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This note proposes a topic to the upcoming 7th Conference on Applied Geometric Algebras[1].
It conjectures that exact impedance quantization of the fractional quantum Hall effect[2, 3],
claims of gravitational wave echoes recovered from LIGO/VIRGO data[4], and mixmaster tidal
oscillations of Professor Thorne’s wife[5] share causal origins in quantized impedance networks
of Geometric Wavefunction Interactions of the particle physicist’s Clifford algebra.

Figure 1 shows the ‘theoretical minimum’ of the GWI
geometry

model. Euclid’s fundamental geometric objects are point, line, plane, volume

taken to comprise a minimally complete Pauli alge- 1

bra of 3D space, the vacuum wavefunction. Topolog- space

ically appropriate electromagnetic field quanta are as- 3D Pauli Clifford algebra
signed via the five fundamental constants of the model. | 1 scalar, 3 vectors, 3 bivectors, 1 trivector
Wavefunction interactions are modeled by the geomet- vacuum wavefunction

ric product of Clifford algebra, generating a 4D Dirac ﬁell’ds

algebra of flat Minkowski spacetime, an impedance
representation of the particle physicist’s S-matrix of
single-measurement observables.

five fundamental constants
€, 80, C, h,mg

Wavefunction interaction impedance matching gov-
erns amplitude and phase of energy transmission.
Given that fields of quantum field theory are quantized,
it is unavoidable that impedances of wavefunction in-
teractions are likewise quantized. Absence of the con-
cept from mainstream particle physics is a consequence
of several unrelated historical accidents[6].

spacetime
4D Dirac Clifford algebra
S-matrix of observables

Attributing quantized electromagnetic fields to geo- FIGURE 1. The GWI model

metric wavefunctions defined at the electron Compton wavelength and the Planck length per-
mits one to calculate the quantized impedance network of figure 2.

In ST units, the vacuum impedance excited by the photon is Zy = /o /€ = 377 ohms, where
Uo 1s magnetic permeability and & electric permittivity of the perturbed vacuum wavefunction.
With similar electric/magnetic ratios, quantum Hall impedance excited by electric charge
is Zy = g/e = ®g/e = h/e* = Zy/2a = 25812 ohms, where e is electric charge quantum,
@y magnetic flux quantum, % Planck’s quantum of angular momentum, ¢ the fine structure
constant, and by the Dirac relation eg = 7, g is the magnetic charge quantum. That vector
magnetic flux quantum and pseudoscalar magnetic charge are numerically equal in SI units,
Py = g, is a consequence of topological symmetry breaking by the pseudoscalar[7].

The fractional quantum Hall impedance arises from continued fractions of integer quan-
tum Hall. Zgye = mg/ne = m®Py/ne where m and n are integers with no common factors,
and n is odd excepting filling factors 5/2 and 7/2. Whereas integer QHE has m = n, one
flux quantum/magnetic charge paired with one electric charge, fractional QHE has m flux
quanta/magnetic charges paired with n electric charges. The possibility of finding a relationship
between fQHE and mixmaster cosmology arises from similar continued fractions[8].
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FIGURE 2. Mismatch of Compton and Planck wavefunction interac-

tion impedances, revealing an exact identity between gravitation and
electromagnetism([9]

end of inflation

[ 10-13

The point here, the first conjecture, is that mixmaster tidal oscillations[10] at the quantum
level are an equivalent representation of the various quantum impedance matches Kip and his
wife encounter on their path to the singularity, implying a requirement for quantum phase
coherence at the macroscale of experimentally observed black holes. The second conjecture
suggests that gravitational wave echoes[4] might similarly be regarded as reflections from
impedance mismatches at both the event horizon and the ‘angular momentum boundary’.
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