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1 Introduction

In 1995, neutrosophic logic and set theory was introduced by
Smarandache [22, 23]. The neutrosophic sets are characterized
by a truth membership function(t), a falsity membership func-
tion (f) and an indeterminacy membership function(i) respec-
tively, which lies between the nonstandard unit interval [0, 1]*.
Unlike intuitionistic fuzzy sets, here the uncertainties present i.e.
the indeterminacy factor, is independent of truth and falsity val-
ues. Hence Neutrosophic sets are more general than intuitionis-
tic fuzzy set [6] and draw a special attraction to the researchers.
Later on Wang et al. [25] introduced a special type of neutro-
sophic set say single valued neutrosophic set (SVNS). They also
introduced the interval valued neutrosophic set (IVNS) in [26].
The SVN set is a generalization of classical set, fuzzy set [27],
intuitionistic fuzzy set [6] etc. To see the practical application of
the neutrosophic sets and SVN sets, one may see [1, 2, 3,4, 7, 8]
etc.

On the other hand, nowadays graphs and digraphs are widely
used by the researchers to solve many pratical problems. The
graphs are used as a tool for solving combinatorial problems
in algebra, analysis, geometry etc. Many works on fuzzy
graph theory, fuzzy digraph theory, intuitionistic fuzzy graphs,
soft digraphs etc. are carried out by a number of researchers
[12, 13, 15, 16, 17, 21]. Four main categories of neutrosophic
graphs have been defined by Samarandache in the paper [24].
However the concept of single valued neutrosophic graphs was
introduced by Broumi et al. [9, 10, 11].

In this paper we have introduced the notion of SVN digraphs
for the first time. In section 2, some preliminaries regarding neu-
trosophic sets, graph theory, SVN sets etc. are discussed. In sec-
tion 3, we have defined the SVN digraph and some terminologies
regarding SVN digraphs with examples. We have solved a real
life problem by using SVN digraph in Section 4. In Section 5,
we have defined the volume of a SVN digraph and also the sim-
ilarity measure between two SVN digraphs by using the volume
of each SVN digraph. Finally in this section, we have computed

shown and some of the important properties of SVN digraphs are
investigated. Finally SVN digraphs are applied in solving a multi-
criterion decision making problems.

the similarity measure of the digraphs of Section 4 and compared
the results. Section 6 concludes the paper.

2 Preliminaries

In this section, we will discuss some definitions and terminolo-
gies regarding neutrosophic sets which will be used in the rest of
the paper. However, for details on the neutrosophic sets, one can
see [20].

Definition 1 [20] Let X be a universal set. A neutrosophic set
A on X is characterized by a truth membership function t 4, an
indeterminacy membership function i o and a falsity membership
function fa, where ta,ia, fa : X — [0,1], are functions and
VaeX o=ualtalr),ialz),fa(z)) € Aisa single valued
neutrosophic element of A.

A single valued neutrosophic set (SVNS) A over a finite uni-
verse X = {x1,29,...,x,} is represented as below:

Lg

4= ; (ta(@i),ia(wi), fa(x:))

Definition 2 [20] The complement of a SVNS A is denoted by A°
and is defined by t e (x) = fa(x),iae(x) = 1—ia(x), fac(z) =
ta(z) Ve X.

Definition 3 [20] A SVNS A is contained in the other SVNS B,
denoted as A C B, ifand only ifts(x) < tp(x),ia(z) < ig(x)
and fa(x) > fp(x) Vo € X. Two sets will be equal if A C B
and B C A.

Definition 4 [20] Suppose N(X) be the collection of all SVN
sets on X and A, B € N(X). A similarity measure between two
SVN sets A and B is a function S : N(X) x N(X) — [0,1]
which satisfies the following condition:

(1) 0<S(A,B)<1,
(i) S(A,B)=1ifand onlyif A = B.

K. Sinha, P. Majumdar: Entropy based Single Valued Neutrosophic Digraph and its applications



120

Neutrosophic Sets and Systems, Vol. 19, 2018

iii) S(A,B) =S(B,A)

(iv) If A C B C C, then S(A,C) < S(A,B) and S(A,C) <
S(B,C) forall A,B,C € N(X).

Note that here (i)-(iii) are essential for any similarity measure and

(iv) is a desirable property although not mandatory.

Definition 5 /20] The entropy of SVNS A is defined as a function
E : N(X) — [0, 1] which satisfies the following axioms:

(1) E(A) =0if Ais a crisp set.

(i) f((A) = Lif (ta(x),ia(x), fa(z)) =

(iii) E (4)

fa(x)

ipe(x)

(iv) E(A) = E(A°)VAe N(X
of all SVNS over X.

(0.5,0.5,0.5) Va €

> E(B) if A is more uncertain than B i.e. ty(x) +
< tp(x) + fp(x) and |ia(x) —iae(x)| <|ip(x) -
|[Vre X A BeX.

), where N (X) is the collection

Example 6 An entropy measure of an element x1 of a SVNS A
can be calculated as follows:

(ta(z1) + fa(z1)) X

Graph and digraphs played an important role in many applica-
tions of mathematics like Chinese post-man problems, shortest
path problems etc. For graph theoretic terminologies, one can
see any standard reference, e.g. [14] or [19].

El(fbl):l— |iA(I1)—iAc(.I1)|.

3 SVN Digraph

In this section, we will define SVN digraph D
for the first time corresponding to a SVNS Vp =
{(vi, (tvy, (03), vy, (02), fvp, (Vi) 4 = 1,...,n} over a fi-
nite universal set X. For sake of implicity henceforth we will
denote Vp by Vp = {v1, v, ..., v, } in the rest of paper.

Definition 7 A SVN digraph D is of the form D = (Vp, Ap)
where,

(1) Vb = {vi1,v2,vs,...,v,} such that the functions ty, :
Vp — [0, 1], v, : Vp — [0, 1], fVD : Vp — [0, 1]
denote the truth-membership function, a indeterminacy-
membership function and falsity-membership function of the
element v; € Vp respectively and 0 < ty,, (v;) + iy, (v;) +
fvp(vi) <3, Vv, € Vp,i=1,2,....n

(it) Ap = {(vs,v5); (vi,vj) € VpxVp} provided 0 < E(v;)—
E(v;) < 0.5 and the functions ta, : Ap — [0,1],ia, :
Ap — [0,1], fa, : Ap — [0, 1] are defined by

tap ({vi’ vj}) < min[tVD (vi)a tvp (vj)]v
iAD ({UiJ Uj}) > max[iVD (Ui)J iVD (Uj)]v

fap({wisvi}) > maz[fv, (vi), fvy, (v5)]

where ta,,iap, fa, denotes the truth-membership func-
tion, a indeterminacy-membership function and falsity-
membership function of the arc (v;,vj) € Ap respectively
where 0 < ta, (vi,v5) + 94, (vi,v;) + fap(vi,v5) < 3,
V(’Ui,’Uj) € Ap, 1,] € {1,2, .. n}

We call V as the vertex set of D, Ap as the arc set of D where
E(v) is the entropy of the vertex v. Please note that if E(v;) =
E(v;), then {(v;,v;), (vj,v;)} € Ap. Since for a vertex v € Vp
of a SVN digraph D we have E(v) = E(v), thus every vertex of a
SVN digraph D contains a loop (v,v) at v. On the other hand, if
E(v;) — E(vj) > 0.5, we define that there exists no arc between
the vertices v; and v;. A SVN digraph D = (Vp, Ap) is said to
be symmetric if (u,v) € Ap implies (v,u) € Ap. On the other
hand, D is asymmetric if (u,v) € Ap implies (v,u) ¢ Ap.

Remark 8 Here, we are trying to represent a SVN set by a SVN
digraph. For this reason, we have taken a SVN set Vp and have
considered the set Vp as the vertex set of the SVN Digraph D.
Thus we are only considering the entropy of the vertex set Vp of
the SVN digraph D. However we have seen that the arc set Ap
of D forms a new SVN set and we have the following corollary.

Corollary 9 The arc set Ap of a SVN digraph D =
forms a neutrosophic set on X x X.

(Vb, Ap)

Example 10 Consider the SVN digraph D1 = (Vp,,Ap,)
in Figure 1 with vertex set Vp, = {v1,va,vs,04}
and arc set Ap, = {(va, v1), (v1,v3), (v2,v3),
(v2,v4), (v3,v4), (va,v1)} with one loop at each vertex as
follows:

U1 V2 U3 U4
tvy, 04 04 05 0.2
v, 01 03 02 0.5
fvo, 02 01 05 0.3
E 052 08 04 1
(v2,v1)  (v2,v3) (va,v1)  (vi,v3) (va,02)
tap 0.3 0.2 0.1 0.4 0.2
in, 04 0.3 0.5 0.3 0.5
fan 0.2 0.6 0.3 0.4 0.4
v1(04,0.1,02)  v5(0.4,0.3,0.1)
v4(0.2,0.5,0.3)  v5(0.5,0.2,0.5)
Figure 1: The SVN Digraph D,
Remark 11 (i) Ina SVN digraph D, if x = (v;,v;) is an arc,

we say that x is incident with v; and v;; v; is adjacent to
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v;; and v; is adjacent from v;. It is customary to repre-
sent a digraph by a diagram with nodes representing the ver-
tices and directed line segments (arcs) representing the arcs
of the digraph. Every vertex of any SVN digraph contains
loops by definition. For the sake of simplicity, we define
(tap(v,0),ia,(v,0), fa,(v,0)) = (0,1,1) for each arc
(v,v) € Ap of a SVN digraph D.

The order of D, denoted by |D|, is the number of vertices
of D. The size of a SVN digraph D, is the number of arcs of
D ie. |Ap|. For example, the order and size of the digraph
D in Figure 1 is 4 and 9 respectively.

(i)

Definition 12 4 SVN-subdigraph H = (Vu,Ag) of a SVN-
digraph D = (Vp, Ap) is a SVN-digraph such that

(1) VH Q VD where tVH (’Ul) S tVD (’Ui), iVH (’Ul) S iVD (Ui),
fva (i) = fvp (i) Vui € Vg,

(i) Ay C Ap whereta, (vi,v;) < tap,(vi,v;), ia, (vi,v;) <
iap(Vi,5), fag(vi,v5) > fap(vi,v5) Y(vi,v5) € Ag.

Example 13 Consider the SVN digraph D> = (Vp,, Ap,) in
Figure 2 with vertex set Vp, = {v1,v2,v3} and arc set Ap, =
{(va,v1), (v1,v3), (v2,v3)} with one loop at each vertex as fol-
lows:

U1 (%) VU3

tv, 04 04 05

v, 01 0.3 0.2

fv, 02 01 05

E 052 0.8 04
(v2,v1) (v2,v3) (v1,v3)
tap 0.3 0.2 0.4
ia, 04 0.3 0.3
fa, 02 0.6 0.4

1t is clear that the SVN digraph Do in Figure 2 is a SVN subdi-

Ch

Figure 2: The SVN Digraph D»
graph of Dy in Figure 1.

Definition 14 4 SVN-digraph K = (Vik,Ak) is a spanning
SVN-subdigraph of a SVN-digraph D = (Vp, Ap) if

() Vk = Vp where ty, (vi) = tvp, (vi), ivi (vi) = ivp (vi),
Jvi (vl) = fvo (vl) Vv, € Vi.

(11) AK g AD where tAK('Ui;vj) = tAD(Ui,’Uj),Z.AK(’Ui,Uj) =
iap (Vi V), far (Vi v) = fap(vi,v5) Y(vi,v5) € Ak.

Definition 15 For vertices u,v in a SVN digraph D, a u-v SVN
path P = (Vp, Ap) is a SVN subdigraph of D whose distinct
vertices and arcs can be written in an alternating sequence:

v1(v1,v2)v2(V2, U3)Us - - - Ug—1 (Vg—1, Uk ) U,

where v1 = u,vr, = v and ta, (vVi,vip1) > 0,04 (Vi vi41) >
O,fA(Ui,Ui+1) > 0,0 < E(’Ui) — E(Ui-i-l) <05, Vl<i<ek.
Further, if (v,u) is an arc in D, then the subdigraph P together
with (v,u) is a SVN cycle of length k or a k-SVN cycle in D.
For convenience, we denote the cycle as C' = [v1,va,...vi]. 4
SVN digraph having no cycle of length greater than 1 is said to
be acyclic. A 1-cycle consists of a vertex v and a loop at v.

Definition 16 4 SVN digraph D is said to be connected if the
simple SVN graph G associated to D (i.e., the graph with vertex
set Vp and edge set {{u,v} : (u,v) € Ap,u # v}) is con-
nected. The SVN digraph D is said to be strongly connected if
Jor every pair (u,v) of vertices, D contains a u-v SVN path and
a v-u SVN path both. The maximal connected (resp. strongly
connected) SVN subdigraphs of D are called components (resp.
strong components) of SVN D.

Definition 17 Let D = (Vp, Ap) be a SVN digraph. Then the
outdegree (resp. indegree) of any vertex v is sum of degree of
truth-membership, sum of degree of indeterminacy-membership
and sum of degree of falsity-membership of all those arcs which
are adjacent from (resp. to) vertex v denoted by Oq4(v) =

O(di(v), di(v), dy(v)) and Ia(v) = I(di(v),di(v),ds(v)),

where,

di(v) = % Z tap, (u,v) denotes the degree of truth membership

d;(v) = % Z iap (u,v) denotes the degree of indeterminacy member:
dr(v) = % Z fap (u,v) denotes the degree of falsity membership,

where n is the number of arcs adjacent from (resp. to) vertex v.

Example 18 Consider the SVN digraph D1 in Figure 1. Here we
have, the outdegree and indegree of each vertex as follows:

Oa(v1) = (0.8,0.86,0.88), Og(vs) = (0.05,0.73,0.7
Oalvs) = (0,1,1), Oq(vs) = (0.05,0.83,0.78

Iu(v1) = (0.07,0.82,0.75), I4(vs) = (0.04,0.90, 0.88),
Ii(vs) = (0.1,0.76,0.83), Iy(vs) = (0,1,1).

)

3

o =

Remark 19 The set of in-degrees (out-degrees) of the vertices of
an SVN digraph forms a neutrosophic set on Vp (i.e. on X).

Definition 20 A SVN digraph D = (Vp, Ap) is called k-regular
SVN digraph if the sum of outdegree and indegree of each vertex
vis k. Thatis, d(v) = Y {04(v) + I4(v)} = (k,k, k) for all
v € Vp.
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Definition 21 4 SVN digraph D = (Vp, Ap) is called strong
SVN digraph if

tap (’Uiv Uj) = min[tVD (Ui)v tv, (Uj)]v

iap (v, v;) = max(ivy, (vi), iv,, (v5)],

fAD (via vj) = ma‘r[fVD (vi)a fVD (Uj)]
Sor all (v;,vj) € Ap

Example 22 Consider the SVN digraph Ds = (Vp,, Ap,) in
Figure 3 with vertex set Vp, = {v1,v2,v3,v4} and arc set

Ap, = {(va,v1), (v1,v3), (v2,v3), (V2,v4), (V3,v4), (Va,v1)}
with one loop at each vertex as follows:

vp V2 U3 U4

tv, 09 01 05 0.2

iv. 03 0.6 0.1 0.6

fvo 08 0.1 05 0.1

E 03 06 02 04
(v2,v1)  (v2,v3) (va,v3) (va,v1) (vi,v3) (v2,04)
0.1 0.1 0.2 0.2 0.5 0.1
0.6 0.6 0.6 0.6 0.3 0.6
0.8 0.5 0.5 0.8 0.8 0.1

v1(0.9,0.3,0.8)  1(0.1,0.6,0.1)

—

o
o

v3(0.5,0.1,0.5)

v4(0.2,0.6,0.1)

Figure 3: The SVN Digraph D3

Definition 23 A SVN digraph D = (Vp, Ap) corresponding to
a SVNS Vp is called complete if the following holds:

, Un }-

(11) AD = {(viavj);vivvj € VD}’
provided E(v;) = E(v;) Yv; € Vp.

(1) VD = {1)1,1)2,1)3,. ..

Example 24 Consider the SVN digraph Dy = (Vp,,Ap,) in
Figure 4 with vertex set Vp, = {v1,v2,v3} and arc set Ap, =
{(UQ, vl)v (vla Ug), (UQ, 'Ug), (vlv ’02)7 (’Ug, Ul), (’Ug, ’02)} with one
loop at each vertex as follows:

U1 (%) VU3
ty, 05 04 0.7
vy 0.2 02 0.2
fv, 04 05 05
E(v;)) 046 0.46 0.46

V2 U3

Figure 4: The SVN Digraph Dy

In D4, we consider that each non-loop arc has neutrosophic value
as (0.4,0.2,0.5). It is clear that the SVN digraph Dy is a com-
plete digraph and also a k-regular digraph.

Remark 25 (i) There does not exist any asymmetric SVN di-
graph with a cycle of length > 3. Suppose an asym-
metric cyclic SVN digraph D = (Vp, Ap) has vertex set
Vp = {v1,v2,03,...,0,}. Without loss of generality, let
D has a cycle of length 3 say (vi,ve,v3). Then we have
E(v1) > E(v2) > E(vs) > E(v1)- which is impossible.
Hence D does not have a cycle of length > 3.

(i) Every SVN digraph D is self-complementary. For any SVN
digraph having vertex set Vp and its complement set V5,
each vertex have same entropy. Hence the result follows.

Definition 26 Suppose D = (Vp, Ap) and H = (Vy, Ay) be
two SVN digraphs with |Vp| = |Vi| = n corresponding to the
SVNS Vp and Vi over an universal set X. Then the union of
two SVN digraphs D and H is defined as a SVN digraph C =
Ve, Ac) in which the following holds;

@) Ve =VpUVg,

(i1) lve (’U) - max(tVD (’U), lvy (U));
e (’U) - ma‘r(iVD (U)a Wy (U));
fve (v) = min(fv, (v), fvy (v));V v € Vp U Vy and,

(ii)) Ac = {(vi,v;); (vi,vj) € Vo X Ve } provided 0 < E(v;) —
E(’Uj S 0.5,

Definition 27 Suppose D = (Vp, Ap) and H = (Vy, Ag) be
two SVN digraphs with |Vp| = |Vi| corresponding to the SVNS
Vb and Vi over an universal set X. Then the intersection of
two SVN digraphs D and H is defined as a SVN digraph C =
(Ve, Ac) in which the following holds:

@) Ve =Vp Ny,

(i1) lve (’U) = min(tVD (U)a tvy (’U));
e (’U) = min(iVD( 2V (’U));

fve (v) = maz(fv, (v), fvy (v));V v € Vp N Vy and,

(ii)) Ac = {(vi,v)); (vi,vj) € Vo x Ve } provided 0 < E(v;) —
E(’Uj S 0.5,

Definition 28 Suppose D = (Vp, Ap) and H = (Vy, Ay) be
two SVN digraphs with |Vp| = |Vi| corresponding to the SVNS
Vp and Vg over an universal set X. Consider Vp = Vg =
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{v1,v2,03,...,v,}. The similarity measure between the neutro-
sophic digraphs D and H can be evaluated by the function,

- |AD ﬂAH|

S(DaH)_ |ADUAH|,

where |Ap N Agl,|Ap U Ag| denotes the number of arcs in
Ap N Ay and Ap U Ag respectively with a set theoretic point
of view.

It is clear that S(D, H) satisfies the properties of the Definition 4.

4 An application using SVN Digraph

In this section, we have applied our SVN digraph to solve
a multi-criteria decision-making problem. To find out the
best alternative decision set, we will use the idea of model
set. For this purpose now, we define a model set M =
{(.1,0,0.05), (.1,0,0.04),(.1,0,.03), (.1,0,0.02)}.

The problem is based on a similar problem discussed in
[13]. Now we assume that there exists a set of suppliers
S = {851, 852,53,54} whose performances are examined w.r.t
the following criteria (77,75, T3,Ty), where T the adaptation
of new technology , T5 performance in supply , 75 the ability
of controlling man-power and 7 quality of service. We will
use our proposed decision making technique to select the best
supplier. The evaluation of an supplier S;,7 = 1,2,3,4 with
respect to a criterion 73; j = 1,2, 3, 4, it based on the knowledge
of a domain expert. For example, the opinion of an expert about
a supplier S7 with respect to a criterion 77 , is as follows: the
statement is good is 0.4 and the statement is poor is 0.3 and the
degree of not sure is 0.4. For a neutrosophic point of view, it
can be expressed as neutrosophic element v1; = {0.4,0.3,0.4}.
Thus for the alternative S7, the neutrosophic set is M; =
{(0.4,0.3,0.40), (0.6, 0.3,0.30), (0.2,0.2,0.5), (0.5,0.3,0.2) }.
Similarly the other neutrosophic sets for the alternatives
Sa, S35, .54 respectively are

M, = {(0.4,0.4,0.2), (0.5,0.4,0.30), (0.5, 0.20, 0.40),
(0.5,0.3,0.1)},

M; = {(0.6,0.2,0.2), (0.6,0.3,0.40), (0.5, 0.4, 0.10),
(0.3,0.2,0.40)},

M, = {(0.6,0.2,0.20), (0.1, 0.4,0.50), (0.4, 0.2, 0.60),
(0.4,0.1,0.3).

Now we first draw the SVN digraph Dy, for the model set M as
follows:

Now we draw simultaneously the digraphs
Dy, Dy, Dy, Dy, in the Figure 6, Figure 7 respec-
tively. In each case we now calculate the similarity measure of
each of the digraphs Dyy,; ¢ = 1,2, 3, 4.

(i) S1(Dar,Dary) = 15 = 0.538

01(.1,0,0.05) 5(.1,0,0.04)

v4(.1,0,0.02) v3(.1,0,.03)

Figure 5: The SVN Digraph Dy,

v1(0.4,0.4,0.2) v2(0.5,0.4,0.3)  v1(0.4,0.3,0.4) 12(0.6,0.3,0.3)

04(0.5,0.3,0.1)  v3(0.5,0.2,0.4) v4(0.5,0.3,0.2)  v3(0.2,0.2,0.5)

Figure 6: The SVN Digraphs Dy, , Dy,

(i) S2(Dar,Das,) = & =081
(i) S3(Dar, Dagy) = 15 = 0.42
(iv) Sa(Dnr, D) = 15 = 0.666

Therefore as per the similarity measures, the ranking order of the
four suppliers is S2 > Sy > S1 > S3. Hence, the best supplier
is S3. From the above example, we can observe that the pro-
posed single valued neutrosophic multi-criteria decision-making
method can be handled easily with the help of SVN digraphs.
Ashraf et al. [5] have studied SVN graph where as we have tried
SVN Digraph. In SVN graph there is no edge direction. Thus it is
quite familiar that between any two vertices of SVN graph there
is always an arc satisfying some required condition. In SVN di-
graph theory, between any two vertices there may not be an arc.
Here arcs are present depending on the entropy difference of the
vertices. Thus these two notions of SVN graphs and digraphs are
completely different. Also Ashraf et al. [5] have studied regu-
lar SVN graphs which has equal degree of each vertices. But in
SVN digraphs all vertices may or may not have same degrees. In
future one may study the SVN regular digraphs which may be a
completely new idea.

11(0.6,0.2,0.2)  15(0.6,0.3,0.4)  v1(0.6,0.2,02)  v,(0.1,0.4,0.5)

04(0.3,0.2,0.4)  v3(0.5,.4,0.1) 04(0.4,0.1,0.3)  v3(0.4,0.2,0.6)

Figure 7: The SVN Digraphs Dyy,, Dy,
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5 Similarity Measure using the Volume
of a SVN Digraph

In this section we introduce some new definition which are given
below:

Definition 29 Suppose A and B be two SVNS over X. Then A
is said to be more uncertain than B, denoted by A < B,

() ta(x) + fa(z) <tp(z) + fB(2)
(i) |ia(z) —iac(x)] <|ip(w) —ipe(x)],V € X.

Example 30 Suppose

A ={(0.4,0.3,0.3),(0.3,0.5,0.2), (0.5,0.4,0.1), (0.2,0.2,0.3)}

Example 37 Consider the SVN digraph Dy in Figure 5 in Sec-
tion 4. Then the volume of the digraph Dy is

Vol(Dar) = > {E(v1) + E(va) + E(vs) + E(va)}

=0.85+0.84 +0.83 + 0.82 = 3.34.

Definition 38 Now we define the similarity measure between two
SVN digraph D and H as follows:

2Vol(Vp @ Vi)
Vol(Vp) + Vol (Vi)

SV, H) =

It can be noted that the Definition 38 satisfies the first three pos-

"tulates of the Definition 4. Now we consider the SVN digraphs

B = {(05, 017 06), (047 037 04), (04, 027 06), (04’ 017 05)} DM, DM“ 1=1... s 41in Figure 5,6,7 in Section 4 and calculate

be two SVNS over an universal set X = {x1,...,x4}. Then for
all x; € X, the above definition A < B is satisfied.

Remark 31 From Definition 5 and Example 6, it follows that
E(A) > E(B) for any two SVNS A, B € X with A < B.

Definition 32 Suppose A and B be two SVNS over X. Then their
maximum sum C' = A @ B, denoted by M ax(A, B) is again an
SVNS on X which is defined as follows:

1) te(x) = max{ta(z),tp(x)},
(i) fe(x) = maz{fa(x), fp(2)},

(iii) i.(x) = max{|ia(z) —iqsc(z)],|in(x) —ige(x)|}, Vo €
X.

Example 33 From Example 30, it follows that the SVNS

C ={(0.5,0.8,0.6), (0.4,0.4,0.4), (0.5,0.6,0.6), (0.4,0.8,0.5)}

is the maximum sum of two SVNS A, B over X.

Remark 34 It can be easily proved that A,B < A@ B. So,
E(A) > E(A@ B) and E(B) > E(A@ B). Therefore

2E(AED B) < E(A) + E(B).

Definition 35 Suppose Vp and Vi are two SVNS over an uni-
versal set X such that Vp = Vg = {v1,v9,...,v,}. Consider
D = (Vp,Ap) and H = (Vig, Ap) be two SVN digraph corre-
sponding to the SVN set D and H respectively. Then the maxi-
mum sum digraph C of two digraphs D, H is a SVN digraph C' =
(Vo, Ac) where Vo = Vp @ Vg and Ac = {(vi, v;); (vi,v;) €
Vo x Ve} provided 0 < E(v;) — E(vj) < 0.5,

Definition 36 Suppose D1 = (Vp,,Ap,) be a SVN digraph
over a set X. Then the volume of a SVN digraph D1 is defined as

Vol(G) = Y E(v) = E(Vp,).

'UGVD1

the similarity measure between them by using the Definition 38.
Here we the following result obtained by the Definition 38:

(i) S1(Dar,Dary) = 245 =0.30
(i) S2(Dar, Do) = &5 = 0.34
(iii) S3(Dar, Dagy) = 445 = 0.31
(iv) Sa(Dar, Dag,) = 445 = 0.32

According to the similarity measure followed by the Defini-
tion 38 we have obtained the order So > S4 > S3 > S;. Hence
the best supplier is So.

Thus it can be seen that using both the techniques described in
Section 4 and 5, we have got a similar result using SVN digraphs.

6 Conclusion

Although Fuzzy digraph theory is very successful in handling un-
certainties arising from vagueness or partial belongingness of an
clement in a set, it cannot model all sorts of uncertainties pre-
vailing in different real physical problems such as problems in-
volving incomplete information. Hence further generalizations
of fuzzy and intuitionistic fuzzy digraphs are required. So there
are also scopes of evolution of new theories which will have more
powers of handling different kinds of uncertainties. Unlike in in-
tuitionistic fuzzy digraphs, where the incorporated uncertainty
is dependent of the degree of belongingness and degree of non-
belongingness, here the uncertainty present, i.e. indeterminacy
factor, is independent of truth and falsity values. Single valued
neutrosophic digraphs were motivated from the practical point of
view and that can be used in real scientific and engineering ap-
plications. The single valued neutrosophic digraph theory is a
generalization of fuzzy digraph theory, intuitionistic digraph the-
ory.

SVN digraph theory is based on the entropy differences of the
vertices of SVN digraph. It represents a SVN neutrosophic Set
which is used as the vertices of the SVN digraph. In fuzzy di-
graph theory or Intuitionistic Fuzzy digraph theory, arcs of these
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digraphs arises depending on the binary relations of the vertices.
In SVN digraphs, every vertices have loop it it where as in other
theories it may not be possible. Thus the recently proposed
notion of SVN digraph theory is a general formal framework
for studying uncertainties arising due to “indeterminacy’ factors.
Also single valued neutrosophic digraph theory can be used in
modeling real scientific and engineering problems. It is also pos-
sible to combine neutrosophic digraphs with other digraphs such
as soft digraphs etc. to generate different hybrid graphical struc-
ture. Therefore the study of neutrosophic digraph theory and its
properties have a considerable significance in the sense of appli-
cations as well as in understanding the fundamentals of uncer-
tainty. This new topic is very sophisticated and it has immense
possibilities which are to be explored.

Smarandache gave the idea of a neutrosophic set to deal with
uncertain, incomplete, and inconsistent information that exist in
real world. It has been seen that the neutrosophic set draws a
special attraction to the researchers than classical set, fuzzy set,
interval valued fuzzy set, intuitionistic fuzzy set, interval valued
intuitionistic fuzzy set etc. simply because all these sets can be
obtained from a neutrosophic set as special cases. In this paper
we have developed the SVN digraph theory and studied some
of its important properties and shown its application in solving
multi-criteria decision making problem. In future, one may fur-
ther study the deeper properties of SVN digraphs and may apply
it in solving many real life problems which involves uncertainty.
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