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ABSTRACT
Deep Learning has gained immense success in pushing to-
day’s artificial intelligence forward. To solve the challenge
of limited labeled data in the supervised learning world, un-
supervised learning has been proposed years ago while low
accuracy hinters its realistic applications. Generative adver-
sarial network (GAN) emerges as an unsupervised learning
approach with promising accuracy and are under extensively
study. However, the execution of GAN is extremely memory
and computation intensive and results in ultra-low speed and
high-power consumption. In this work, we proposed a holis-
tic solution for fast and energy-efficient GAN computation
through a memristor-based neuromorphic system. First, we
exploited a hardware and software co-design approach to
map the computation blocks in GAN efficiently. We also
proposed an efficient data flow for optimal parallelism train-
ing and testing, depending on the computation correlations
between different computing blocks. To compute the unique
and complex loss of GAN, we developed a diff-block with op-
timized accuracy and performance. The experiment results
on big data show that our design achieves 2.8× speedup and
6.1× energy-saving compared with the traditional GPU ac-
celerator, as well as 5.5× speedup and 1.4× energy-saving
compared with the previous FPGA-based accelerator.

1. INTRODUCTION
Deep learning has achieved great success in various artifi-

cial intelligence applications such as object detection [1, 2],
tracking [3] and natural language processing [4]. Normally,
supervised learning is employed in the state-of-the-art appli-
cations, where a deep neural network is trained from labeled
training data and desired outputs are obtained after going
through an inferring function like backpropagation [5, 6].
The supervised learning has been proved powerful, however,
challenges emerged with the fast growth of the applications
complexity: large-scale of labeled data is in demand and its
learning capability is constrained.

Unsupervised learning, which has the capability to learn
from the unlabeled data directly appears as a possible so-
lution. Nonetheless, accuracy is usually low in the conven-
tional unsupervised learning and its feasibility in the realistic
applications is hindered [7]. Recently, generative adversar-
ial networks (GAN) was proposed as a promising solution
for the above challenges [8]. GAN can estimate generative
models from an adversarial process by training two models–
generative and discriminate model simultaneously [8]. Fea-
ture representations can be learned from unlabeled data and
improved accuracy of unsupervised learning is achieved on
GAN [9]. However, the challenge of high demand for com-
puting resource that exists in deep neural network becomes
more severe in GAN computation. Both training and test-
ing executions are particularly slow and energy hungry [8,
9].

Extensively research efforts have been devoted to acceler-

ate and improve computing efficiency of deep learning, such
GPU [6], FPGA [10], emerging non-von Neumann accelera-
tors [11, 12]. Very recently, GPU [9] and FPGA [13] based
GAN computations have been proposed with significantly
improved speed and energy efficiency compared with CPU.
However, the computing efficiency is still constrained as data
bandwidth in these architectures is still limited and the per-
formance improvement mainly relies on reckless resource ac-
cumulation. Recent studies in developing novel non-von
Neumann accelerators such as in-memory accelerator [14,
15] and neuromorphic computing system [16, 12, 17], esp.
the designs with novel nano-devices like memristor paved a
way towards computational efficient GAN.

In [11, 12], convolutional neural networks (CNNs) were
deployed on memristor crossbar and an on-line training pro-
cess with backpropagation were implemented via a hardware
and software co-design methodology. However, these previ-
ous approaches cannot be used directly in GAN computation
because of the following reasons. First, different with tra-
ditional CNNs training, two learning models are executed
simultaneously in GAN’s training phase and requires an
adaptive data flow for optimal computing efficiency. More-
over, backpropogation is simplified in a hardware-friendly
way that the initial error in training is considered as the
difference between the true label and the predicated label,
which works conditionally under the prediction that the cost
function of CNN is cross entropy. This assumption is in-
valid in GAN, therefore, the memristor-based hardware im-
plementation in previous works cannot be utilized.

In this work, we developed a memristor-based unsuper-
vised neuromorphic system for a fast and energy-efficient
GAN computation to solve the above challenges. Our con-
tributions can be summarized as follows:

• We exploited a hardware and software co-design ap-
proach to map the computation blocks in GAN to the
memristor-based crossbars efficiently. The computing
system is composed of three major blocks–Generator,
Discriminator, and Diff block. The Diff block is de-
signed to compute the cost function of GAN accurately
with low hardware cost;

• We proposed an adaptive data flow for GAN with op-
timal computation parallelism and efficiency. In for-
ward phase, the Generator and Discriminator block
worked in parallel to generate artificial data and ex-
tract features; In backward phase, the Generator and
Discriminator block were trained effectively with the
initial errors computed by the Diff block.

• We evaluated the system accuracy in different data
precision and the system performance in speed and en-
ergy. The proposed system performance on ImageNet
and Lsun/bedroom was also compared with the GPU-
based and FPGA-based GAN computation in previous
works.



The experimental results show that our proposed design
can achieve 2.8× (2.7×) and 5.5× (4.8×) speedup, as well as
6.1× (6.1×) and 1.4× (1.5×) energy-saving compared with
GPU-based [9] and FPGA-based [13] GAN accelerators re-
spectively on Lsun (ImageNet) dataset.

2. BACKGROUND

2.1 Generative Adversarial Networks
The generative adversarial network was developed as an

unsupervised model that can learn effective feature represen-
tations from unlabeled data while having improved accuracy
compared with traditional unsupervised learning [8, 9]. Two
learning models form the GAN: a generator and a discrim-
inator. Normally, the generator is a deconvolutional neural
network (Deconv-NN) for artificial data generation, and the
discriminator is a convolutional neural network (CNN) for
distinguishing the artificial data from real data. The train-
ing phase of GAN involves two major learning procedure–
effective generator and discriminator learning based on back-
propagation. The target of the training process is obtain-
ing a generator that can generate most likely the same as
the true CNN training data and a discriminator that can
extract feature effectively. The training process is can be
summarized as four major procedures, which are named as
Dforward, Dback, Gforward, and Gback in this work.

• Dforward computes the cost function to obtain the er-
ror that should be transmitted to the discriminator
for its backward weight updating. More specifically,
with a batch of m noise samples–z1, ..., zm are given
as inputs, the generator generates m artificial samples
and this process is defined as G(zi). The CNN based
discriminator processes the m artificial samples (i.e.
G(zi)) and m real samples (i.e. x1, ..., xm) through
forward computations, and then cost function is com-
puted following Equation 1.

ErrorD = Oθd
1

m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))]

(1)

• Dback updates the weights of the discriminator by as-
cending the stochastic gradient obtained from Equa-
tion 1, i.e. ErrorD.

• Gforward computes the cost function to gain the error
that should be given to the generator for its weight up-
dating. The cost function is computed as Equation 2.

ErrorG = Oθg
1

m

m∑
i=1

log(1−D(G(zi))) (2)

• Gback updates the weights of the generator by ascend-
ing the its stochastic gradient obtained from Equa-
tion 2, i.e. ErrorG.

Here, G(·) and D(·) represents the generator and discrimi-
nator respectively, x is the real data, and z is the noise given
to the generator.
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Figure 1: Implementation of CNN (a) and Deconv-
NN (b) on memristor crossbar

2.2 Memristor Crossbar for (De)Convolutional
Computation

The limited data bandwidth, as well as the performance
gap between processing units and memory of the conven-
tional computing platform becomes a major obstacle in the
deep leaning based applications. Novel computing platforms,
such as the in-memory accelerator [14], neuromorphic com-
puting [18], etc. therefore have been extensively investigated
as a promising solution. The emerging of novel nano-devices
such as spin, phase change and memristor device also accel-
erates its development and corresponding accelerators are
developed accordingly. Among them, the memristor based
computing platform attracts people’s attention own to the
high density, high speed, multiple level states, etc [19, 11,
12]. In this work, the memristor-based computation plat-
form for GAN is developed. The generator that based on
deconvolutional network and the discriminator based on con-
volution network of GAN is deployed on the memristor cross-
bar structure.

In previous work, convolutional networks have been de-
ployed on the memristor-based crossbar structure, as is de-
picted in Figure 1 (a) [12]. For example, to deploy a con-
volutional layer with 32 kernels, each kernel is reshaped to
a vector that can be programmed to a memristor crossbar.
And the inputs data is given to the memristor crossbar to
execute the dot-productions computations. Multiple cross-
bars are connected in parallel to form the large-scale convo-
lutional layer because of the size limitation of the memristor
crossbar [12]. The ReLU activation function of CNN can be



implemented by the integrate-and-fire circuits (IFCs) and
other digital logic [16, 12]. The deployment of deconvolu-
tional network is similar to the convolutional layer. One
major difference is the data should be zero-padded before
giving to the crossbar, as is shown in Figure 1 (b). To op-
timally decrease the executions involved by the zeros, we
transform and group the input vectors with the zeros in the
same locations, and only non-zero inputs in the rows are
given to the crossbar and computed.

3. DESIGN METHODOLOGY
In this section, we built a memristor-based neuromorphic

design for accelerating both training and testing phase of
GAN. The basic computing architecture and data flow is
described in subsection 3.1 To achieve optimal system per-
formance, we proposed a cross-parallel pipline execution flow
which is introduced in 3.2.

3.1 Memristor-based GAN Architecture
Based on the GAN computation described in 2.1, we de-

veloped the memristor-based computing architecture of GAN
computation. As is shown in Figure 2, the proposed archi-
tecture is composed by four integrated components: Genera-
tor block, Discriminator block, Diff block, and Control unit.
The functionality of these components can be summarized
as below.

(1) The Discriminator block is designed to compute the
D(xi and D(G(zi) in Equation 1 for the stochastic gradient
calculation. It is composed of a sea of connected memristor-
based CNN units;

(2) The Generator block is built to calculate the G(zi)
in generating the artificial samples from the noise inputs
for computing the stochastic gradient in generator weight
updating. Similarly, it is composed of a sea of connected
memristor-based DeCNN units;

(3)Following Equation 1 and Equation 2, the Diff block
computes the gradients of the discriminator and generator
block respectively. The Diff block is constructed by the
memristor-based circuits blocks including LUT (look up ta-
ble), memory, adder, etc.

(4) The Control unit is designed to control the data flow
and is built with combinational and sequential digital logic.

In Figure 2, the basic data flow is demonstrated as a ∼ f .
The explanation of each step is summarized as below, where

Generator

Block

Discriminator

Block

Noise

Real Data

D
if

f-
B

lo
ck

Control Unit

𝐷𝑓𝑜𝑟𝑤𝑎𝑟𝑑:

𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑:

𝐺𝑏𝑎𝑐𝑘:

𝐷𝑏𝑎𝑐𝑘:

𝑎

𝑏

𝑑

𝑒

𝑓

𝑎𝑑, 𝑏𝑐𝑑

𝑏𝑐𝑑

𝑒

𝑓

𝑐

Figure 2: Architecture of the proposed memristor-
based GAN computation.

the definitions of D(·), G(·), x, z, and m are as the same as
those in subsection 2.1.

• a: The real data with m samples in a batch, i.e. xi is
given to the Discriminator block to compute theD(xi),
where i ∈ {1, ...,m}.

• b: The noise data with m samples in a batch, i.e. zi is
given to the Generator block to obtain artificial sam-
ples G(zi), where i ∈ {1, ...,m}.

• c: The G(zi) is generated from the Generator block
and then transmitted to the Discriminator block to
compute the D(G(zi)), where i ∈ {1, ...,m}.

• d: This step computes the transmits the D(xi) and
D(G(zi)) from the Discriminator block to the Diff block.

The above steps a ∼ d fulfill the forward computations
of GAN.

• e: Based on the gradient calculated by the Diff block,
i.e. ErrorD in Equation 1, this step updates the weights
of the Discriminator.

• f : The weights of the generator is updated in this step
according to the gradient obtained from the Diff block.

These two steps e and f implement the backward com-
putations in GAN.

Correspondingly, the Dforward is composed of a, c and
b, c, d, Dback is fulfilled by e, Gforward is implemented by
b, c, d, and Gback is the data flow of f .

3.2 The Cross-Parallel Pipeline
In this section, we proposed a cross-parallel pipeline based

on the basic data flow for optimized computing efficiency.
Hence, we first analyze the time cost of each step among
a ∼ f in Section 3.1. The analysis is executed based on
the simulations on NVSim simulator [20] and the results are
demonstrated in Figure 3. In the analysis, the steps of e
and f are divide into two categories: data transmission and
data computation. For example, e1 refers to the gradients
transmission time from the Diff block to the Discriminator
block while e2 represents the time consumed by updating
the weights of the discriminator. Similarly, the f1 is the
gradients transmission and f2 is the cost of weights updating
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Figure 3: Time cost of each step of the basic data
flow.
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Figure 4: The pipeline of each computing block based on the basic data flow.

of the generator. It is observed that the majority of the time
cost occurs in updating the generator and discriminator.

Figure 4 shows the pipline of each computing block, i.e.
the Discriminator block, Generator block, and Diff block
based on the basic data flow. As is described, different col-
ors represent the execution states of each block. Then, we
analyze the independence property each execution in these
blocks to build the cross-parallel pipline, where the inde-
pendent executions are designed to compute in parallel. For
example, observed from Figure 4, the discriminator block
and the generator block are independent from each other
when the a and e2 are executing by the discriminator block
or b and f2 are executing by the generator block. Hence,
these computations can be optimized to be parallelism data
flow. There are only two conditions that the generator and
discriminator block cannot work in parallel: first, during b
and c executions; second, the weights updating has not fin-
ished. Otherwise, the generator and discriminator can work
highly in parallel and the optimized cross-parallel pipline is
depicted in Figure 5.

In the developed cross-parallel pipline, the Dforward is
divided into two parts–Dt,1

forward and Dt,2
forward, where t rep-

resents the tth iteration in GAN training. Dt,1
forward includes

the basic a and d execution and the Dt,2
forward refers to

the basic b ∼ d processing in the discriminator block. In
the cross-parallel pipline, the a (i.e. real samples process-
ing) and the b (i.e. artificial samples generation) are exe-
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Figure 5: The cross-parallel pipeline.

Table 1: Computation time of Basic Pipline vs.
Cross-Parallel Pipeline

Basic Pipline Cross-Parallel
Each Iteration(s) 0.18 0.11
DIdleTime(s) 0.069 0.018
GIdleTime(s) 0.033 0.015

cuted simultaneously. It is observed from Figure 3 that b
is more time-consuming than a, hence the D(xi) that com-
puted from a is transmitted and stored in the Diff block
firstly which is represented by d1 in Figure 5. And a mem-
ory unit based on memristor crossbar is designed in the Diff
block to store the computing results of D(xi). Then, the
discriminator is idle which means no execution occurs un-
til the artificial samples generation (i.e. b) is finished. The
D(G(z)) is transmitted to Diff block after the c finished,
which is represented by d2 in Figure 5. Immediately, d3
which includes the gradient computation and its transmis-
sion to the discriminator block is executed. Consequently,
the weights updating in the discriminator (e2) and genera-
tor (f2) block run simultaneously. In addition, although the
e2 is executed faster than f2, the next training iteration of
the discriminator starts asynchronously without introducing
additional memory usage in the discriminator block as is in-
dicated by Dt+1,1

forward. The training process of the generator
and discriminator become synchronous before c starts in the
(t+ 1)th iteration.

As is discussed above, the parallelism of the computa-
tion can be largely improved. The time cost of the GAN
computation following the basic pipline and the proposed
cross-parallel pipline is evaluated on CIFAR-10 dataset [21]
to indicate this improvement. Also, the simulation is exe-
cuted on the simulator NVSim [20]. The results are shown
in Table 1, we can observe that 1.6× speedup is achieved
by utilizing the cross-parallel pipline. In addition, the usage
rates of the Discriminator block and Generator block are
improved 3.8× and 2.2× respectively.

4. DESIGN DETAIL
In this section, the implementation of the Dicriminator

block, Generator block and Diff block is explained in de-
tail. All of the above blocks are implemented based on the
memristor crossbars.
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4.1 Parallel and Memory-Free Structure for
Discriminator and Generator Blocks

In previous research [12], the memristor-based computa-
tions for CNN training and testing has been implemented.
However, these designs cannot be used in the GAN train-
ing because two major reasons. First, the gradient for the
output layer of CNN was computed as the output minus
the true label previously, which is not adapted to GAN.
Moreover, the previous framework involves a large number
of memory units, such a design will result in heavy area cost
and time-consuming in GAN computations.

To solve the above challenges, we proposed a a parallel and
memory-free structure as is shown in Figure 6. The squares
in different color represent the processing units of error com-
putations, weight updating, and (de)convolutional opera-
tions respectively. These units are built by the memristor-
based crossbar, IFC, and digital logic [16, 12], and a sim-
plified mapping scheme is shown in Figure 7. The pro-
posed structure is composed of a parallel forward flow and
a memory-free backward flow. It can work as the discrim-
inator or generator block with different initial weights pro-
grammed on the (de)convolutional operation units.

4.1.1 The Parallel Forward Flow
The forward processing of GAN includes the CNN and

DeCNN computations. Consider a GAN structure with 5-
layer CNN and 5-layer DeCNN, the parallel flow is depicted
in the above part of Figure 6. Initial or updated weights, i.e.
wl in Figure 7 (a) are programmed to the memristor crossbar
of the (de)convolutional layer and the results processed from
the forward flow are obtained as ol that works as the input
to the next layer. The mapping and programming method is
follows Section 2.2 and previous researches [12, 16]. Multiple
samples can be processed on these same processing units
with different inputs, and thus parallel computations can
be achieve. The final output of the parallel forward flow is
transmitted to the Diff block.

4.1.2 The Memory-Free Backward Flow
The memory-free backward flow aims to update the weights

of the forward flow based on the gradient from the diff-block.
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Figure 7: The simplified mapping method of dif-
ferent layers. Blue: (de)convolutional operations,
Green: weight updating, Yellow: error computa-
tion.

The backpropogation method used to update weights of
(de)cnn can be summarized as equation 3, where l repre-
sents the index of the (de)convolutional layer, el represents
the gradient, wl represents the weights, w∗l represents the
updated weights and wTl represents the transposition ma-
trix of the weights, o′l represents the dirivative of the lth

layer output signals and α represents the learning rate. Be-
cause the dirivative of ReLU activiation function is equal to
the output signal itself, o′l is equal to ol.{

el = el+1

⊗
wTl (a)

w∗l = α · el
⊗
o′l + wl (b)

(3)

The memory-free backward flow is proposed to implement
the backpropogation method, which is depicted as the below
part of figure 6. Weights’ transposition, i.e. wTl in Figure 7
(c) are read from the operation uints in the forward flow and
programmed to the memristor crossbar of the error compu-
tation uints. Outputs of each layer in the parallel forward
flow, i.e. ol in Figure 7 (b) are programmed to the mem-
ristor crossbar of the weight updating uints. The input to
the error computation uint is the errors computed from the
error commputation uint in the next layer, i.e. el+1 in Fig-
ure 7 (c) and then current layers’ errors, i.e. el in Figure 7
(c) are computed. These errors are also input to the weight
updating uints to compute the updated weights i.e. w∗l in
Figure 7 (b).

In previous designs [12, 16], they use memory to store the
updated weights or the inter-layer signals of CNN. The rea-
son that the proposed design does not need special memory
is that we store the weights and inter-layer signals in the
same memristor crossbar as computation uints. The inter-
layer signals are programmed to the weight updating uints
directly used to compute the updated weights, shown as
the green arrows in figure 6. The updated weights are pro-
grammed to the (de)cnn computation uints, shown as the
blue arrows in figure 6.

4.1.3 Timing Sequence of the Parallel and Memory-
Free Structure

The timing sequence of one iteration for the parallel and
memory-free structure is detailed as Figure 8. First, (de)cnn
operation uints process the input data and the inter-layer
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Figure 8: The timing sequence of the parallel and
memory-free structure

signal is programmed to the weight updating uints imme-
diately. After (de)cnn operation uints processing the in-
put data, the weights from these uints are programmed to
the error computation uints and then they begin computing
the backpropogation errors and weight updating uints be-
gin computing the new weights which are programed to the
(de)cnn operation uints directly.

4.2 The Implementation of Diff-Block
The implementation of Diff-Block is detailed shown as Fig-

ure 9. Diff-block is composed by two memristor-based look-
up tables (LUT) [22], the memristor-based memory unit
[20, 23] and two memristor-based adders [16]. LUT1 stores
values of OθlogD(x) and LUT2 stores values of Oθlog(1 −
D(G(z))). Linear transfromation, 1

m
, can be done in the

adder [16].
When the discriminator-block transmitted D(x) to the

diff-block, values of OθlogD(x) are read from the LUT1
and stored in the memristor-based memory. The mem-
ory should be able to store m values where m represents
the batch size. Generally, the batch size is 64. When the
discriminator-block transmitted D(G(z)) to the diff-block,
values of Oθlog(1 − D(G(z))) are read from LUT2. Those
values are input to the adder and the ErrorG is computed.
Meantime, the data in the memory are input to the adder
as well as the above result and ErrorD is computed.

5. EVALUATION
In this section, we evaluate the performance of the pro-

posed memristor-based GAN accelerator on accuracy, speed,
energy, and area cost. The performance is compared with
the previous GPU-based platform [9] and the microarchtu-
ral design [13] based on FPGA. The Nvidia Geforce GTX
1080 is used as the GPU platform. The proposed design is
evaluated on NVSim [20] simulator environment. The mem-
ristor crossbar size is designed to be 32× 32, the resistance
range of the memristor device is set to be [50KΩ, 1MΩ], and
the required crossbar number is calculated following the im-
plementation in 2.2 and [11]. The circuits designs for the
neurons and control units follows the [12].
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LUT2D(G(z))

M
𝐸𝑟𝑟𝑜𝑟𝐷

𝐸𝑟𝑟𝑜𝑟𝐺

:memory unit
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Figure 9: The architecture of diff-block
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Figure 10: Accuracy in different data precision.

5.1 Accuracy in Different Data Precision
In general, the memristor supports limited precision in

data transmission, data storage and computation [24, 16].
Although analog states of memristor have been reported by
the HP Research Lab [25], high precision involves in scari-
fication of speed and design cost. In this section, the data
bitwidth for optimized accuracy and design cost is explored,
and the GAN computing accuracy in different data bitwidth
is shown in Figure 10. As referred in [9], the performance
of GAN can be measured by using the discriminator as a
feature extractor for a classifier. In this experiment, SVM
works as the classifer and the discriminator of GAN works as
the extractor for image classification. MNIST and Cifar-10,
whose characters are listed as table 2, are used as the bench-
mark. The accuracy based on the feature extractor trained
from GPU is regarded as the baseline. The accuracy based
on the fixed-point feature extractors is compared with the
baseline. Two dataset is utilized as is depicted in Table 2:
MNIST and CIFAR-10.

Figure 10 shows the normalized accuracy when discrim-
inators are trained by data in different data format and
bitwidth. The results show that the system accuracy with
8-bit data precision has a slight accuracy loss the the nor-
malized accuracy is still higher than 90% on MNIST and
CIFAR10. However, significant accuracy loss is introduced
in the 4-bit data precision. Therefore, the 8-bit data pre-
cision, i.e. memristor device with 8-bit states is utilized in
this work and the following evaluation.

5.2 Computing Parallelism
In the training process of GAN, the generator processes

a batch of noise samples and the discriminator processes a
batch of real images. The computing parallelism is referred
to the generator (or discriminator) blocks that compute in
parallel in each training iteration, i.e. the s in Figure 6 As
is indicated in Section 3.2, the computing efficiency can be
improved by higher computing parallelism. Note that higher
parallelism results in an increase of the area and design cost
in the proposed GAN computing system. In this section, the
speed and area cost in different data parallelism scenarios

Table 2: Dataset
training size testing size scale category

MNIST 60000 10000 20× 20 10
CIFAR-10 50000 10000 32× 32 10
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are explored. The bedroom dataset from Lsun [26] is used
in this evaluation. The maximum parallelism size is selected
to be 64.

Figure 11 shows the time and area cost in different paral-
lelism. The computation time decreases with the increase of
the parallelism size while the area cost increases heavily in
high parallelism scenario. The main reason is that parallel
computing can accelerate the speed of the image generation
in the generator block, as well as the real and artificial im-
ages generation in the discriminator block. However, the
speed of other procedures in training such as propagation
and weight updating in the backward computations does
not rely on the parallelism improvement. Hence, the speed
increase rate becomes extremely slow in large parallelism
designs while the area cost increases fast. Based on the re-
sults, the computing parallelism size is set to be 32 in the
developed memristor-based GAN accelerator.

5.3 Memristor-based GAN Computing Speed
In this section, the speed of the memristor-based GAN ac-

celerator is evaluated and compared with conventional plat-
forms such as GPU and FPGA in previous works. Two big
dataset is chosen–ImageNet and Lsun/bedroom is chosen
for better demonstration and the dataset detail is listed in
Table 3. As is discussed above, the data bitwidth in the pro-
posed memristor-based design is 8 and the parallelism size
is 32.

The batch size is set to be 64 in these three scenarios.
The speed of GAN training process is evaluated based on
the fact that the testing process also works as an inter-step
in GAN training.

The experimental results are listed in Table 4 It is observe
that our proposed design can achieve 2.8× (2.7×) compared
with GPU and 5.5× (4.8×) speedup compared with the
FPGA-based accelerator on Lsun (ImageNet). In addition,
our design has higher speedup for larger dataset because the
parallel pipeline and the memory-free structure can largely
decrease the time cost as is discussed in Section 4.

We also analyze the time cost of each computing proce-

Table 3: Dataset
Dateset Size Image Size

ImageNet 456567 400× 300
Lsun/bedroom 3033042 256× 256

Table 4: Speed of the memristor-based, GPU,
FPGA-based accelerator

ImageNet LSUN/bedroom
time(h) speedup time(h) speedup

This Work 6.3 - 47.2 -
GPU 17 2.7× 130 2.8×

FPGA 30 4.8× 255 5.5×

𝐷𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐺𝑏𝑎𝑐𝑘

𝐷𝑏𝑎𝑐𝑘

Other30.54%

38.91%

3.52%

15.87%

11.16%

(a) Proposed Design

83.68%

9.13%

3.52%

𝐷𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐺𝑏𝑎𝑐𝑘

𝐷𝑏𝑎𝑐𝑘

3.67%

(b) GPU

Figure 12: Time cost for each procedure of training
GAN

dures of GAN training that described in Section 2.1, and the
results are indicated in Figure 12. As is shown in Figure 12
(b), major time cost in the GPU based GAN computations
occurs in the Dforward procedure. However, our design re-
duces such a cost efficiently from 83.68% to 11.16%, as is
demonstrated in Figure 12 (a). Our proposed design per-
forms highly resource usage compared with the GPU own
to the developed cross-parallel pipline, hence the GAN com-
puting speed is improved efficiently.

5.4 Energy and Area Cost Analysis
In this section, we evaluate and compare the energy and

area cost of the memristor-based GAN accelerator. The en-
ergy cost of each procedure in GAN training is also analyzed
in detail.

Table 5 shows the energy cost comparison of the memristor-
, GPU-, and FPGA-based accelerator. Our proposed design
achieves 6.1× and 1.4× energy saving compared with the
GPU and FPGA-based GAN computing respectively. The
energy cost of each training procedure is analyzed as Fig-
ure 12. It is observed that the energy cost of the Dforward
in the proposed design has a lower energy cost percentage
in the whole training process compared with the computa-
tions on GPU. Such a low energy cost owns to our proposed
memory free data flow in the memristor-based accelerator,
in which the energy cost of data communication between
memory and CNN (or DeNN) is saved.

The area of the proposed design is 1644mm2 when the par-
allelism size is designed to be 32. The parallel forward flows
in the discriminator-block and generator-block accounts for
44.8% and 49.7% respectively. The area of the parallel for-

Table 5: Energy Cost of the ReRAM/GPU/FPGA-
based accelerator

ImageNet LSUN/bedroom
energy

saving
energy

saving
(KW/h) (KW/h)

This Work 0.51 - 3.8 -
GPU 3.1 6.1× 23.4 6.1×

FPGA 0.79 1.5× 5.5 1.4×
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Figure 13: Energy cost for each procedure of train-
ing GAN

ward flow is positively related to the parallelism size. When
the parallelism size is equal to 1, the area of parallel flows
in discriminator and generator-block are equal to 23.0mm2

and 25.5mm2 respectively and the total area is 139mm2.

6. CONCLUSION
Generative adversarial network (GAN) is an effective un-

supervised model that is extremely computationally expen-
sive. To address this issue, we proposed a memristor-based
accelerator. The proposed design has two major aspects in-
cluding a cross-parallel pipeline and the memory-free flow.
The proposed accelerator was tested on large dataset: Im-
ageNet and Lsun. With area equal to 1644mm2, the pro-
posed accelerator can achieve 2.8× (2.7×) and 5.5× (4.8×)
speedup, as well as 6.1× (6.1×) and 1.4× (1.5×) energy-
saving compared with GPU-based and FPGA-based GAN
accelerators respectively on Lsun (ImageNet) dataset.
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