressing of 

real charged particles as above.  

 

6.2.4 Redshifted zero point energy from the horizon behaves differently to local 

As we said above local zero point energies are Lorentz invariant. At high frequencies there is 

no shortage locally to build the high frequency components of full infinite superpositions. But 

as we have shown this is not so as we approach cosmic wavelengths. If there were no 

redshifted supply from the horizon there would be only a few modes of the local supply of 

min
1 /

OU
k R  quanta inside the horizon. Because preons are born with zero momentum and 

infinite wavelength they can however absorb a different (but also spherically symmetric 

supply as required to build superpositions) of redshifted min
1 /

OU
k R  quanta from the 

receding horizon as we have discussed. This min
k quanta redshifted supply behaves differently 

to normal Lorentz invariant zero point local fields. It behaves as  

 

                
min min

0.055 "The Quanta required @ Constant"
Qk G

K k of Eq.  (5.3. 12).  

               Where 
min min min

0.48 "The Graviton Constant"
Qk Gk

K K k   of Eq. (5.2. 11).  

 

This redshifted supply is only available to zero spin preons that are born with zero 

momentum, or infinite wavelength, in the rest frame in which infinite superpositions are built. 

 

6.2.5 Revisiting the building of infinite superpositions 

In section 2 we developed equations to determine the probability of each mode of a 

superposition using local zero point fields. In section 5, when we found the cosmic 

wavelength supply inadequate, we switched to a different redshifted supply for long range 

quanta. So how do we justify our use of the local zero point fields to determine mode 

probabilities and behaviours? As we said above there is a plentifull supply of high frequency 

local zero point fields. This local supply is adequate for high densities of superpositions for 

all modes from the Planck energy 1k   high energy mode cutoffs to somewhere around 
20

10k


 or near nuclear wavelengths. The coupling to local zero point fields in this high 

frequency region determines the behaviour of all the standard model particles. There is 
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however a gradual transition to absorbing quanta from the redshifted horizon supply as the 

wavelength increases. Because the redshited supply of min
k  quanta behaves as the invariants 

min min
or 

Qk Gk
K K above and entirely differently to Lorentz invariant local zero point fields, 

spacetime has to warp around mass concentrations and the universe has to expand. 

 

6.2.6 The primary to secondary graviton coupling ratio G
   

In Eq. (4.2. 14) we found 318.3
G

    as the ratio between the primary graviton coupling to a 

bare Planck mass and the normal measured gravitational constant G. Equation (5.1. 7) 

defined graviton coupling between Planck masses G
 . If 1

G
   as we had expected, the ratio 

between primary and secondary graviton coupling (as defined for colour and 

electromagnetism in Eq. (3.3. 2) would be
1

318.3
G G GG

        .  

 

           
1

The primary to secondary graviton coupling ratio 318
G G G

 
     (6.2. 8) 

 

To solve graviton superpositions we can use Eq. (3.3. 16) which is the gravitational 

interaction probability between fermions and we can now put on the RHS the coupling ratio

318
G

   in the same way as we did for Eq.(3.3. 21). (This 
4 4 4 4

* (1 * )
c c c c

c c c c we are going to 

calculate here is for spin 2 & 2N  . It is different to the double combination of  

( 2) (Spin 1) or ( 1) (Spin 2)N N    4 4 4 4
for 4 * (1 * )

b b b b
c c c c  we derived in Eq. (4.4. 1)). 

 

                      
   

2

2 2 4

2

1/2 1 6 6

1

4 4 4

4

6

2

6

4

2 * (1 * )2 4( )* (1 * )
 

c c c ca a a a G
s Ns N c c c

q

c c c c

q

c  


 

          

1 21/2 2
&22   4,  1,  1, 2 s sN N     so   4 4

1

6 6 6 6 4 4
* (1 * ) 2 2 / 3188 * (1 * )

c ca a a a Gc c
c c cc c c cc 


    

                             or  
 6

4

6 6

4 4 4

6

1 1

318
* (  1

8 (1
* )

* * )
c c

a a

c c

a a
c c

c c c c
c c

 
  
 

  

But from Eq. (4.4. 1)
6 6 6 6

 2* (1 * ) /  2 / 50.4053 0.199194
Ca a a a

c c c c     

                          So    
4 4 4

3

4

1 1
3.9 10

4 318 0.19919
* (1

4 2
*

54
)

c c c c
c c c c


   

 
.  

 

Using Eq.(4.4. 3),
4

* 170.95
n n

c c n   for spin 2, 2N   we get the infinitesimal mass 

graviton superposition values in Table 4.3. 1.  

 

6.2.7 Massive Bosons and the Higg’s mechanism 

In the Standard Model the Higg’s mechanism adds mass to zero mass photons but here we 

say it adds mass to infinitesimal mass photons. But not only does it do that, it also converts 

them from from 2N   to 1N  , and also from 3,4,5n   to 4,5,6n  superpositions.  
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7 Angular Momentum and the Kerr Metric  

In the next two sections we revert to simple 3 volume densities for min
k  gravitons. 

In the Schwarzchild metric the increase in volume is the same as the frequency increase as 

1
rr tt

g g   and 4 2
sing g r     is invariant if there is no angular momentum. With angular 

momentum both &g g   change. The volume ratio of g  space, to g  space in 

 

any metric at fixed &r   is 
4 2

( )( ) ( )( )

( )( ) sin

rr rr

rr

g g g g g g g gV

V g g g g r

       

   

 

 

          
 

  
 

 (7.1. 1) 

 

 

The Kerr metric can be written in       
2 2 2

cosg r     

 Boyer-Lindquist coordinates as         2 2 2 2 2

2
( sin ) sinS

r r
g r    


    

                                                            2
sinS

t

r r
g

g




   

                                                            rr

g
g 


       &     1 S

tt

r r
g

g

   

 

Where 
2 2

S
r r r        and    

J

mc
     and   

2
2

S

Gm
r m

c
   is the Schwarzchild radius in  

Planck units where 1G c  . Everything is in units of 
2

length or (length) , except &
rr tt

g g

which are dimensionless.  Because we want volume ratios as in Eq. (7.1. 1) we can write the 

above version of the Kerr metric in a dimensionless form, leaving the length squared, and 

length terms 
2 2 2 2 2 2 2 2
, sin & sin  in d , sin d & sin  etcr r r r r r d        outside the metric 

tensor. This effectively gives us the denominator 4 2
sinr   we want in Eq. (7.1. 1) as we will 

see. Also, the angular momentum parameter   is a length dimension.  

 

Writing the above in dimensionless form as follows, using      for the line element 2
ds :                               

 A Dimensionless form of the Kerr Metric where     
2 2

2

2 2
1 sin

A
g

r g r




 
                          

 
2

2
1 A

r


      and  

2m
A

r
  but we will add an     

2

2

2
1 cosg

r



                                                                                                   

also dimensionless 
2

2

m

r
later. See section 8                rr

g
g 


                                            

(We assume silent 2
1G c   Planck value                sin

t

A
g

g r





  

 constants in 
2

 a dimensionless term)
m

A
r

            1
tt

A
g

g

   

 

 

 

  

 (7.1. 2) 
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The space surrounding a rotating mass corotates with it. If we move in this corotating 

reference frame there is a new metric time component, which after some rearranging of plus  

and minus signs just for convenience, we can write as: 

2

t

tt tt

g
g g

g





   .            

Thus using Eq. (7.1. 2)       

2 2
2

2 2 2

2 2
2

2 2

sin

(1 )

1 sin

t

tt tt

A

g g rA
g g

g g A

r g r

 

 






 


     
 
  

 

  

                                              

2 2
2

2

2 2
2

2 2
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A

g rA

g A
g

r g r












 


  
 
  

 

 

                          

2 2 2 2 2 2 2
2 2 2

2 2 2 2 2 2 2

2 2
2

2 2

(1 sin ) (1 ) sin sin

(1 sin )

A A A
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r g r r g r g r

A
g

r g r
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  
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    
  

 
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     
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 

  

                                               

2 2 2
2

2 2 2
(1 sin ) (1 )A g

r r r

g g



 

  
    
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2 2
2

2 2
(1 cos ) (1 )A g

r r

g g



 

 
   

                                                                           

2 2

2 2
(1 ) (1 )

      
tt

Ag g g A
r rg g

g g g g

  



   

 
    


     

       

      (7.1. 3) 

 

We have explicitly gone through this to show that if the parameter 2 /A m r is 

dimensionless, there is potentially freedom to change it without changing this equation. 

(See section 8.1.6 as this is similar to what happens in the Kerr-Newman metric, where 

instead of a dimensionless 2 2
/m r  term, a dimensionless 2 2

/
Q

r r  or equivalently a 

dimensionless 
2 2

/Q r is included in term A . See for example Table 8.1. 2 &Table 8.1. 3. 

We will work in corotating frames. Space is swirling around the black hole effectively at rest 

in these frames, simplifying our calculations and equations. (Section 9 puts this into a four 

vector form, invariant in all frames.) If a small mass, at rest at infinity in the same rest frame 

as the rotating black hole, falls inwards, it will have the same circumferential velocity as the 

corotating rest frames at all radii. It will be falling radially through these corotating frames. 

As in section 5.2.2 we call this radial velocity M
  where as in the non-rotating case        
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2

1

1
M

M





   but now 

2

11

1
M t

M

t
g







 the new inverse rate of clocks.  

                      In  corotating frames        

2

2

1
t

M

M

t
g

g

g










 




 

    (7.1. 4) 

 

 

Frequencies measured in corotating frames increase as M
 . Similarly using Eq’s. (7.1. 1) & 

(7.1. 4) we can get the (three) volume element ratio in this corotating refence frame. 

 

 The 3 volume element ratio ( )
rr M

gg
V g g g g g g g


          

 
 

   (7.1. 5) 

 

With angular momentum we no longer have the same increase in frequency as volume as in 

the Schwarzchild case. With no angular momentum we found that the probability density of 

time polarized 
min

k  gravitons Eq. (5.2. 14) min min

2

min

2

M MGk Gk
K dk  

i in

2

m n m

2
GkM

m
K dk

r
  . 

(Again temporarily adding 2

M
 ). With rotation we will find a circularly polarized 2

cos   type 

distribution of gravitons around the axis. These add to the time polarized dimensionless 

number 
2m

r
 to get an as yet unknown number we simply label as X where 

2
X

m

r
   

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

Let us rewrite Eq.(5.2. 14) as     min min mi

2

nk MG Gk
XK dk   with rotation 

   (7.1. 6) 

 

Where the factor
2

M
   is for clarity only.  Repeating the derivation of Eq. (5.2. 15)  

          min min min

2

min min m min

2

in
(Undiluted Total) (1 )

Gk Gk Gk GkM M
XK dk K dk K dX k      

As in the derivation of Eq. (5.2. 16) but in a slightly different order, we divide this undiluted 

total by the new volume M
V g in Eq. (7.1. 5) to get the new 

min
k  graviton density

min
 

Gk
  . 

If our conjectures are correct 
m m minin niGkGk

K dk  is always true, and as our measurement of 

min
k increases to

min minM
k k  in the new metric,

min
 

Gk
 

min minGk M
K dk ; rewriting as follows 

 

    min min min min

min min m

2 2

mi inn min

(1 ) (1
 

)
Gk Gk

Gk Gk k

M M

G M

M

K dk K dk
K dk K

V g

X X
dk



 
 



 
                

                                          
min min mi i

2

m

2

n n
(1 )

M MGk Gk
K dk g K dkX     

 

                                          2 2
1 

M M
X g    
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2

2

2

2 2

1 1
(1 cos ) 

M M

X g
r









      

                                         

2

2

2
(1 cos )

r g
X







    using Eq. (7.1. 4) 

                                         

2

2
2

2

2 22
2

2 2

1

1 cos

1 sin

A

A
X r

r

r g r





 



 

  

 

 using Eq’s.(7.1. 2) 

We can write this as        

2 2 2
2

2 2 22

2

2 22
2

2 2

1 sin 1

cos

1 sin

A
A

r g r r

Ar

r g r

X




  





 


   
       

  
 

 

 

                                       

2 2

22

2

2 22
2

2 2

sin
1

cos

1 sin

A
r g

r

X
Ar

r g





 




 


 
 

 
 

 

 

                                      

2 2

22

2

2

sin
1

cosX

A
r g

r g





 




 
 

 
    using Eq’s.(7.1. 2) 

 

                                     

2 2 2

2

2 2

sin
cos             

A
A

r g r g g
X

  

  
    

 

Section 7.1.3 discusses why there is no separate term in 

2 2

2

sin
A

r g g 

 
 so we will write this as                 

 

                                     

2 2 2

2

2 2

sin
cos             

Ag
A

r g g r g g
X 

   

  
     

                                  

2
2

2 2 2
2

2

2 2

(1 cos )
sin

cos     

A
r A

r g
X

g r g g   




  




    

                              Which we finally write as   
2

2

2
2

2

(1

os

)

c

A
rX

g gr  








  

 

 (7.1. 7) 

Putting 
2m

A
r

 ,  the extra min
k  virtual gravitons 2

M
X  (due to a mass m  rotating with 

angular parameter   that has dimensions of length) are the following two polarization 

groups (The background min
k  virtual gravitons have been normalized to one when 1

M
  )   
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Circularly polarized spin2: 
2

2

2
cos ( 2)m

r




 
   

 
 & Time polarized spin 2: 

2

2

2
(1 )

m

r r

g g 

 
 

 
 
  

 

We can rewrite Eq. (5.2. 16) using 2 2
1 

M M
X g         or      

2

2

2 2

 
cos

1
1

M

X
r

g





      

2 2

2

2

2

2

2 2

2

 
cos cos1

(1
1

)

M

A
r

r g g r 

 
 



 
 
 
 




 

 

 



 or 
2

2

2
(

 
)

1
1

1

M

A
r

g g 

 
  

  
 
  

 where 

2

2
2

(1 )

M

A
r

g g 





 
 
 
 
 





 

We have a 4 vector equation again as circular polarization cancels on both sides. The main 

thing to notice here is that the circularly polarized min
k gravitons are independent of the 

central mass, suggesting they are due to the effect of the rotation of space, or frame dragging, 

on the min
k graviton background. We will discuss this in section 7.1.2. The extra min

k

gravitons due to the central mass have a 2 2
(1 / ) / ( )r g g   factor, distorting them from 

spherical symmetry. Figure 7.1. 1 & Figure 7.1. 2 compare the above with spinning charged 

spheres in electromagnetism. The electrostatic energy density surrounding a charged sphere 

however, reduces with radius as 4
r
 , and magnetic energy as 6

r
 , or two more powers of 

radius. With gravity however we have been looking at the probability density of minimum 

wavenumber min
k  gravitons surrounding a mass. With no angular momentum there are only 

time polarized min
k gravitons, and their extra probability density drops as 1

r
 , as so far we 

have only focussed on those min
k gravitons (the vast majority), that interact with the rest of 

the mass in the universe. If a charged sphere rotates, there is a radial magnetic field of 

circularly polarized 1m    photons varying in intensity as 2
cos   and a transverse magnetic 

field (of transversely polarized 1m   photons) varying as 2
sin   as in Figure 7.1. 1  

 

 

         

 

 

 

                  

 

 

 

 

  Figure 7.1. 1 Spinning electrically charged sphere. At same radius @( 0) 2 @( / 2)
R T

B B     . 

Spin Axis R
B Circularly polarized radial 1m    photon magnetic field 

energy density varies as 2 6
cos / r  

T
B Transversely polarized 1m    photon magnetic field 

energy density varies as 2 6
sin / r  

 


  

Spherically symmetric time polarized photon electrostatic 

field energy density outside sphere varies as 4
1/ r . 
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Figure 7.1. 2 Spinning mass m  with angular momentum length parameter   as viewed in a 

corotating frame. There are circularly polarized min
( 2)m k   gravitons due to the effect of 

frame dragging on the background time polarized min
k gravitons. There are no transversely 

polarized min
( 2)m k   gravitons due to a rotating mass m as seen in a corotating frame. 

Radially polarized extra min
k  gravitons due to mass m are distorted from spherical symmetry 

as 2 2
(1 / ) / ( )r g g  . For Sw

r r  we can ignore the effects of ,g g  .  as they rapidly 

tend to one, with the metric written in dimensionless form as in Equ’s.(7.1. 2) 

 

7.1.1 Stress tensor sources for spin 2 gravitons & 4 current sources for spin 1 

Spin 1 particles behave like a 4 vector as they come from a 4 current source, transforming 

with velocity as in the Special Relativity transformations of Minkowski spacetime. Spin 2 

gravitons in contrast come from mass/energy density sources. There are two factors in their 

transformations with velocity. One from the mass increase per source particle, and the second 

from the increase in particles per unit length due to length contraction. Thus Spin 2 particles 

transform as a 4x4 rank 2 tensor, which Einstein connected with spacetime curvature.  

The rules of quantum mechanics tell us that spherically symmetric spin 2 particles should be 

equal 1 / 5  superpositions of 2, 1,0, 1, 2m       states. But the shape of gravitational 

waves behaves like transversely polarized 2m    particles, suggesting the min
k  gravitons 

surrounding mass concentrations may only consist of time polarized, plus 2m    circularly 

polarized, spin 2 particles. In Eq. (3.2. 9) we showed that a spherically symmetric massive (or 

infinitesimal mass) spin one state is built from equal 1 / 3  superpositions of 2,0, 2m     

states, and if this is true then we will conjecture that the same superposition of 2,0, 2m     

Time polarized min
k graviton extra probability density  

outside sphere due to mass m.        

2

2
(1 )

2m r

r g g 

 
 

 
 
  

 

Spin Axis 

 Circularly polarized 2m    min
k graviton probability 

 density due to rotating mass m.    
2

2

2
cos

r




 
 
 

 

There are no transversely polarized 2m    min
k gravitons  

 

due to rotating mass m as observed in corotating frames.         

 


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states must be able to build a spherically symmetric spin 2 state. When we looked at non 

rotating spherical masses it appeared that, even close to black holes, the spherical symmetry 

of the Schwarzchild metric suggested similarly spherically symmetric, time polarized, extra 

min
k gravitons down to the horizon; with space expanding only radially.  Thus before we 

considered angular momentum we could treat all min
k  gravitons as only time polarized. A 

stress tensor source with no angular momentum has spherically symmetric spacetime 

curvature with time polarized min
k gravitons. But angular momentum in the source produces 

cylindrically symmetric spacetime curvature. We still have radially polarized min
k  gravitons 

(in co-rotating coordinates) due to the central mass, but distorted from spherical symmetry as 
2 2

(1 / ) / ( )r g g   which only affects the close in region, disappearing as 0  . But 

there are also circularly polarized 2m   min
k gravitons only related to angular momentum. 

These circularly polarized min
k gravitons do not have the 2 /m r  factor and must be very 

different. As we will discuss below it appears that they are generated from the background 

time polarized min
k gravitons by the swirling velocity of corotating space.  

 

7.1.2 Circularly polarized gravitons from corotating space 

The circularly polarized gravitons do not have a 2 /m r factor.  The Kerr metric is an exact 

solution to Einstein’s field equations, which we conjecture (in an infinitesimally modified 

form as in Eq. (5.3. 23) are consistent with the min
k  Graviton constant being invariant at all 

points in spacetime, or that Eq. (5.2. 11) is always true. If this is so then Eq. (7.1. 7) should be 

true also. We can perhaps just accept that it must be true, but at the same time we can look at 

whether it makes sense? 

The angular momentum parameter has dimensions of length, and is defined as 
J

mc
  . 

Because angular momentum is the cross product of momentum by radius or m v r , we can 

think of this length parameter as a vector of length  , pointing along the axis of spin, with 

components cos   at any polar angle   to the spin axis. Space corotates around spinning 

masses with angular velocity 
t

g

g





   which in the plane of the equator simplifies to  

                                
3 2 2 3

S S

S

r c r c

r r r r

 

 
  

 
 when &

S
r r  .  

                          At large radii the corotating velocity   
2

S
r c

V
r


  r  

        (7.1. 8) 

Because &
S

r   have dimensions of length this equation has dimensions of velocity, and if 

we divide it by c  it is dimensionless. We will call it Coratating C
    
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         At large radii   
2

S

Coratating C

rV r

c c r


 


      a dimensionless number. 

   (7.1. 9) 

If we now think of 
J

mc
   as 

m

m c c


 
 

v r v r
 we can consider a similar vector along the 

spin axis consisting of the cross product of the corotating velocity of space 
2

S
rV

c r


  by the 

radius .r  The length along the spin axis of this cross product vector 
c

V r
 is simply S

r

r


.   

                                

              At the equator:       Length of vector 
c

V r
 along the 

                                           spin axis is S
r

r


  for S

r r   

  (7.1. 10) 

We need this vector length to be a dimensionless number representing the amplitude that a 

background time polarized min
k graviton generates a circularly polarized min

k graviton around 

the spin axis. If we divide Eq. (7.1. 10) by the Schwarzchild radius S
r , all rotating black holes 

with the same percentage of maximum spin look identical, and we get a dimensionless  

magnitude as required 

             Magnitude of normalized dimensionless vector S

S S

r

r c r r r

 
 

V r
 

 (7.1. 11) 

 

The whirling velocity of space is a maximum out from the equator, but circularly polarized 

gravitons generated in this region have to be distributed on this shell around the spin axis as 

the square of the component of angular momentum. We thus conjecture that the probability 

of background time polarized min
k gravitons, on a corotating thin spherical shell at large 

radius, generating circularly polarized min
k gravitons around the spin axis on the same shell is  

       Probability of 
2 2

min

2

min

Extra circularly polarized 2 gravitons cos

 Background time polarized  gravitons

m k

k r

   
   

  

 (7.1. 12)  

There is a background density of time polarized min
k gravitons on each corotating spherical 

shell. The swirling velocity of these min
k gravitons generates extra circularly polarized min

k

gravitons around the spin axis with a 2
cos   distribution around the spin axis on the same 

shell, in agreement with Figure 7.1. 2. For simple explanatory purposes, we approximated at 

large radii only.  At small radii we must use 
3

t S
g r c

g r g g



  


   .  On the equator 1g  , the 

co-rotation velocity V g r .  The circumferential volume generating these circularly 

polarized gravitons also expands as g . Rederiving Eq’s. (7.1. 9) and those following, the 
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effective angular momentum term becomes g g    r r
2

3

S S
r c r c

r g
r g r





  
   
  

 just 

as before; our derivation applies down to the equatorial horizon. This circular polarization 

appears to be the result of the swirling or corotating velocity of space as it has no mass term, 

only angular momentum terms. 

 

7.1.3  Why there are no transverse polarized gravitons in co-rotating coordinates? 

In Section 5.1 we showed that the majority of min
k gravitons around any non rotating mass m 

is due to the interaction between that mass and the rest of the mass in the universe

min Universe Universe
( * * )

Gk m m
       ; and these were all time polarized min

k gravitons. Let 

us imagine that a rotating mass emits transversely polarized min
k gravitons, there will only be 

a small number unless there are also transversely polarized min
k gravitons from the rest of the 

universe for their amplitudes to interact with. But from what we have just done above there 

appears to be only circularly polarized min
k gravitons due to the corotation of space. Also if a 

rotating mass emits its own circularly polarized min
k gravitons, these would interact with the 

circularly polarized min
k gravitons due to the corotation of space. It thus appears that, when 

observed in corotating coordinates, a rotating mass does not itself emit either tranverse or 

circularly polarized min
k gravitons. This perhaps makes sense, as in corotating frames, we are 

effectively at rest above the horizon which is rotating in sync with us. 

 

7.1.4 Does our time polarized min
k  value in co-rotating coordinates make sense? 

The inner horizon radius R  is defined when 
2 2

2 2

2
1 1 0

m
A

r r r

 
         where we 

initially define the dimensionless number 
2m

A
r

  . Using 
2m

A
r

  the inner horizon is 

where 2 2
2 0r mr    . So horizon radius 2 2

2R r m m m      when 0  , and at 

maximum spin r R m   when m  . But we will, for generality, revert to the 

dimensionless A  and look at what happens near the horizon for various spins.  

  

2

2

2 2

2 2

Let   be the value of    at the horizon where 1 0 is always true

                     So       1        and        1

H H

H H

A A A
R

A A
R R



 

  

   

   

   

   (7.1. 13) 

 

2 2 2 2

2

2 2 2

sin
At the horizon (1 cos )(1 )

H
g g A

R R R g
 



   
   

2 2

2

sin
( )

H H
g A A

R g




 
   

                                   
2 2

2

sin
(1 )

H
g A

R g




 
        

2

2
( sin )

H
A g

R



   
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2 2 2

2 2 2

2 2 2
At the horizon  (1 cos sin ) (1 )

H H H
g g A A A

R R R
 

  
        

    and independant of angle  near the horizon only.  This is true regardless of 

    spin from zero to maximum as the radius shrinks.  

 

 (7.1. 14) 

 

              
2 2

Near the horozon the black hole surface area is   4 4
H

R g g R A        (7.1. 15) 

 

We have shown in co-rotating frames  the extra time polarized min
k graviton density due to a 

central mass is 

2

2

min min min

1

Gk Gk

rA K dk
g g 







     where 
2m

A
r

  so far, and  dimensionless. 

Using Eq’s. (7.1. 13) & (7.1. 14) above, near the horizon in a corotating frame, this becomes  

 

       Extra time polarized min
k graviton density near horizon for all Black holes  

                         

2

2
2

min min min min min min min2

1
H

Gk H Gk Gk Gk

H

ARA K dk K dk K dk
g g A
 







        

 

 (7.1. 16) 

 

Ignoring the factor min minGk
K dk the extra radially polarized min

k graviton probability density is 

always one in Planck units regardless of spin and is spherically symmetric, but only near the 

horizon where the background density
mi

2 2

n i

2

m n
0/  as 1&

k M MG M
K dk      , providing it 

is observed (somehow) in a corotating reference frame. It can also be shown that near the  

horizon of a black hole 
2

2

2 4
M

R

s
   and 

2
M

R

s
   is always true regardless of the degree of  

spin, and  the value of the dimensionless number H
A , where R  is the horizon radius  and s  

the proper distance from it, providing it is all measured in co-rotating coordinates. The region 

well above the horizon is not spherically symmetric until several Schwarzschild radii away 

where spherical symmetry is gradually retained as in the non-rotating case. Also near the 

horizon this density due to a central mass is so great that we can effectively ignore the 

background value, but the rotation of space generates circularly polarized min
k  gravitons, of 

probability density 
2

2

2
cos

r


  from this background. The extra radially, plus circularly, 

polarized min
k graviton probability density near the horizon ignoring the factor min minGk

K dk  is 

            

2 2

2 2

2 2
Time polarized  1  +  Circularly polarized  cos  (1 cos )

 as in our original derivation, but ignoring the background, which 

is infinitesimal near the horizon.

R R

g

 
  

  

 

 (7.1. 17) 
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As the Kerr metric is an exact solution for rotating black holes we can say that if the extra 

min
k gravitons due to a rotating mass are consistent with X  as in Eq. (7.1. 7) then it is also 

consistent with keeping the Graviton constant minGk
K  as in Eq. (5.2. 11) invariant in the 

spacetime surrounding it. We come back to this, and potential changes to the dimensionless 

term 2 /A m r  below. When we looked at non rotating black holes in section 5.2 we used 

simple first principles to show that the warping of spacetime around them is consistent with 

an invariant Graviton constant minGk
K . With rotating black holes we turned the argument 

around and assumed this invariance to derive the extra probability densities of time, and 

circular polarized min
k gravitons, before the density dilution from the expansion of space 

around the rotating mass. Equations (7.1. 16) & (7.1. 17) can perhaps increase our confidence 

that our hypothesis is possibly correct. If it is correct on the horizon, and also far from a 

rotating black hole, we will conjecture that it is also correct in all regions between, even if it 

might not initially appear to be so. It is important to remember that the Kerr metric is an exact 

solution for rotating black holes, not for rotating masses in general. We have only considered 

here the exact solution. We can thus perhaps summarize this section as follows: 

Spherically symmetric spacetime curvature generates only time polarized min
k gravitons. 

Cylindrically symmetric spacetime curvature, due to angular momentum, generates time 

polarized min
k gravitons and circularly polarized 2m    min

k gravitons in corotating coordinates.  

We have not yet included the relatively small number of min
k gravitons emitted by the mass 

itself ( * )
m m

  , which mainly has significant effect close to black holes. 

 

8 Messing up what appeared to be promising, or maybe not? 

8.1.1 The kmin virtual gravitons emitted by the mass interacting with itself 

In section 5 we started out by finding the average min
k graviton probability density in a 

uniform universe. We then placed a mass concentration in it, and calculated the extra 

probability density of min
k gravitons (before the dilution due to local space expansion) due to 

the amplitude of this mass multiplied by the amplitude of the rest of the mass in the universe. 

This ended up being proportional to 2 /m r  in Planck units. (In this section we also use 

simple 3 volume min
k graviton probability densities, with no need for 4 volume superscripts.) 

 

                min Universe Universe
( * ) ( * ) 2 /

Gk m m
m r         as in Eq.(5.2. 6) 

 

And this is true in weak field metrics, except as we start approaching the Schwarzchild radius 

because of the extra min
k gravitons from the mass interacting with itself: *

m m
  .  
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           Using Eq.(5.1. 5) and coupling probability: 
2 2

min0.61 /
(1 )

k k
e



22

G
dk

m
k

 
 
 

 

  

2 2 2 2
min min0.61 / 0.6

2 2 2

2

2 2 2

1 /2 2
* (1 ) (1 )

4

k r k r

m

k k

m

G

G

k kdk k e m k e dk
m

k r r k
e e


 

  

 

 

    
    

   
 

  

                      Also using Eq. (5.1. 4)
2 2

min min
11.09 3.477k k k k      when min

k k  

                             

min

min

2(3.477 )2

min min

2 2

min

0.61

6.952

min min2 2

3.477
*

1.588
             when  

(1 )

k r

m m

k

G

G

r

k e dkm

r k

m e
dk

e

k k
r

 
















 



  

 

The radial exponential decay term  mi n6.95
1

k r
e


   as we are only interested in radii r  that 

are small in relation to the observable radius of the Universe 
1

minOU
R k


 , just as in the 

assumptions we made in section 5.2.1.  Thus in these regions we can approximate this 

equation with good accuracy as                           

                                                   

2

min2 2

1.588
*

Gm m

m
dk

r
 


      

              

2

min min2
 due to self emission * 0.161

m GGk m

m
dk

r
       

                                               

2

min min2
1.4 0.115  when  

G

m
dk k k

r
                                                                     

              minGk
 due to *

m m
 

2

min min2
1.4

Gk

m
K dk

r
  using Eq. (5.2. 11). 

    (8.1. 1) 

  

8.1.2 What does this extra term mean for non rotating black holes? 

When deriving Eq. (5.2. 14) we found (about two equations previous) that due to interactions 

with the rest of the Universe  min min min min

2
 0.115 2

Gk GG k

m m
dk K dk

r r
      

     

2

min min min2
Thus  total 2 1.4

Gk Gk

m m
K dk

r r


 
   

 
 in Planck units.   

    (8.1. 2) 

 

Staying on our current path appears to contradict General Relativity, but temporarily ignoring 

this, let us repeat section 5.2.2 which modifies a non rotating black hole metric to     
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2

2 20

2

2

2

0

2

2
1

1 2 / 1.4 /

2
                                               

2 1
1 1.4

 1.4            

;   

 

M

rr

M

m r m r

m m
g

r r g

m m

r r





     


 

 
                                                    

     

   (8.1. 3) 

 

Where M
  is the velocity reached by a small test mass falling in from infinity in the same 

rest frame.  Applying the same proceedures as in section 5.2.2 we can use this metric above 

to show that min min minGk Gk
K dk   is still true and we will discuss how this relates with General 

Relativity in section 8.1.6. The modified non rotating horizon radius occurs when 
2 2

2 1.4 0r mr m    or the:       

               

                           Modified non rotating horizon radius 2.55r m      (8.1. 4)  

                           or   27.5% larger than the Schwarzchild value. 

 

8.1.3 What does it mean for rotating black holes? 

In section 7 when we looked at the Kerr Metric we used a dimensionless form of the metric in 

Equ’s. (7.1. 2). We also used a dimensionless parameter A where we initially put 2 /A m r  

We also showed that we could change A  without changing /
tt

g g
    the time component 

in the corotating frame, provided there is a modified 
2

2
1 A

r


    . So again temporarily 

ignoring potential conflicts with General Relativity let us change 
2m

A
r

  to 

2

2

2
1.4

m m
A

r r
   and look at the consequences.  Firstly from Equ’s (8.1. 3) we can see that 

2

M
A   where M

 is the radial inward velocity, in a corotating rest frame, of a small test mass  

falling from infinity (in the rest frame of the rotating black hole centre).  The inner event 

horizon is the radius where rr
g    so using Equ’s.(7.1. 2 ) let rr

g
g   


  or  put 

                                                  

2

2

2 2

2 2

2 2 2

1 0

2
  1 1.4 0

or  2 1.4 0

A
r

m m

r r r

r mr m







    

    

   

 

                                                  
2 2 2

2 4 5.6 4

2

m m m
r

  
  

Event Horizon radius                
2 2

2 9.6 4

2

m m
r

 
  
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When 0    
2

2 9.6 2 3.1
2.55

2 2

m m m m
r m

 
    as in the non rotating case. 

Maximum spin is when            2 2
4 9.6m     or    max

1.55m   

At this maximum spin               r m  as in the usual Kerr Metric. 

    

   (8.1. 5) 

 

The outer horizon occurs when  1 0
tt

A
g

g

    or 0g A    and using Equ’s. (7.1. 2) 

                               
2 2 2

2 2

2 2 2

2
1 cos 1 cos 1.4 0

m m
A

r r r r

 
         

                                               2 2 2 2
2 1.4 cos 0r mr m       

 

                                              
2 2 2 2

2 4 5.6 4 cos

2

m m m
r

   
   

                                              
2 2 2

2 9.6 4 cos

2

m m
r

  
                    

                  

2 2

2

2 9.6 4
Ergosphere radius   @ 0 &

2

2 9.6
                               2.55  @

2 2

m m
r

m m
m


 




 
 


  

 

 

   (8.1. 6) 

 

Figure 8.1. 1 illustrates these changes from the Kerr Metric. The main effect from changing 

A  is to allow an increase in maximum spin from m   to 1.55m  , and 27.5%  increase 

in the maximum ergosphere radius from 2  to 2.55mr m . It appears to contradict General 

Relativity whch we discuss in sections 0 & 8.1.6, but provided the extra densities of time 

polarized and 2m    circular gravitons are as in Eq.(7.1. 7) with
2

2

2
1.4

m m
A

r r
   then 

min min minGk Gk
K dk   is still true in rotating space outside black holes. 

 

 

 

 

 

 

 

 

 

Figure 8.1. 1 Modified Kerr Metric with the dimensionless parameter A changed from  

2m
A

r
  

2

2

2
1.4

m m
A

r r
   . It initially appears to clash with GR near the horizon.  

 

 

Event Horizon r m  @ maximum spin is same as Kerr 

Metric, but maximum spin has increased by 55% . 

Ergosphere maximum radius 2.55r m  is 

the same as a modified non-spinning black 

hole. 
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Figure 8.1. 2 Spinning black hole mass m  with angular momentum length parameter  , but 

with the dimensionless parameter A changed from  
2m

A
r

  

2

2

2
1.4

m m
A

r r
   . The 

determinant of the metric is independent of A. The denominator terms &g g  , in 

dimensionless form as in Equ’s. (7.1. 2) rapidly tend to one for radii Sw
r r ,  and can then 

be ignored. It shows the probability densities of time polarized, and circularly polarized 

2m    min
k  gravitons as in Eq. (7.1. 7) in this modified metric which keeps the min

k  graviton  

constant minGk
K invariant outside the black hole. This is as observed in corotating coordinates. 

8.1.4 Determinant of the metric and the min
k  graviton constant minGk

K   

Working in dimensionless form as in Equ’s. (7.1. 2) using Eq. (7.1. 3) tt
g

g


   and the steps 

used in its derivation; the determinant of the metric is 

         2
( )

tt t rr tt rr
g g g g g g g g g g     

    
2g

g g g
g


  




 



2

2 2

2
(1 cos )

r


   

As 4 volumes are invariant in relativity and min min minGk Gk
K dk  is true in corotating frames 

              If 
2

2 2 2

2
(1 cos )g g

r
 


    then min min minGk Gk

K dk  is true in  

              all frames, and is independent of the dimensionless parameter .A   

    

   (8.1. 7) 

Despite what initially appears to be a conflict with General Relativity (which we discuss 

below), if the metric determinant Eq. 8.1. 7) is 
2

g  then the min
k graviton probability density 

is always min min minGk Gk
K dk  in all frames outside the black hole, and this is also true if there 

is no rotation, regardless of the value of the dimensionless parameter .A  (See section 9). 

Time polarized min
k graviton extra probability density outside 

sphere due to mass m  

2 2

2 2

2
1.4 1

m m

r r r

g g 

   
     

     

Spin Axis 

      Circularly polarized 2m    min
k graviton probability  

      density due to frame dragging 
2

2

2
cos

r




 
 
 

 

 
There are no transversely polarized 2m   min

k gravitons due  

to a rotating mass m from frame dragging; when observed in 

corotating coordinates.       

 


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8.1.5 The Reissner-Nordstrom Metric and 2 2
/m r  terms 

Reissner [26] [27] solved the metric surrounding an electrically charged non-rotating mass 

not long after Schwarzchild had solved the metric around a static mass. He added the 

electromagnetic stress tensor surrounding a charge to the usual Einstein Energy-momentum 

tensor, in the region where the mass density term had previously been zero as in the 

Schwarzchild case. As before we will put 1G c   so we can work in Planck masses. The 

Schwarzchild radius 
2

2 /
S

r Gm c  has length dimension and thus 2
2 /Gm rc  becomes 2 /m r , 

and both 2 /m r  and 2 2
/m r  are effectively dimensionless as, in these units, mass effectively 

has a length dimension.   

    Reissner similarly used the characteristic length Q
r  where 

2

2

4

0
4

Q

Q G
r

c
   

    Working in length units of charge with the Coulomb force constant 
0

1
1

4
   

    If 1G c   & these units of charge 

2 2

2 2

Q
r Q

r r
 are both dimensionless numbers. 

 

 

    

   (8.1. 8) 

 

Table 8.1. 1 Both parameters, mass m  and charge Q , effectively have dimensions of length. 

    Metric   Schwarzchild      Modified Schwarzchild   Reissner-Nordstrom 

  
1

00 rr
g g


         

2
1

m

r
            

2

2

2
1 1.4

m m

r r
           

2

2

2
1

m Q

r r
   

Using our modified Schwarzchild metric from Eq (8.1. 3) we can see the similarities to the 

Reissner-Nordstrom metric for a charged mass, providing we measure charge parameter Q  in 

a similar manner to measuring mass in Planck units. The signs are reversed however.  

We can crudely think of this another way as follows: In the units we have been working in, 

the electrostatic field energy outside any radius r is 
2

/ 2Q r . This mass/energy must be 

subtracted from the original central charged mass as work is done bringing these charged 

particles together to establish the field energy.  

So we can very crudely say the original central mass m  becomes 
2

2

Q
m m

r
    at radius r  .  

                  Thus 
2

2

2 2m m Q

r r r


   and the new

2

00 2

2 2
1 1

m m Q
g

r r r


     .  

 

It is very tempting from this, to think of our modified Schwarzchild metric, as somehow 

including the negative gravitational field energy; which in Planck units is 2
/ 2m r outside 

radius r . Using the same logic as the electrostatic case, but reversing signs, as gravitational 

field energy is negative, the original central mass m  becomes 
2

2

m
m m

r
    at radius r . 

        Thus      
2

2

2 2m m m

r r r


            and the new        

2

00 2

2 2
1 1

m m m
g

r r r


     .  
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Of course our coefficient of 1.4 for 2 2
/m r  does not fit this scenario, but our analysis is full of 

approximations and we could have it wrong. Roger Penrose in Chapter 19 of his “Road to 

Reality” gives a very good discussion on the concerns of many eminent physicists early last 

century when General Relativity was first published. They worried that gravitational energy 

was not explicitly included in the stress tensor. But Einstein could not do this and maintain 

covariance. In the century since, many eminent physicists have tried unsuccessfully to 

include gravitational energy in a covariant manner. So we must conclude that it is probably 

not related to gravitational energy; and as we have shown in this section, it is really due to the 

small number of min
k  gravitons (except close in) emitted by the mass itself.  

The Maxwell stress tensor tells us in the the electrostatic case, that if the field is in the z  

direction, there is a tension or negative pressure 
2

/ 2
Z

P E   along the z  axis and transverse 

positive pressures 
2

/ 2
X Y

P P E    such that 
2

/ 2
X Y Z

P P P E    and the mass/energy 

density 
2

/ 2E   if they are all in appropriate units. The stress tensor contracts to 

0
X Y Z

P P P     and this is a property of massless particles. Thus the presence of an 

electromagnetic field does not alter field equation covariance. So if we simply reverse all 

these signs with a negative mass energy density of 
2

1.4 / 2m   with transverse tensions 
2

1.4 / 2
X Y

P P m    and in the field direction positive pressure 
2

1.4 / 2
Z

P m  such that the 

stress tensor contracts again contracts to 0
X Y Z

P P P     . We can thus include a negative 

energy massless particle in the stress tensor in the same way as in the positive energy 

electrostatic case, and similarly maintain covariance. 

8.1.6 The Kerr-Newman Metric and 2 2
/m r  terms 

In 1965 Newman [28] [29]  solved the charged version of the axisymmetric rotating black 

hole solved earlier by Kerr [30] in 1962. In section 7 and Equ’s. (7.1. 2)we introduced the 

dimensionless parameter 2 /A m r  where as above we have assumed a silent 1G   in the 

numerator and a silent 2
1c   in the denominator and in section 8 modified this to get a  

dimensionless 
2

2

2
1.4

m m
A

r r
  .We showed in section 7 that provided this A  is 

dimensionless it does not change Equ’s.(7.1. 3) If we look carefully at the Kerr-Newman 

metric we can see that it fits Equ’s. (7.1. 3) provided we put 

2

2

2 Q
rm

A
r r

   which is equivalent 

to putting 
2

2

2m Q
A

r r
  where 

2

2

4

0
4

Q

Q G
r

c
  and we have again measured charge Q  in length 

units as in Equ’s. (8.1. 8). 

               Thus our modified Kerr metric where 
2

2

2
1.4

m m
A

r r
   is again similar to: 

               The Kerr-Newman metric where        
2

2

2m Q
A

r r
   but with opposite signs. 
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These two metrics are the rotating versions of our modified Schwarzchild metric and the 

Reissner-Nordstrom metrics. We can perhaps summarize this in the following two tables. 

 

Table 8.1. 2 The non rotating metrics where dimensionless parameter A  is as in Eq. (7.1. 2) 

The modified Schwarzchild and Reissner-Nordrom metrics both have the same form of 

changes to the Reimannian curvature tensor but of opposite sign. 

        Schwarzchild      Modified Schwarzchild        Reissner-Nordstrom 

          
2m

A
r

           
2

2

2
1.4

m m
A

r r
          

2

2

2m Q
A

r r
   

 

Table 8.1. 3 The rotating versions of the above. Again the modified Kerr and Kerr-Newman 

metrics both have the same form of changes to the Reimannian tensor but of opposite sign. 

              Kerr            Modified Kerr        Kerr-Newman 

         
2m

A
r

          
2

2

2
1.4

m m
A

r r
          

2

2

2m Q
A

r r
   

 

Again massless particles in the electromagnetic field apply equally in the Reissner-Nordstrom 

and Kerr-Newmann metrics. The arguments we used above in the non rotating case using 

massless negative energy particles in our modified stress tensor apply equally in the rotating 

case. The small changes in the Riemannian curvature tensor, due to this 2 2
/m r term, are of 

opposite sign for both our modified Kerr and Schwarzchild metrics, when compared to the 

Kerr-Newman and Reissner-Nordstrom metrics, but of exactly the same form. 

 

So, provided we include such an appropriate negative energy massless particle in the stress 

tensor, solutions to 
4

1 8
(Background)

2

G
R g R T T

c
   


      are consistent with min

k

graviton probability density min min minGk Gk
K dk  where minGk

K  is invariant for all observers; 

whether they are near the horizon of black holes, or if they are at our current cosmic horizon. 

Also for any observers outside it, who are looking at their own cosmic horizons; and for all 

cosmic time since the big bang. But wavenumber min
k depends on the local metric and cosmic 

time. It is approximately the inverse of the causally connected radius at any cosmic time.  

 

Einstein [24] based his remarkable equation on the “Equivalence Principle”, or the same 

physics in all free falling frames as in empty space; with covariant tensor equations that apply 

in all coordinates throughout all spacetime. He wanted it to be similar to Gauss’s law and 

Poisson’s equation
2
    ignoring constants, but in curved spacetime. This naturally leads 

to inverse square force laws with inverse potentials where masses are concerned, but the 

inclusion of an 2 2
/m r potential term in the metric due to *

m m
  seems to mess all this up. 

But does it really? Could it be trying to tell us something that we need to know, but did not 
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want to know?  Quantum mechanics in the form of QED tells us that, close to the Compton 

wavelength, the normally simple inverse square force law starts to change, close in shielding 

makes fundamental electric charge appear to increase, and QED takes over with increadible 

accuracy. Simple inverse square electric force laws had ruled with remarkable accuracy for 

over a century before QED arrived on the scene. In fact it was the announcement of the Lamb 

Shift at the Long Island conference in 1947 that started the big breakthroughs in QED. World 

War II developments in radar had enabled these remarkably accurate experiments. Is it 

possible that similar developments today will allow improvements in Gravitational Wave 

observation accuracy? Developments that may see effects in gravity close to black holes with 

some parallels to QED changes inside the Compton wavelength of electric charges?  

 

8.1.7 What is the effect of this term in the solar system? 

The distance to Mars can be measured very precisely as we have instruments on the surface 

that can reflect radar from Earth at known locations. On the other hand we don’t know the 

exact diameter of the Sun. If we look at the outer rim it will be deflected outwards by 

1.75 / 2  arc seconds (half that of the gravitational bending of starlight because it is coming 

from the rim). At the distance of the sun, 6
150 10   KM this is roughly 640 KM in radius. 

Even if we optically measure the diameter precisely with no error the actual sun diameter will 

be about 1275 KM smaller so we only know the true diameter approximately. We also do not 

know the exact surface of radar reflection. The Astronomical unit is quoted as 

149,597,870,700 metres, but this is really based on knowing interplanetary measurements 

accurately and then using Kepler’s laws modified by the Schwarzschild metric to give us this 

level of accuracy. So, let us do a crude first order approximation of what happens if we 

include an 2 2
/m r  term in the metric. Using low velocity (compared with light) Christoffel 

symbol approximations and circular orbits for simple comparisons the accelerations are:   

 

    
2

00 2

1 1 2
(1 )

2 2

d d m m
r g

dr dr r r
      in the usual Schwarzschild case if 00

1g   and 

     
2 2

2

00 2 2 3 2

1 1 2 1.4 1.4 1.4
(1 ) (1 )

2 2

d d m m m m m m
r g

dr dr r r r r r r
          in the modified metric 

case. So 
2

3

m

r
   in the usual Schwarzschild case and 

2

3

1.4
(1 )

m m

r r
    in the modified 

metric case. In weak gravitational field accelerations we can replace mass m  with a new 

effective mass 
1.4

(1 )
m

m m
r

    but orbital periods and angular velocities   cannot change 

as we know them very precisely. So we will try the following modification to all planetary 

radii     
2

3 3
3 3 3

1.4 1.4 1.4
(1 ) (1 ) (1 )

3( )
(1 ) (1 )

m m m m m m m

r rr r r r r r r r r
r r

r r

       
        

 
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           2

3 3 3

3 1.4 3 1.4
(1 )(1 ) (1 )

m m r m m r m

r r r r r r r r r


 
      

   
 and if   is unchanged   

                
3 1.4

1 1
r m

r r r


  

 
     and      

3 1.4 1.4r m m

r r r r


 

 
       thus   

1.4

3

m
r    

The Schwarzschild radius 2
SW

R m  and the extra distance to the sun 
1.41.4

3 6

SW
Rm

r     

The Schwarzschild radius of the Sun is 3
SW

R   km   so  
1.4

0.7
6

SW
R

r    km. 

The change r  for our solar system is about 700 metres. But all interplanetary radial 

separations do not change. So we can still use the old metric and the astronomical unit 

unchanged with Kepler’s laws to a first approximation, or the new metric and just add 700 

metres to all the planetary radii from the sun. Orbital periods are identical to a very high 

accuracy. The gravitational constant does not change in both cases.  

What we have done here is a bit like dipoles with the electrostatic field dropping as 2
1/ r  

and the resultant field as 3
/r r  where 

2 2 3

1 1 2

( )

r

r r r r


 

 
. However, in the non-

spinning gravity case there is spherical symmetry but not in an electric dipole.  

 

8.1.8 Can we measure this difference? 

We used circular orbits for a simple crude calculation but the same arguments apply in a 

slightly more complicated way for eccentric orbits; in a similar manner as Kepler’s original 

arguments with elliptical orbits that sweep out equal angular segment areas with time. The 

orbit of Mars in particular is highly eccentric and Earth much less so. If the eccentricity of 

both Earth and Mars orbits were known, to better than say a hundred metres or so between 

max and min, we should be able to check this difference by measuring the distance (also to 

around a 100 metre or so accuracy) between Mars and Earth at various points around their 

orbits. It would seem however that this would be pushing at the very border of current 

technology, as radar measurements to the sun are inherently a little blurry due to surface 

variability. We need these to get a very precise value for the eccentricity of Earth’s orbit. 

Even if we can measure Earth-Mars with complete accuracy we have to add in errors due to 

lack of accuracy in Earth’s eccentricity. Also when Mars is on the opposite side of the sun to 

us, if the distance measuring signal grazes the sun there will a Shapiro type delay that is 

equivalent to roughly a 15 km error that reduces logarithmically with the minimum radial 

distance of the signal from the sun. Even if the beam passes through a half Earth-Sun radius 

there is still a few km error. All these effects introduce possible errors that make it difficult to 

measure a 700 metre difference in all planetary radii.  
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Figure 2.6. 1 Scales are grossly exaggerated for clarity. We have also assumed circular obits 

here for simplicity, and ignored errors due to the centre of mass of the solar system not being 

at centre of sun. We have also assumed infinitesimal planet masses so we can simply ignore 

the effect they have on each other.  

8.1.9 What about the Hulse Taylor binary pulsar, can it show this change? 

The timing of this pulsar is accurate to 14 significant figures and it would initially seem that 

this accuracy would show up such differences. However, the semi-major orbit of this binary 

is 9
2 10   metres, with a decay rate of 3.5  metres per orbit, or a change 100r   metres 

over 30 years due to gravitational radiated energy. If we totally ignore this change in the 

radius, treating it as effectively zero, the accumulated time delay is parabolic; or proportional 

to elapsed time squared. If we include the small effect of the change in radius, 
2 2

2 / 1.4 /m r m r  increases minutely to
2 2

2 / ( ) / ( )m r r m r r      adding two minute cubic 

terms, both proportional to elapsed time cubed, where the 2 2
/m r contribution is about 7

10
  

of that due to the 2 /m r  term. Even the cubic effect of a 100r   metres change in the usual 

/m r term (which is currently 7
/ 5 10m r


  ) on the parabola over 30 years, is miniscule. 

The chances of measuring either the /m r , or the 2 2
/m r  cubic terms are very small in the 

foreseeable future; let alone distinguish between them. The best chance of measuring any 

difference will almost certainly turn out to be gravitational wave observations. 

 

8.1.10  Gravitational Wave observations of Black Hole mergers 

Some of the mergers observed so far [25] have been suggesting relatively larger Black Hole 

masses than current astrophysics theory had expected. If we look at our new metric term we 

can write  
2

00 002

2 2 2
1 1.4 1 (1 0.7 ) 1

m m m m m
g g

r r r r r


             where   1 0.7

m
m

r
      

Radial separation between planets does not change.  

 

00

2
1

m
g

r
 

  

2

00 2

2 1.4
1

m m
g

r r
     

Radial distance to Sun centre increases by 700  metres equally for all planets. 
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For a maximum spin black hole when r m  we can say the effective mass at merger is 

1.7m m   or about 70% greater. The addition of an 2 2
/m r  term in our modified metrics 

increases the total merging energy, and hence that in the resulting gravitational waves. 

Inward radial accelerations would appear to be greater also. However computer simulations 

with these changed metrics would be required to model all this in detail, but our rough 

analysis above suggests that the masses of the black holes before merging could well be less 

than what they have so far seemed. In other words, a pair of smaller black holes merging 

might create the gravitational waves current theory predicts from the mergers of two, up to 

maybe 70% larger black holes. Spins had also been expected to be roughly perpendicular to 

their orbiting plane, but their merging speeds don’t tie up with this. Is it possible that this 

unexpected behaviour is trying to tell us something is different; something different in the 

metric as we get close to Black Hole Horizons? 

 

Finally in this section, does this extra 2 2
/m r term alter what we said in Eq.(7.1. 16) where 

we first used 
2

H

m
A

R
 .  Before we introduced the self emission term 2 2

1.4 /m r  we found 

that the extra time polarized min
k graviton density near the horizon, for all black holes is 

         

2

2
2

2

1

1H

H

H

ARA
g g A
 




     And this is still true.     But now 
2 2

2 2

2
1.4 1

H

m m
A

R R R


     

Where    is the increased spin parameter due to the extra 2 2
1.4 /m R  term and we have also 

reused Eq’s.(7.1. 13) & (7.1. 14). Everything we did there is not affected by this extra term. 

9 Four Vectors and Four Volume Action Densities 

9.1.1 Graviton densities represented as invariant 4 velocities 

Four velocity vectors have the property that  
2 2

0 1
1UU    is invariant under local Lorentz 

transformations; where 0
U  is the time component of the four velocity, and 1

U  the spatial 

component.  We will, as previously, use the notation  

                                
22

0 M
U      and    

22

1

2

M M
U     where 2

2

1

1
M

M







  

We can think of the spatial component 1
U  as the four velocity M M

   of a free falling mass 

that came from rest at infinity, in the same coordinate frame as the black hole, and pointing 

radially inwards. We can also write 

 

                                  
2 2

0 1
1UU    as 

2 2

1 0
1 U U   or 

2 2 2
1

M M M
   .  
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This was what we did for the Schwarzschild metric when we had temporarily multiplied both 

sides by 
2

M
  and normalized the background min

k  graviton  three volume probability density 

to 1 with  
2 2

M M
   the extra min

k  graviton density due to a central mass, and 
2

M
  the total; this 

equation only applies before we have expanded the volume and changed time in the new 

metric. Because this is a 4 vector relationship it is true in all coordinates. Multiplying both 

sides temporarily by
2

M
  does not change its validity. 

 

We can also add a term 
22

M
X  to both sides to get  

2 22 2 2 22
1

M M M M M
X X         and still 

maintain covariance as    
2 2 2 2 22 2

( ) ( ) 1
M M M M M

X X        , and we can put 
2

2 2

2
cosX

r


  

so that:                            
2 2

2 22 2 2 2

2 2

2 2
1 cos cos

M M M M M M
g

r r
     

 
      .   

We are not adding another 4 vector here; we are simply adding squared terms, which are 

equal on each side, so that Lorenz invariance is not affected. This is still an invariant equation 

in any coordinates. In the above the local metric clock rate is always 1 /
M

  .  

 

The three volume probability density of circularly polarized min
k  gravitons due to rotation,  

before volume expansion and time changes in the new metic, always obeys   
2

2

2

2 2

M M
X

r
 


  

and the remaining min
k  graviton three volume probability density is

2 2

M M
  .    

 

This section on invariant 4 vectors, is really just saying the same thing as our invariant 4 

volume densities of min
k  gravitons.  

 

9.1.2 Four volumes in changing metrics 

Using our dimensionless form of the metric tensor, the nonrotating space metric determinant 

has magnitude Det 1
tt rr

g g g g g g    , but we want the square root of this 1g  . 

However in rotating space this becomes 
2

2

2
1 cosg g

r



    which reverts to 

1g g   when the angular momentum length parameter 0  . At a large radius from 

any mass concentration let us start with a unit four volume such that 
4

1x t x y z        

when g  , where for simplicity we use , &x y z  for the space components. As we 

approach the central mass in the new metric, this four volume becomes  

                                
2

4 2

2
1 cosx g t x y z g t x y z

r



                   
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Four volumes at a fixed point in spacetime are invariant as coordinates change, and also as 

the metric changes if in nonrotating space. In rotating space however it increases as g .     

4

4

Curved spacetime 4 volume
1 when angular momentim is zero

Flat spacetime 4 volume

x t x y z
g

x t x y z


       
   
    

.  

We also know that clocks change as 
tt

M

t
t g t




      in curved spacetime so that  

                            
M M

t x y z t x y z x y z
g

t x y z t x yz x y z


 

                   
  

         
  

The expanded spatial volume in the new metric 
3 3

M M
x x y z g x y z g x                . 

Spatial volume in any metric expands as  
3 3 2

2

3 3 2
(1 cos )

M M

V x d x
g

V x d x r
 




  
    


 

Where as above we have defined 
1/2

ttM
g 

  as the local metric clock rate.  

The 4 volume density invariance of min
k graviton still applies, as the extra circularly polarized 

gravitons due to angular momentum, occupy this expanded volume. 

10 Finishing up and some loose ends 

10.1.1 Preferred Frames 

It might seem that we have been arguing for a preferred frame. But there is really no 

difference in what we are proposing compared to current physics. In comoving frames the 

cosmic microwave background is isotropic. At peculiar velocity P
  it is no longer isotropic, 

and the average background temperature increases by ,
P

  exactly the same increase as min
k  

to min minP
k k  , and that is if we could measure it, which is most unlikely. We have 

frequently talked in this paper about local observers measuring min
k , but only as a thought 

experiment, and the average (over all directions) background temperature can be used to 

measure either peculiar
 or metric

 at any particular cosmic time, provided we already know its 

value in flat comoving coordinates (see section 10.1.10). There are no other changes in 

physics in this comoving frame; it is exactly as Einstein originally postulated, an important 

experimentally verified feature of General Relativity [32]. However it does make everything 

we did here much simpler if we work in comoving coordinates. All the mass moving at 

peculiar velocities in random directions does not affect the average universe density of either 

min
k gravitons or the min

k action density that they require. We calculated the average density 

of min
k action from the horizon in these comoving coordinates. But if we think in terms of 

spherically symmetric four volume min
k action density invariance, then whether we are in a 

non comoving frame, or in a non-flat metric, it makes no difference; and is why we can use 4 

vector notation for the extra min
k gravitons around mass concentrations. 
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10.1.2 Solar System Constraints and do our proposed changes fit? 

See “The Confrontation between General Relativity and Experiment” Clifford M. Will [32]. 

Probably the most important constraint mentioned in this review is the Cassini Time Delay 

data that gives a fit with GR of 5
10


  for signals passing close to the solar horizon, where 

our extra 2 2
1.4 /m r  term is 6

3 10


  . So it should be within the Cassini Constraint and also 

within the light deflection constraint. The remaining changes are discussed in section 8.1.7. 

 

10.1.3 Action Principles and the Einstein Field Equations 

The field equations of GR can be derived from an invariant action principle 0I   where 

41
( , )

16
m m

I R g d x I g
G




     and R  is the Ricci scalar, with m
I  the matter action 

which depends on matter fields m
  coupled to the metric .g  Varying the action with respect 

to g we obtain Einstein’s field equations 
1

8
2

G R g R GT      . This paper suggests 

however, that an “Invariant spherically symmetric 4 volume cosmic wavelength graviton 

action density” applies to the solutions of a modified stress tensor. There is obviously a 

connection between these two ways of looking at all this. 

 

10.1.4 Gravitational Waves and 4 volume invariance 

We showed in section 5.3.6 that the 4 volume min
k  graviton density at any cosmic time 

4

min

V

Gk
  is invariant in all coordinates and in any metric. But the metric can oscillate not 

changing this invariance, and such disturbances will travel at the speed of light. We can 

imagine extra gravitons around a mass concentration and the background gravitons as in 

section 5.2 (if they are accelerating as in binary pairs) generating real transversely polarized

2m   , gravitons. This has some parallels to what we found in the Kerr metric, but now with 

real gravitons.  But the intensity, or probability density, of these real gravitons will drop as 

the inverse radius squared, at least when far away. We can also show from Equ’s.(5.1. 9) & 

(5.2. 5) that most of these gravitons are close to the locally measured value of the min
k  

wavenumber, about 96% are between min
k & 5 min

k . Thus most of this radiated energy is near

min
k . The frequency of the radiated wave is twice the orbital frequency of the binary pair 

source. As most of the energy in the wave is in quanta near min
k there is no connection with 

the frequency of the radiated wave as in spin 1 photons in electromagnetism. In the recently 

observed gravitational waves the wave frequency was 250  cycles per second just before 

merger with wavelengths 1200 kilometres or approximately 41
10  Planck lengths, whereas 

the wavelength of min
k gravitons is 

62

min
1/ 10

OU
k R   Planck lengths. The ratio between 

them is 21
10 . This ratio is inverse to the binary pair orbital frequency. It could only 

approach one if the orbital period is approximately twice the age of the universe. 
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10.1.5 Black Holes, the Firewall Paradox and possible Spacetime Boundaries  

Several recent papers [15] [16] [17] [18] [19] have discussed the BH firewall paradox. In 

section 5.2.2 we use the fact that outside observers see infalling mass remaining on the 

horizon. In fact if we look carefully at the analyses in sections 5.2.1 & 5.2.2 we see they may 

suggest that GR cutsoff at the BH horizon; one of the possible firewall paradox implications. 

The equations we derived do not appear to work inside the horizon. Our argument that a 

constant graviton scalar minGk
K  is consistent with GR is questionable inside the horizon. ( min

k

quanta that go in to build superpositions would not return in time 1

min
T k T


   ). Is it 

possible that the horizon of a Black Hole could be some sort of spacetime boundary?  

10.1.6 Dark Matter possibilities 

Table 4.3. 1 shows a spin 2, 1N   neutral massive graviton type superposition that emitts 

infinitesimal mass 2N   graviton superpositions with about 70 times the probability that  

2N  gravitons emitt 2N   gravitons. It may possibly be only detected via these 

graviton interactions. (Dark Matter Wimp searches would not see these as spin 2 is not 

subject to the weak force.) 

10.1.7 Higgs Boson 

It is not clear if the Higgs boson is a spin zero superposition so it is not in Table 2.2. 1; but if  

it is, it would be some superposition of infinite superpositions with a total angular momentum 

vector summing to zero just as two spin ½ fermion superpositions can for example. 

10.1.8 Constancy of fundamental charge  

It has always been fundamental that the electromagnetic charge of protons and electrons is 

precisely equal and opposite to get a neutral universe. In section 4.2 we showed that the 

probability of superpositions was (1 ) /sN dk k   where the infinitesimal  is proportional to 

rest mass squared and thus different for various particles. We used this probability to 

determine interaction coupling strengths in section 3.3. This suggests that the probability of 

virtual photon emission is also proportional to the probability (1 ) /sN dk k   of each 

superposition, and would not be precisely equal for electrons and protons due to small 

variations in   of the order of 
45

10


  between electrons and quarks. If however we look 

closely at Eq.(4.2. 3) and the following equations, by adding the amplitude for gravity at right 

angles we effectively added the probabilities of spin 2 gravity generated superpositions to 

those of spin 1 colour and electromagnetic superpositions. If somehow only those 

superpositions generated by spin 1 electromagnetic and colour interact with spin 1 photons 

this would cancel any minute difference in charge. If this is not so then there are infinitesimal 

differences in charge of the order of 
45

10


 which would surely have shown up in some form 

by now unless there are minute differences in the total number of electrons and protons. 
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10.1.9 Superpositions and Feynman’s Strings  

Over a century ago there were various models of the electron. The Abraham-Lorenz was 

probably the most well-known [20] [21].  All these models suffered from the problem that the 

electromagnetic mass in the field was 4/3 times the relativistic mass. In 1906 Poincare 

showed that if the bursting forces due to charge were balanced by stresses (or forces) in the 

same rest frame as the particle, these would cancel the extra 1/3 figure restoring covariance 

[22]. In chapter 29 Volume II of his famous lectures on physics, Feynman, probably jokingly, 

suggested that if the electron is held together by strings, that their resonances could explain 

the muon mass [23]. He just may have been right. The equations for infinite superpositions in 

this paper apply equally to all massive particles. As infinite superpositions are held together 

by interactions with zero point forces in the same rest frame, could these same zero point 

interactions possibly be Feynman’s strings? If they can hold virtual preons in their imaginary 

orbits, it would seem they should be able to balance any bursting forces due to electric 

charge. However this paper suffers the same problem as the Standard Model. There is nothing 

to suggest the quantization of mass of massive particles; only the infinitesimal mass particles.  

 

10.1.10  Some Conjectured Space-time Symmetries and Invariants  

Equation (5.2. 10) 
2

min
 (0.8823)

U
k   implies 

2 3

min
 1 /

U
k a   in the matter dominated era, 

where a  is the scale factor, with min
k measured in flat comoving coordinates.  

                                                 So 
3/2

min
k a


  in the matter era                              (a) 

                                                 &
2

min
 k a


  in the radiation era.                            (b) 

For example if 
2/3

( )a t t  in the matter era of what the CMB  model calls critical density 

with no Dark energy, implies min 3/2

1
 k

a


1 1

OU
t R

   in a flat universe.  This contrasts with 

the CMB temperature where 1 /
CMB

t a . But at any particular cosmic time minCMB
t k  in any 

metric and any peculiar velocity.  Using Eq’s. (5.2. 11), (5.3. 21), (5.3. 22) plus (a) & (b) 

4 3

min min min min min
SS 4 Volume Graviton Density  3 Volume Graviton Density 

VSS V

Gk Gk Gk
K dk k   

The SS 4 volume min
k graviton density 4

min min

VSS

Gk
k   and from Eq.(5.3. 22) 4 4

min min

VSS VSS

Qk Gk
   

SS 4 volume min
k graviton density 

3/2 4

min

VSS

Gk
a  is invariant in all space-time of the matter era.  

SS 4 volume min
k graviton density 

2 4

min

VSS

Gk
a  is invariant in all space-time of the radiation era.  

SS 4 volume min
k action density    

3/2 4

min

VSS

Qk
a  is invariant in all space-time of the matter era.  

SS 4 volume min
k action density    

2 4

min

VSS

Qk
a   is invariant in all space-time of the radiation era. 

(The perhaps over used label SS signifies that the action has to Spherically Symmetric) 
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11  Conclusions 

Over the last few decades, the focus of many physicists has mainly been to somehow unite all 

the forces at high energy somewhere near Planck scale. It was hoped that Supersymmetry 

would facilitate this. In complete contrast, the focus of this paper is at the other extreme of 

the minimum possible frequency. Einstein always felt that gravity was not a force, and all 

particles travelled on geodesics controlled by the local metric. This paper supports that view. 

Many physicists also think that in any contest between Quantum Mechanics and General 

Relativity that QM would most likely be the ultimate survivor. This paper has tampered with 

GR but only near black holes and at cosmic radii. The error, at say 1% of the horizon radius, 

will also be of the same order. At the scale of galaxies and even superclusters of galaxies the 

error is completely insignificant. In our solar system the differences are still probably inside 

our current measurement ability. The effect near black holes may relate with masses slightly 

greater than expected and the unexpected non-alignment of spins [25].  

We have not tampered with either QM or Special Relativity. SR always applies locally, but 

who knows whether it may break down near black hole horizons, in line with some of the 

current paradoxes. Such a breakdown would probably not affect black hole merger 

observations. We have certainly tampered with fundamental particles suggesting a 

completely different approach. The most important difference is the infinitesimal rest mass 

particles, which is also key to what we suggest is behind gravity. At Planck energy our 

approach meshes with the Standard Model, but only the most basic SM model with three 

families of fermions. It suggests that the three forces of the SM do not unite near Planck 

energy; in fact they behave exactly as that model predicts (Figure 4.1. 1 & Figure 4.1. 2). 

But many physicists will no doubt ask: If fundamental particles are built from infinite 

superpositions why do we not see signs of them? Well perhaps we already do. The 

components of infinite superpositions are virtual, and only complete infinite superpositions 

can behave as real particles. But we assumed in this paper that what we have always called 

virtual particles are single wavenumber k superpositions only, and thus components of an 

infinite superposition representing that particle. When we calculate Feynman transition 

amplitudes, we are effectively summing over all the k values of these virtual superposition 

components. Also the distinction between virtual and real can be blurred. It can even depend 

on the frame of reference, such as accelerating or not. And, all recent experiments continue to 

confirm the strange, and counterintuitive, behaviour of the outcome depending on the actual 

act of measurement. The behaviour of the superpositions in this paper, following this strange 

principle, is no different. If our arguments are correct it could turn out that the only real, but 

still indirect, evidence of infinite superpositions we will ever see; is the change in the metric 

around mass concentrations, and the exponential expansion of space.  
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We started our introduction to this paper by saying that the greatest theories; perhaps some 

would say the older great theories of the last few centuries, all had their roots in experimental 

science. This paper claims that if in fact all the fundamental particles are built from infinite 

superpositions, and at cosmic wavelength borrow redshifted Planck scale action, from zero 

point vector fields on the receding horizon, then space has to expand exponentially; starting 

at virtually the big bang. This exponential expansion does not need dark energy, its behaviour 

is quite different to what happens with dark energy and the requirement for 1  . In this 

sense this paper proposes a new idea that is experimentally testable [31] and in a manner that 

should satisfy all. But some will possibly say that the ideas presented here, bear little 

resemblance to the usual rules in modern quantum field theory. The rules for primary 

interactions are very simple in comparison to the complicated secondary interaction rules of 

QED/QCD, where the weak force is involved, coupling constants change with interaction 

energy, and there are Feynmann loops etc. This has allowed us to keep the mathematics 

simple.  Exotic maths can be extremely powerfull, but it can also hide the wood for the trees, 

so to speak. At the end of the day, the goal of science should be, to at least where possible, try 

and express the behaviour of “Mother Nature” in the simplest manner. 

For the last thirty to forty years or so since the Standard Model came on the world stage, 

there have been many different ideas suggested to make further progress. The ideas presented 

here will no doubt contain many errors, and need much polishing to put them on a more solid 

foundation. But they do comply with special relativity and basic quantum mechanics. The 

whole package is consistent, and may just possibly suggest a different path forward.  

Finally, when we calculated the min
k  quanta available from the horizon we focussed on the 

vector potential half (Eq. (5.3. 10)) but Figure 5.3. 1 shows a surplus of the time component 

available. Could it be possible that the scalar half is the source of the borrowed mass for all 

superpositions?  Could this be the source of the Higg’s scalar field? The total available could 

be in the right paddock. It meets the 33
10 eV


  rest mass requirement of all virtual gravitons. 

They outnumber by far all other long lasting particles in the Universe. A crude analysis 

suggests that this may in fact be possible. 
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