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Abstract 

The Schrödinger eigenvalue problem with diverse potentials is investigated in this work. It is 

shown that exact and explicit discrete bound state solutions may be computed in terms of 

elementary functions. 

Introduction 

The solution of the Schrödinger eigenvalue problem plays a fundamental role in 

description of quantum properties of dynamical systems. The Schrödinger 

equation with the purely exponential potential [1, 2]  

bxaexV )(                                                                                                            (1)                                                                                                     

where 0b , is, since many decades, the object of interesting mathematical and 

physical studies. This potential has been examined as a model of attractive 

potentials [3] for 0a , and 0b , and as a representation of repulsive potentials 

[4] where 0a , and 0b , for molecular physics. The complex eigenvalues of 

the Schrödinger equation with the repulsive potential have been explored 

recently [2]. Also the interest to study the discrete bound states defined by 0a , 

and 0b , has been underlined in the literature from the mathematical viewpoint 

as well as physical standpoint [1]. It is important to notice that the general 

solution to the Schrödinger equation with the exponential potential seems to be 

only computed in terms of various kinds of Bessel functions. More recently, 

scattering and bound states have been computed, within the framework of 

position- dependent mass Schrödinger equation with the exponential potential, 

in terms of elementary functions [5]. Therefore the investigation of exact and 

explicit integration of the Schrödinger equation with the purely exponential 

potential in terms of other types of functions rather than Bessel functions, 

precisely in terms of elementary functions, may be an interesting research 

problem in mathematical physics, for comparison objective. This may only be 

achieved under the condition that the Schrödinger equation with the exponential 

potential [1, 2] 
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where prime stands for differentiation with respect to the argument, is 

transformed into other types of exactly solvable differential equations, rather 

than in Bessel equation. In this context the fundamental problem in this work 

reduces to find such an appropriate transformation of variables. The present 

work assumes the existence of such a transformation so that the objective is to 

calculate the exact discrete bound state solutions of (2) in terms of elementary 

functions, for the first time, for the purely attractive exponential potentials. Thus 

using the point canonical transformation the Schrödinger equation (2) is mapped 

into an adequate differential equation which may be exactly solved in terms of 

elementary functions (section 2). Finally a discussion of results and a conclusion 

are drawn for the work. 

2. Mathematical problem and solutions 

In this part the Schrödinger eigenvalue problem is formulated and explicitly 

solved in terms of elementary functions for the attractive exponential potentials.  

2.1 Schrödinger eigenvalue problem 

Consider the Schrödinger equation (2), where a  and  b   are constants. Then the 

following Schrödinger eigenvalue problem may be stated: 

Determine the condition under which the Schrödinger equation (2) may exhibit 

exact discrete bound state solutions in terms of elementary functions.  

To do so equation (2) needs to be transformed into an appropriate form. 

2.2 Mapping of (2) under canonical transformation 

Consider as a general expression for the point canonical transformation 
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As a consequence the following result may be formulated. 

Theorem 1. Let 
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Proof. By application of 
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Using (5) one may obtain  
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which leads to 
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Substituting (6) into (2), equation (4) may be obtained, where 
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In this way the equations (2) and (4) are mathematically equivalent. Therefore, 

to find the exact eigensolutions of (2), it suffices to solve (4). 

2.3 Bound state solutions for the attractive exponential potential 

This part is devoted to compute the exact discrete bound state solutions in terms 

of elementary functions to the Schrödinger eigenvalue problem under 

consideration. In this situation the condition to achieve this goal must first be 

determined. It suffices to notice that, as 0 , it is always possible to set the 

condition 
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to obtain the desired bound state solutions in terms of elementary functions. The 

above shows the following theorem. 

Theorem 2. Let 
16

2b
E  . Then equation (4) reduces to 
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The general solution of (8) depends on the sign of the parameter a .  
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In this case, ,0a  ,0b  and .0  x  The general solution to (8) with the 

condition 0a  may read  

    aBaAy  sincos)(                                                                     (9) 

where A  and B are arbitrary constants to be determined by boundary 

conditions. In this way the following theorem may be considered. 

Theorem 3. Let ,0a ,0b  and .0  x  If (9) is the general solution of (8), 

then the bound state solutions of (2) are given by  
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where nB  is the normalization constant defined by  
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and n  is an integer. 

Proof. From (9) and (5), it follows 
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As the wave functions )(xn  must be zero as ,x then the constant A  is 

required to be zero, that is 0A , so that  
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From (7), one may find Eb  4 . Substituting this value of  b   into (13) leads 

to  
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On the other hand, the boundary condition 0)0(  , may be satisfied by 
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Introducing (15) into (14) gives the desired bound state solutions (10).  

Therefore the normalization condition may read 
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