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         Abstract 
 

The paper presents an attempt to solve a 300-year-old mathematical problem with minimalistic means of   

high-school mathematics 
1
]. As introduction, the Pythagorean equation of right angle triangles a

^2
 + b

^2
 = c

^2
 

inscribed in the semicircle is reviewed; then, in an analogue way, the equation a
^3

 + b
^3

 = c
^3

  (and then  

a
^n

 + b
^n

 = c
^n

) represented by a triangle inscribed in the (vertical) ellipse with its basis c making the minor axis of 

the ellipse and the sides of the triangle made by the factors {a,b}.  Should the inscribed triangles a
^3

 + b
^3

 = c
^3

  

(and then a
^n

 + b
^n

 = c
^n

) represent the integer equations - with {a, b, c, n} positive integers, n > 2 - their sides must 

be rational to each other; they must form so called integer triangles. In such triangles, the square of altitude y
^2

 (or 

the altitude y) must be rational to the sides. An assumption is made that at least one of the inscribed triangles may be 

an integral one. A unit is derived from c by dividing it by a natural number m; if the assumption is true, the unit will 

measure (= divide)  y
^2

 (or y) without leaving an irrational rest behind. The value of  y
^2

 (or y) is taken from the 

equation of the ellipse. Conducted calculations show that  y
^2

 (or y) divided by the unit leave always an irrational 

rest behind incompatible with c; this proves that y
^2

 (or y) is irrational with the basis c what excludes the existence 

of the assumed integral triangles and, in consequence, of the discussed integral equations.  

 

 

 
"… one of a host of mathematicians who combined numbers and general nonsense…" Albert H. Beiler on some 

less talented mathematicians in Recreations in the Theory of Numbers, Dover Publications, 1966 

 

"Ubi materia, ibi Geometria."  Where there is matter, there is geometry. — Johannes Kepler; from 

https://todayinsci.com/ 

 

"Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet."  - I have discovered 

a truly remarkable proof of this theorem which this margin is too small to contain. Note written [by Fermat] on the 

margins of his copy Arithmetica of Diophantus…(Wikiquots; https://en.wikiquote.org/wiki/Pierre_de_Fermat) 

 

…So, Fermat's original proof is still out there somewhere?  Andrew Wiles: "I don't believe Fermat had a proof. I 

think he fooled himself into thinking he had a proof. But what has made this problem special for amateurs is 

that there's a tiny possibility that there does exist an elegant 17th-century proof… "  
(Nov 2000; NOVA; http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html) 
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1.   a
^2

 + b
^2

 = c
^2

  and a triangle inscribed in a semi-circle 
 

Recall the eternal Pythagorean equation : a
^2

 + b
^2

 = c
^2

 and representing (modeling) it the right angle triangle abc.  

Let the right side of the equation  (c
^2

) be kept constant and change a & b (left side); the changes must fulfill then 

the requirements (constraints) of the equation. Let initially a = b, consequently, a
^2

 = b
^2

 and  a
^2

 + b
^2

 = 2a
^2

;  

then 2a
^2

 = c
^2

 and c = a√2. The equilateral (and right angle) triangle abc is built now by the two sides a and  

a hypotenuse c equal to a√2. Subsequently, b will be changed in relation to a: b > a, then b >> a until b will 

approach c and a will approach 0. After reversing sides, a will be growing and b decreasing: a > b, a >> b until  

a approaches c and b approaches 0. All resulting in such a way triangles are 90
0
 degree at the apex and all apices 

together delineate a semicircle whose a diameter is the (constant) hypotenuse c; evidently, all the triangles are 

inscribed in the (semi)circle. 

 

          

 
 

     

      

      

      

      

      

      

      

      
 

     
 

     

      

                    

2.   Trying to model the equation a
^3

 + b
^3

 = c
^3

  by a triangle inscribed in an ellipse 
 

In a similar way to squares, the equation of cubes: a
^3

 + b
^3

 = c
^3

 also can be modeled by a triangle: in a triangle  

abc two sides (a & b) - raised to the power of  3 and added together - are equal to the third side (basis c) raised  

to the power of three (c
^3

).        

 

At the start a = b (and a
^3

 = b
^3

); consequently, c
^3

 = 2*a
^3

 and c = a*  
 

. Let c (as a basis of the triangle) stay 

constant (c = a*  
 

), b grow and a decrease - from b = a to  b > a, then b >> a until b approaches c and a 

approaches 0. While growing b is given, a is calculated from  c
^3

 - b
^3

 = a
^3

.  

 

It is to observe that the apices of the triangles draw an upper (left) quarter of a (vertical) ellipse; after reversing sides 

a is growing and b decreasing - from a = b to a > b and, later on, to  a >> b and up to a = (almost) c - while b 

approaches 0; the second quarter of the ellipse is drawn (on the right side).  

 

To stress the difference to the power of  2 (and, later on, to the established labeling of the equation of the ellipse),  

the labeling of the triangle sides will be changed: the equal two sides raised to the power of  3 will be called now 

r0
^3

; thus, at the beginning,  (left) r0
  
= (right) r0 and  r0

^3 
+ r0

^3
 = 2r0

^3
 = [r0*  

 
]

^3
; c = r0*  

 
  corresponds to  

the old hypotenuse c when the power n was n = 2. Keeping  c = r0*  
 

  constant, the ratio of the two remaining 

sides is successively changing; the decreasing side of the triangle (former a) is now  r1, the increasing side r2.  

So, first  r2
 
= r1 (=  r0), then  r2  >  r1  and  r2 >>  r1 until r2 approaches c and  r1  approaches 0.   

 

All the time the sum of the cubes of the two sides is the same: c
^3

. Again,  r1
^3 

+ r2
^3

 =  c
^3

;      c
^3

 = [r0*  
 

]
^3

. 
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The situation is mirrored when the r1 is growing, r2 decreasing and - when r1 is approaching c - then r2 is 

approaching 0. As mentioned, varying ratio of  r2/r1 will cause the apices of the triangles draw the curve of a 

(vertical) ellipse. 

 

As an example, a calculating table (in Excel) and a matching chart have been created with the starting value r0 = 50. 

So, first  r1
 
= r2 = r0 = 50 ; c = r0*  

 
  = 62.9960524947436    63 ; c will be constant; r2 is generated by the table 

(or inserted manually) and r1 is calculated from  r1
^3 

= c
^3

 -  r2
^3

.  

From the triangle sides {r1, r2, c} - after Heron's formula - the area is calculated  hence the triangle's  altitude.  

The top angle α (at apex) is the sum of two adjacent angles α1 + α2 = α  where α1 is the angle between the side  r1 

and the altitude and α2 (is) the angle between the altitude and the side r2.  

The ratios (altitude/r1) = cos α1; (altitude/r2) = cos α2 . An auxiliary value w1 is calculated - it is the distance on c 

between the point where the altitude crosses the basis c and the nearest corner on c. Further on, |-x| = (c/2) - (w1); 

(y) = altitude;  all calculated by the programmed table.   

On the ellipse, the Cartesian coordinates with 0 (origin) in the middle of c is inserted; the apex p of each generated 

triangle has coordinates p(-x, y) or p(x, y). The ellipse is generated by the apices of all triangles…   

 

                         
(c)   r1 r2  area of  ∆     y (altitude)              w1      -x  +x   α1  α2   α  

 

63 50.0 50 1223.1               38.8             31.5 0.0 0.0 39.0        39.0 78.1 

63 49.0 51 1221.6               38.8             29.9            -1.6 1.6 37.6 40.5 78.1 

63 47.8 52 1216.9               38.6             28.2 -3.3 3.3 36.1 42.0 78.1 

63 46.6 53 1208.5                   38.4             26.4 -5.1  5.1 34.6 43.6 78.2 

63 45.2 54 1195.7               38.0             24.6 -6.9 6.9 32.9 45.3 78.3 

63 43.7 55 1177.9               37.4             22.7 -8.8 8.8 31.2 47.2 78.4 

63 42.1 56 1154.1               36.6             20.6 -10.9 10.9 29.4 49.1 78.5 

63 40.2 57 1122.7               35.6             18.5 -13.0 13.0 27.5 51.3 78.7 

63 38.0 58 1081.9               34.3            16.3 -15.2 15.2 25.3 53.7 79.0 

63 35.5 59 1028.4               32.7            13.9 -17.6 17.6 23.0 56.4 79.4 

63 32.4 60 956.9               30.4            11.3 -20.2 20.2 20.3 59.6 79.9 

63 28.4 61 856.2               27.2             8.4 -23.1 23.1 17.1 63.5 80.7 

63 22.7 62 696.4               22.1             5.1 -26.4 26.4 12.9 69.1 82.0 

63 18.0 62.5 559.5              17.8             3.1 -28.4 28.4 9.8 73.5 83.3 

63 15.2 62.7 473.9              15.0             2.1 -29.4 29.4 8.1 76.1 84.2 

63 13.3 62.8 414.4              13.2                       1.6 -29.9 29.9 6.9 77.9 84.8 

63 10.5 62.9 327.8              10.4            1.0 -30.5 30.5 5.3 80.5 85.8 

63 8.2 62.95 257.1               8.2            0.6 -30.9 30.9 4.0 82.5 86.6 

63 4.2 62.99 131.0               4.2            0.1 -31.4 31.4 2.0 86.2 88.2 

63 0.9 62.996   26.9               0.9            0.0 -31.5 31.5 0.4 89.2 89.6 

 

 

 

 

 

 

The marks on the ellipse below correspond to the altitude of the triangle (y) from the table.  [The curve is smoothed 

by Excel.] The basis of the triangle is c = r0*  
 

. The sides  r1 & r2  on the graph below were taken randomly as an 

example.  

 
Almost all details are seen here: a triangle r1r2c taken into consideration, its apex p(-x, y) lying on the ellipse; there 

is c, [c = r0*  
 

], y = altitude, further the value w1 and (-x).  

On the left side of the chart a dotted square is inserted to show that the curve is not a circle but rather an ellipse.  

Calculations of the semi-axes a & b:  b is 1/2 of c;  b = (r0*  
 

)/2;  b
^2

 = (r0
^2

)*  
 

/4 

the semi-axis a: r0
^2

 = a
^2

 + b
^2

;   a
^2

 = r0
^2

 -  (r0
^2

)*  
 

/4;   a
^2

  = r0
^2

*(1 -   
 

/4);  a = r0*[1 -   
 

/4]
^1/2
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3.   Testing whether the model triangle inscribed in the ellipse can be rational 
 

Recall again the old Pythagorean equation (of the rectangular triangle) a
^2

 + b
^2

 = c
^2

 (where c is a hypotenuse).  

If  a is assumed rational and a = b, then c = a*   ; it makes c clearly irrational to a.  

Now, if - exactly as on page 1 - to keep the hypotenuse c constant and change the a/b ratio (still fulfilling  

the equation)  - could a point be reached where all 3 factors of the equation {a, b, c}  (= all sides of the triangle)  

are rational to each other ? How could c, which is constant & irrational, change unexpectedly to rational ? 

 
For more than 2500 years it has been known as possible; namely, after a & b have changed to sides with values  

a1*   & b1*    
  [also see 

2
], then the sides {a, b, c} have values {a1*  ,  b1*  , a*  }, respectively.  

Dividing the sides of such triangle by    makes the irrational factor      be cancelled off; it leaves sides 

rational/integral to each other.  

 

The irrationality of the hypotenuse c [c = a   ]  must be therefore assessed in relation to the two remaining sides 

{a1 , b1}. If all 3 sides {a1, b1, c} have the same irrational factor and if it is possible to measure them with a 

common unit (be it even an irrational one) without leaving a reminder, then those segments (here: sides)  

can (and even must !) be considered as rational to each other. Again, if a is assumed as rational, a*   will be 

irrational to a; but a*   and a1*   will be rational to each other when a and a1 (without the factor   ) are.  

 

Therefore - in the triangle  r1r2c  whose three sides stand for the equation  r1
^3

 +  r2
^3

 = c
^3

 

and whose constant (& irrational) basis c is  c = r0*
3
    - it seems that the only way to make all three sides of the 

triangle rational to each other is to find similar irrational values for the sides  r1 &, r2: 

r1*
3
    and r2*

3
    [stipulation: r1 and r2 alone, without the factor 

3
  , must be rational to r0].  

 

So, the assumption has been made that such a triangle, called the "integer triangle", exists.  

                                                 
 

      2] However, a1 and b1 alone (= without the factor √2) as well as a must be rational (to each other)… 

Axis y 

r0 r0 

r2 
r1 

Axis x 

y (= altitude) 

-x 

p (-x, y) 

semi-major axis a 

semi-minor axis b 

b = (r0*2
^1/3

)/2 

a
 =

 r
0
[1

 -
 (

4
^

1
/3
/4

 )
]^

1
/2
 

 

w1 

α1 
α2 
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Rationality in this triangle would mean divisibility by r0*
3
   without [an irrational] reminder; but -  since  r0*

3
    

is the greatest of the three sides  -  a smaller unit will be rather used  [for division and/or measuring]:  

- a rational part of r0*
3
  . Therefore measuring unit is: unit = ([r0*

3
  ]/m);  [m being a natural number,  

m > 1]. In order to accept the quotient as rational,  the result of the division by the unit [(r0/m)*
3
  ] must be  

an integer or rational number and no an irrational [with one small exception to this rule - see below].  

 

Should measuring (= dividing by the unit) show  rationality, the result will be written as rational (rat. or rat1, rat2 

etc.); thus (r1*
3
  )/[(r0/m)*

3
  ],  (r2*

3
  )/[(r0/m)*

3
  ]  including (r0*

3
  )/[(r0/m)*

3
  ]  will result in rat. or  

rat1 , rat2 , rat3 - if it is an integral triangle.  

 

If the assumed as "rational" value [rat. rx*
3
  ] is squared, the measuring will give:  

[rat. rx*
3
  ]

^2
/[(r0/m)*

3
  ] = [rat.*

 3
  ]. Going slightly ahead,  that could be the case in Heronian triangles [4] 

where the altitude y is rational to the sides and - if squared to y
^2

 - and then measured with the unit would give as 

result [rat.*
 3
  ] and not [rat.] [see 

4
 and later on in text]. The last result is still acceptable as "rational" (to the other 

segments).  

 

Back to the main issue: to examine if the assumption (of an instance of an integral triangle) is correct, it is necessary 

to test whether the analyzed triangle has all properties of integral triangles [4]. Among others, the altitude or the 

square of altitude of such triangle has to be rational [see also 
3, 4

]. Note that the apex of any triangle inscribed in the 

way specified above must lie on the ellipse itself; call it a point p; this point p can be described  by Cartesian 

coordinates as p(x, y) [or p(-x, y) when r1 < r2]. Note farther the obvious: y is the altitude of the inscribed triangle. 

Again, for an integer triangle, the altitude  y or the squared altitude  y
^2

 has to be rational to all three sides of the 

triangle; consequently, y
^2

 of the inscribed triangles will be tested.  

 

From  the equation of the ellipse [3]   (y/a)
^2

 + (x/b)
^2

 = 1,  y and y
^2  

will be solved:  

(y/a)
^2

 + (x/b)
^2

 = 1  | * a
^2

  
y

^2
  +  a

^2
 *(x/b)

^2
 = a

^2
 ;   y

^2
  = a

^2
 - a

^2
 *(x/b)

^2
     

y
^2

  = a
^2

 [1 - (x/b)
^2

]  ;    y
^2

  = a
^2

 [(b
^2

 - x
^2

)/b
^2

]    

y
^2

  = (a
^2

/b
^2

)*(b
^2

 - x
^2

) ;   y  = (a/b)*                                       

 

The most convenient form of  y
^2

 for a discussion seems to be  y
^2

  = a
^2

*[(b
^2

 - x
^2

)/b
^2

]. In an integer triangle  

the altitude always divides the basis into rational parts; the segments b & x have thus to be rational.  

So, x is a rational part of b:   x = (k/l)*b    or    x = (k/l)*r0  
 

/2 where {k,l} are integers, k < l. 

x = (k/l)*r0  
 

/2;    x
^2

 = (k/l)
^2

*(r0
^2

)*  
 

/4   

 

A part of  y
^2 

, [(b
^2

 - x
^2

)/b
^2

] is equal to:  

[(b
^2

 - x
^2

)/b
^2

] = [(r0
^2

)*  
 

/4 - (k/l)
^2

*(r0
^2

)*  
 

/4]/[ (r0
^2

)*  
 

/4] = 1 - (k/l)
^2

 

Thus, y
^2

 = [a
^2

]*[1 - (k/l)
^2

] = [r0
^2

*(1 -   
 

/4)]*[1 - (k/l)
^2

] 

 

Now, y
^2

 measured with the unit is: y
^2

/unit = y
^2

/[(r0/m)*
3
     = [r0

^2
*(1 -   

 
/4)]*[1 - (k/l)

^2
]/ [(r0/m)*

3
     

y
^2

/unit = m*r0*[1 - (k/l)
^2

]*[1 -   
 

/4]/
 3
   = [m*r0]*[1 - (k/l)

^2
]*[1/

3
    - 3      

 

Simplified, y
^2

/unit = [rat1]*[rat2]*[irr. part of type (1/
3
    - 3     ]. However, for y

^2
, to show a rational 

relationship with the sides of an integral triangle, the result should have been: [rat]  

- when y
^2

 is rational to the sides and y is not  - or [rat]*[irr. of type (
3
   ] - when y (and y

^2 
!) are rational with 

sides of the integer triangle - as it is the case in Heron's triangles.  

                                                 
3] The terms integral and rational are used interchangeably; any rational not integral values ( = rational and fractional  

at the same time) can be easily changed to integral by multiplying by denominators of rational fractions. 
4] In so called Heron's integral triangles all three sides and (additionally) the altitude have to be rational [4]; it's a more 

stringent requirement than that for the square of the altitude being rational… Recall that all rationals - if squared - remain 

rational but only some irrationals of the type                        become rational/integral when squared: for example: 

[√2]^2  = 2. 
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Since the confirmation of mutual rationality of the triangle sides has failed, the existence of such integral triangle 

has to be rejected. In consequence, it is impossible for all 3 sides of the (inscribed) triangle - all 3 factors of the 

equation r1
^3

 + r2
^3

 = c
^3

 - to be rational/integral at the same time. 

 

 

4.   General equation  a
^n

 + b
^n

 = c
^n

  when  (integer n) > 2 

 
Let the equation  a

^n
 + b

^n
 = c

^n
  be represented by the triangle with the sides {a, b} and the basis constant c, 

at  n integral,  n > 2. To check, whether {a, b, c} can be all rational at the same time, a discussion like above for   

a
^3

 +  b
^3

 = c
^3

 will be carried out.  

 

Similar labels will be used like in the case for n = 3: r0
^n

 + r0
^n 

= 2r0
^n

 = c
^n

 

c
^n

 = 2r0
^n

 |  ( )
^1/n 

;  c = r0*2
^1/n

 ; c = r0*
n
     ; a → r1 ; b → r2 ; r1

^n
 + r2

^n 
= 2r0

^n
 = c

^n
 

 

Actually, any real positive value can be ascribed to  c
^n 

; then it suffices to calculate what r0
^n

 and - later on - what  

r1
^n

 &  r2
^n

  can build it. So, first  r0
^n

 + r0
^n 

= 2r0
^n

 = c
^n

  [or  c
^n

  = r0
^n

 + r0
^n 

= 2r0
^n

] 
 
and then  

c
^n  

= r1
^n

 + r2
^n 

= 2r0
^n

. While  r1 and  r2  act like variables, c stays constant; there can be an infinite number of the 

sides r1 & r2 and, consequently, an infinite number of the triangles r1r2c with the same c and staying within 

constraints of the equation  r1
^n

 + r2
^n

 = c
^n

. These triangles delineate with their apices a continuous curve which 

forms a vertical ellipse.  

 

If at least one of these innumerable triangles has got all sides rational (to each other) at the same time, i.e. if it 

happens to be an integral triangle r1r2c, the altitude y or the square of altitude y^
2
 of this triangle must be rational 

to all sides. [See also 
5
 and 

6
]   

 

Relevant segments and relations between them (see the graph below): 

b = c/2 = [r0*2
^1/n

]/2 = r0*2
^(1-n)/n

 ; b
^2

 = r0
^2

*4
^(1-n)/n

 

a
^2

 = r0
^2

 - b
^2

 = r0
^2

 - r0
^2

*4
^(1-n)/n

  =  r0
^2

[1 - 4
^(1-n)/n

]  

a
^2

 =  r0
^2

*[1 - 4
^(1-n)/n

];  a  =  r0*[1 - 4
^(1-n)/n

]
^1/2

 

 
Additionally,  r0

^2
 is irrational towards (square of) the semi-major axis: a

^2
   (a

^2
 = r0

^2
*[1 - 4

^(1-n)/n
]) and  

(square of) the semi-minor axis:  b
^2   

(b
^2

 = r0
^2

*4
^(1-n)/n

); farther,  a
^2

 and  b
^2

 are irrational to each other.   

If so, then r0
 
 is irrational to a  (a = r0*[1 - 4

^(1-n)/n
]

^1/2
 ) and  b  (b = r0*2

^(1-n)/n
); also a  (a = r0*[1 - 4

^(1-n)/n
]

^1/2
)  

and  b (b = r0*2
^(1-n)/n

)
  
are irrational to each other. 

 

Rationality of  y
^2

 is tested by dividing it with the designated rationality unit: a small part of the basis c; 

unit = c/m; c/m = [r0(2)
^1/n

/m] (m being natural number, m > 1).  

 

First,  the equation of the ellipse (see [3] and 
7
] ) is solved for y

^2
;  y

^2 
= (a

^2
/b

^2
)*(b

^2
 - x

^2
). Next, all factors  

of  (a
^2

/b
^2

)*(b
^2

 - x
^2

) are examined
 
for their rationality. The factors (b

^2
 - x

^2
) & (b

^2
) will be all rational (to  

the sides of assumed integer triangle…) since b = c/2 [= half of the basis] and |- x| is determined by the altitude 

crossing the basis c and in the integral triangles this segment must be rational; thus: (b
^2

 - x
^2

)/(b
^2

) = [rat]. 

y
^2 

= (a
^2

/b
^2

)*(b
^2

 - x
^2

) = [a
^2

]*[(b
^2

 - x
^2

)/(b
^2

)] = (a
^2

)*[rat]   
y

^2 
/unit = (a

^2
)*[rat.]/[r0(2)

^1/n
/m] = r0

^2
*[1 - 4

^(1-n)/n
]*[rat.]/[r0(2)

^1/n
/m] = = [m*r0*rat.]*[2

^-1/n
 - 2

^(1-2n)/n
] 

y
^2 

/[r0(2)
^1/n

/m] = [m*r0*rat.]*[2
^-1/n

 - 2
^(1-2n)/n

]    

 

                                                 
5] y (the altitude) is, evidently, a perpendicular segment from the apex to the basis c. 
6] If n = 2, the apices of the inscribed triangles draw a circle;  if  1 < n < 2  there will be a horizontal ellipse; at  n > 2 , n real 

and positive  (not only integer), there will be a vertical ellipse.  
7] Equation of the ellipse [3]: (y/a)^2 + (x/b)^2 = 1 
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Conclusion: y

^2 
 divided by the unit 

 
[r0(2)

^1/n
/m] renders [m*r0*rat]*[2

^-1/n
 - 2

^(1-2n)/n
] which means  

[rat]*[irr.] = irrational. Had the result been "rational" (i.e. compatible with c or unit), it would have been:  

[rat. number] or [rat. number]*[(2)
^1/n

] what would have meant that y
^2

 or  y (respectively) are rational with the 

sides of the assumed rational triangle r1r2c.  

(Note that the squares of the semi-axes  a
^2

 and b
^2

  of the ellipse used here shall always be irrational to each other.)  

[See also 
8
] 

 

 Ergo, since  y
^2

 (or y) measured with the unit derived from c is never rational to the sides of the assumed integral  

triangle r1,r2,c - that integral triangle cannot exist.  

 

In the end, Pierre de Fermat (1607 - 1665) was right twice: in  a
^n

 + b
^n

 = c
^n

  the factors {a, b, c}- at n > 2 and 

integral - cannot be all rational at the same time and a proof for that is a bit larger than a margin (of a book) but not 

much larger [1], [2].  
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8] Note that n is here n <> 2; if  n = 2, then semi-major axis a = semi-minor axis b = radius and the ellipse changes to a 

circle where  c = r0*(2)^1/2 = 2*radius; so, c & r0 are irrational to each other, but their squares are not: r0
^2 versus 2*r0

^2 is 

rational.                  


