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1 Introduction

Zadeh’s [1] classical concept of fuzzy sets is a strong mathemati-
cal tool to deal with the complexity generally arising from uncer-
tainty in the form of ambiguity in real life scenario. Researchers
in economics, sociology, medical science and many other several
fields deal daily with the vague, imprecise and occasionally in-
sufficient information of modeling uncertain data. For different
specialized purposes, there are suggestions for nonclassical and
higher order fuzzy sets since from the initiation of fuzzy set the-
ory. Among several higher order fuzzy sets, intuitionistic fuzzy
sets introduced by Atanassov [2] have been found to be very use-
ful and applicable. But each of these theories has it’s different
difficulties as pointed out by Molodtsov [3]. The basic reason
for these difficulties is inadequacy of parametrization tool of the
theories.

Molodtsov [3] presented soft set theory as a completely
generic mathematical tool which is free from the parametriza-
tion inadequacy syndrome of different theory dealing with un-
certainty. This makes the theory very convenient, efficient and
easily applicable in practice. Molodtsov [3] successfully applied
several directions for the applications of soft set theory, such as
smoothness of functions, game theory, operation reaserch, Rie-
mann integration, Perron integration and probability etc. Now,
soft set theory and it’s applications are progressing rapidly in dif-
ferent fields. Shabir and Naz [4] presented soft topological spaces
and defined some concepts of soft sets on this spaces and separa-
tion axioms. Moreover, topological structure on fuzzy, fuzzy soft,
intuitionistic fuzzy and intuitionistic fuzzy soft set was defined by
Coker [5], Li and Cui [6], Chang [7], Tanay and Kandemir [8],
Osmanoglu and Tokat [9], Neog et al. [10], Varol and Aygun
[11], Bayramov and Gunduz [12,13]. Turanh and Es [14] defined
compactness in intuitionistic fuzzy soft topological spaces.

The concept of Neutrosophic Set (NS) was first introduced
by Smarandache [15,16] which is a generalisation of classical
sets, fuzzy set, intuitionistic fuzzy set etc. Later, Maji [17] has
introduced a combined concept Neutrosophic soft set (NSS).

Using this concept, several mathematicians have produced their
research works in different mathematical structures for instance
Arockiarani et al.[18,19], Bera and Mahapatra [20], Deli [21,22],
Deli and Broumi [23], Maji [24], Broumi and Smarandache [25],
Salama and Alblowi [26], Saroja and Kalaichelvi [27], Broumi
[28], Sahin et al.[29]. Later, this concept has been modified by
Deli and Broumi [30]. Accordingly, Bera and Mahapatra [31-36]
have developed some algebraic structures over the neutrosophic
soft set.

The present study introduces the notion of connectedness,
compactness and neutrosophic soft continuous mapping on a
neutrosophic soft topological space. Section 2 gives some pre-
liminary necessary definitions which will be used in rest of this
paper. The notion of connectedness and compactness on neutro-
sophic soft topological spaces along with investigation of related
properties have been introduced in Section 3 and Section 4, re-
spectively. The concept of neutrosophic soft continuous mapping
has been developed in Section 5. Finally, the conclusion of the
present work has been stated in Section 6.

2 Preliminaries

In this section, we recall some necessary definitions and theo-
rems related to fuzzy set, soft set, neutrosophic set, neutrosophic
soft set, neutrosophic soft topological space for the sake of com-
pleteness.
Unless otherwise stated,E is treated as the parametric set through
out this paper and e ∈ E, an arbitrary parameter.

2.1 Definition [31]

1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous t -
norm if ∗ satisfies the following conditions :
(i) ∗ is commutative and associative.
(ii) ∗ is continuous.
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(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b =
min{a, b}, a ∗ b = max{a+ b− 1, 0}.

2. A binary operation � : [0, 1]× [0, 1]→ [0, 1] is continuous t -
conorm (s - norm) if � satisfies the following conditions :
(i) � is commutative and associative.
(ii) � is continuous.
(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a � b = a + b −
ab, a � b = max{a, b}, a � b = min{a+ b, 1}.

2.2 Definition [15]

Let X be a space of points (objects), with a generic element
in X denoted by x. A neutrosophic set A in X is charac-
terized by a truth-membership function TA, an indeterminacy-
membership function IA and a falsity-membership function FA.
TA(x), IA(x) and FA(x) are real standard or non-standard sub-
sets of ]−0, 1+[. That is TA, IA, FA : X →]−0, 1+[. There
is no restriction on the sum of TA(x), IA(x), FA(x) and so,
−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

2.3 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let
P (U) denote the power set of U . Then for A ⊆ E, a pair (F,A)
is called a soft set over U , where F : A→ P (U) is a mapping.

2.4 Definition [17]

Let U be an initial universe set and E be a set of parameters. Let
NS(U) denote the set of all NSs of U . Then for A ⊆ E, a pair
(F,A) is called an NSS over U , where F : A → NS(U) is a
mapping.

This concept has been modified by Deli and Broumi [30] as
given below.

2.5 Definition [30]

Let U be an initial universe set and E be a set of parameters. Let
NS(U) denote the set of all NSs of U . Then, a neutrosophic soft
set N over U is a set defined by a set valued function fN repre-
senting a mapping fN : E → NS(U) where fN is called approx-
imate function of the neutrosophic soft setN . In other words, the
neutrosophic soft set is a parameterized family of some elements
of the set NS(U) and therefore it can be written as a set of or-
dered pairs,

N = {(e, {< x, TfN (e)(x), IfN (e)(x), FfN (e)(x) >: x ∈ U}) :
e ∈ E}

where TfN (e)(x), IfN (e)(x), FfN (e)(x) ∈ [0, 1], respec-
tively called the truth-membership, indeterminacy-membership,
falsity-membership function of fN (e). Since supremum of each
T, I, F is 1 so the inequality 0 ≤ TfN (e)(x) + IfN (e)(x) +
FfN (e)(x) ≤ 3 is obvious.

2.5.1 Example

Let U = {h1, h2, h3} be a set of houses and E =
{e1(beautiful), e2(wooden), e3(costly)} be a set of parameters
with respect to which the nature of houses are described. Let,

fN (e1) = {< h1, (0.5, 0.6, 0.3) >,< h2, (0.4, 0.7, 0.6) >,<
h3, (0.6, 0.2, 0.3) >};

fN (e2) = {< h1, (0.6, 0.3, 0.5) >,< h2, (0.7, 0.4, 0.3) >,<
h3, (0.8, 0.1, 0.2) >};

fN (e3) = {< h1, (0.7, 0.4, 0.3) >,< h2, (0.6, 0.7, 0.2) >,<
h3, (0.7, 0.2, 0.5) >};

Then N = {[e1, fN (e1)], [e2, fN (e2)], [e3, fN (e3)]} is an NSS
over (U,E). The tabular representation of the NSS N is as :

Table 1 : Tabular form of NSS N .
fN (e1) fN (e2) fN (e3)

h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

2.6 Definition [30]
1. The complement of a neutrosophic soft set N is denoted by
N c and is defined by

N c = {(e, {< x,FfN (e)(x), 1− IfN (e)(x), TfN (e)(x) >: x ∈
U}) : e ∈ E}

2. LetN1 andN2 be two NSSs over the common universe (U,E).
Then N1 is said to be the neutrosophic soft subset of N2 if ∀e ∈
E and ∀x ∈ U ,

TfN1
(e)(x) ≤ TfN2

(e)(x), IfN1
(e)(x) ≥ IfN2

(e)(x),
FfN1

(e)(x) ≥ FfN2
(e)(x).

We write N1 ⊆ N2 and then N2 is the neutrosophic soft su-
perset of N1.

2.7 Definition [30]
1. LetN1 andN2 be two NSSs over the common universe (U,E).
Then their union is denoted by N1 ∪N2 = N3 and is defined as :

N3 = {(e, {< x, TfN3
(e)(x), IfN3

(e)(x), FfN3
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN3
(e)(x) = TfN1

(e)(x) � TfN2
(e)(x), IfN3

(e)(x) =
IfN1

(e)(x) ∗ IfN2
(e)(x), FfN3

(e)(x) = FfN1
(e)(x) ∗ FfN2

(e)(x).

2. Their intersection is denoted by N1 ∩N2 = N4 and is defined
as :
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N4 = {(e, {< x, TfN4
(e)(x), IfN4

(e)(x), FfN4
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN4
(e)(x) = TfN1

(e)(x) ∗ TfN2
(e)(x), IfN4

(e)(x) =
IfN1

(e)(x) � IfN2
(e)(x), FfN4

(e)(x) = FfN1
(e)(x) � FfN2

(e)(x).

2.8 Definition [33]

1. Let M,N be two NSSs over (U,E). Then M − N may be
defined as, ∀x ∈ U, e ∈ E,

M −N = {< x, TfM (e)(x) ∗ FfN (e)(x), IfM (e)(x) � (1−
IfN (e)(x)), FfM (e)(x) � TfN (e)(x) >}

2. A neutrosophic soft set N over (U,E) is said to be null neu-
trosophic soft set if TfN (e)(x) = 0, IfN (e)(x) = 1, FfN (e)(x) =
1, ∀e ∈ E,∀x ∈ U . It is denoted by φu.

A neutrosophic soft set N over (U,E) is said to be ab-
solute neutrosophic soft set if TfN (e)(x) = 1, IfN (e)(x) =
0, FfN (e)(x) = 0, ∀e ∈ E,∀x ∈ U . It is denoted by 1u.

Clearly, φcu = 1u and 1cu = φu.

2.9 Definition [33]

Let NSS(U,E) be the family of all neutrosophic soft sets over U
via parameters in E and τu ⊂ NSS(U,E). Then τu is called
neutrosophic soft topology on (U,E) if the following conditions
are satisfied.
(i) φu, 1u ∈ τu
(ii) the intersection of any finite number of members of τu also
belongs to τu.
(iii) the union of any collection of members of τu belongs to τu.
Then the triplet (U,E, τu) is called a neutrosophic soft topolog-
ical space. Every member of τu is called τu-open neutrosophic
soft set. An NSS is called τu-closed iff it’s complement is τu-
open. There may be a number of topologies on (U,E). If τu1 and
τu2 are two topologies on (U,E) such that τu1 ⊂ τu2 , then τu1 is
called neutrosophic soft strictly weaker ( coarser) than τu2 and in
that case τu2 is neutrosophic soft strict finer than τu1 . Moreover
NSS(U,E) is a neutrosophic soft topology on (U,E).

2.9.1 Example

1. Let U = {h1, h2}, E = {e1, e2} and τu =
{φu, 1u, N1, N2, N3, N4}whereN1, N2, N3, N4 being NSSs are
defined as following :

fN1
(e1) = {< h1, (1, 0, 1) >,< h2, (0, 0, 1) >},

fN1
(e2) = {< h1, (0, 1, 0) >,< h2, (1, 0, 0) >};

fN2(e1) = {< h1, (0, 1, 0) >,< h2, (1, 1, 0) >},
fN2(e2) = {< h1, (1, 0, 1) >,< h2, (0, 1, 1) >};

fN3
(e1) = {< h1, (1, 1, 1) >,< h2, (0, 1, 1) >},

fN3
(e2) = {< h1, (0, 1, 0) >,< h2, (0, 1, 1) >};

fN4(e1) = {< h1, (1, 1, 0) >,< h2, (1, 1, 0) >},
fN4(e2) = {< h1, (1, 0, 0) >,< h2, (0, 1, 1) >};

HereN1∩N1 = N1, N1∩N2 = φu, N1∩N3 = N3, N1∩N4 =
N3, N2 ∩ N2 = N2, N2 ∩ N3 = φu, N2 ∩ N4 = N2, N3 ∩
N3 = N3, N3 ∩ N4 = N3, N4 ∩ N4 = N4 and N1 ∪ N1 =
N1, N1 ∪N2 = 1u, N1 ∪N3 = N1, N1 ∪N4 = 1u, N2 ∪N2 =
N2, N2 ∪N3 = N4, N2 ∪N4 = N4, N3 ∪N3 = N3, N3 ∪N4 =
N4, N4 ∪N4 = N4;

Corresponding t-norm and s-norm are defined as a ∗ b =
max{a + b − 1, 0} and a � b = min{a + b, 1}. Then τu is a
neutrosophic soft topology on (U,E) and so (U,E, τu) is a neu-
trosophic soft topological space over (U,E).

2. Let U = {x1, x2, x3}, E = {e1, e2} and τu =
{φu, 1u, N1, N2, N3}whereN1, N2, N3 being NSSs over (U,E)
are defined as follow :

fN1
(e1) = {< x1, (1.0, 0.5, 0.4) >,< x2, (0.6, 0.6, 0.6) >,<

x3, (0.5, 0.6, 0.4) >},
fN1

(e2) = {< x1, (0.8, 0.4, 0.5) >,< x2, (0.7, 0.7, 0.3) >,<
x3, (0.7, 0.5, 0.6) >};

fN2
(e1) = {< x1, (0.8, 0.5, 0.6) >,< x2, (0.5, 0.7, 0.6) >,<

x3, (0.4, 0.7, 0.5) >},
fN2(e2) = {< x1, (0.7, 0.6, 0.5) >,< x2, (0.6, 0.8, 0.4) >,<

x3, (0.5, 0.8, 0.6) >};
fN3(e1) = {< x1, (0.6, 0.6, 0.7) >,< x2, (0.4, 0.8, 0.8) >,<

x3, (0.3, 0.8, 0.6) >},
fN3

(e2) = {< x1, (0.5, 0.8, 0.6) >,< x2, (0.5, 0.9, 0.5) >,<
x3, (0.2, 0.9, 0.7) >};

The t-norm and s-norm are defined as a ∗ b = min{a, b} and
a � b = max{a, b}. Here N1 ∩N1 = N1, N1 ∩N2 = N2, N1 ∩
N3 = N3, N2 ∩N2 = N2, N2 ∩N3 = N3, N3 ∩N3 = N3 and
N1 ∪ N1 = N1, N1 ∪ N2 = N1, N1 ∪ N3 = N1, N2 ∪ N2 =
N2, N2 ∪ N3 = N2, N3 ∪ N3 = N3. Then τu is a neutrosophic
soft topology on (U,E) and so (U,E, τu) is a neutrosophic soft
topological space over (U,E).

3. Let NSS(U,E) be the family of all neutrosophic soft sets over
(U,E). Then {φu, 1u} and NSS(U,E) are two examples of the
neutrosophic soft topology over (U,E). They are called, respec-
tively, indiscrete (trivial) and discrete neutrosophic soft topology.
Clearly, they are the smallest and largest neutrosophic soft topol-
ogy on (U,E), respectively.

2.10 Definition [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E) be arbitrary. Then the interior of
M is denoted by Mo and is defined as :

Mo = ∪{N1 : N1 is neutrosophic soft open and N1 ⊂M}

i.e., it is the union of all open neutrosophic soft subsets of M .
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2.10.1 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,P ∈ NSS(U,E). Then,
(i) Mo ⊂M and Mo is the largest open set.
(ii)M ⊂ P ⇒Mo ⊂ P o.
(iii) Mo is an open neutrosophic soft set i.e., Mo ∈ τu.
(iv) M is neutrosophic soft open set iff Mo = M .
(v) (Mo)o = Mo.
(vi)(φu)o = φu and 1ou = 1u.
(vii) (M ∩ P )o = Mo ∩ P o.
(viii) Mo ∪ P o ⊂ (M ∪ P )o.

2.11 Definition [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E) be arbitrary. Then the closure of
M is denoted by M and is defined as :

M = ∩{N1 : N1 is neutrosophic soft closed and N1 ⊃M}

i.e., it is the intersection of all closed neutrosophic soft super-
sets of M .

2.11.1 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,P ∈ NSS(U,E). Then,
(i) M ⊂M and M is the smallest closed set.
(ii) M ⊂ P ⇒M ⊂ P .
(iii) M is closed neutrosophic soft set i.e., M ∈ τ cu.
(iv) M is neutrosophic soft closed set iff M = M .
(v) M = M .
(vi) φu = φu and 1u = 1u.
(vii) M ∪ P = M ∪ P .
(viii) M ∩ P ⊂M ∩ P .

2.11.2 Theorem [33]

Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M ∈ NSS(U,E). Then, (i) (M)c = (M c)o

(ii)(Mo)c = (M c)

2.12 Definition [33]

1. A neutrosophic soft point in an NSSN is defined as an element
(e, fN (e)) of N , for e ∈ E and is denoted by eN , if fN (e) /∈ φu
and fN (e′) ∈ φu,∀e′ ∈ E − {e}.
2. The complement of a neutrosophic soft point eN is another
neutrosophic soft point ecN such that f cN (e) = (fN (e))c.
3. A neutrosophic soft point eN ∈M,M being an NSS if for the
element e ∈ E, fN (e) ≤ fM (e).

2.12.1 Example

Let U = {x1, x2, x3} and E = {e1, e2}. Then,
e1N = {< x1, (0.6, 0.4, 0.8) >,< x2, (0.8, 0.3, 0.5) >,<
x3, (0.3, 0.7, 0.6) >}
is a neutrosophic soft point whose complement is
ec1N = {< x1, (0.8, 0.6, 0.6) >,< x2, (0.5, 0.7, 0.8) >,<
x3, (0.6, 0.3, 0.3) >}.
For another NSS M defined on same (U,E), let,
fM (e1) = {< x1, (0.7, 0.4, 0.7) >,< x2, (0.8, 0.2, 0.4) >,<
x3, (0.5, 0.6, 0.5) >}.
Then, fN (e1) ≤ fM (e1) i.e., e1N ∈M .

2.13 Definition [33]
Hausdorff space : Let (U,E, τu) be a neutrosophic soft topo-
logical space over (U,E). For two distinct neutrosophic soft
points eK , eS , if there exists disjoint neutrosophic soft open sets
M,P such that eK ∈M and eS ∈ P then (U,E, τu) is called T2
space or Hausdorff space.

2.13.1 Example

Let U = {h1, h2}, E = {e} and τu = {φu, 1u,M, P} where
M,P being neutrosophic soft subsets of N are defined as fol-
lowing :

fM (e) = {< h1, (1, 0, 1) >,< h2, (0, 0, 1) >};
fP (e) = {< h1, (0, 1, 0) >,< h2, (1, 1, 0) >};

Then τu is a neutrosophic soft topology on (U,E) with respect
to the t-norm and s-norm defined as a ∗ b = max{a + b− 1, 0}
and a � b = min{a + b, 1}. Here eM ∈ M and eP ∈ P with
eM 6= eP and M ∩ P = φu.

2.14 Definition [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) where τu is a topology on (U,E) and M ∈ NSS(U,E)
an arbitrary NSS. Suppose τM = {M ∩ Ni : Ni ∈ τu}. Then
τM forms also a topology on (U,E). Thus (U,E, τM ) is a neu-
trosophic soft topological subspace of (U,E, τu).

2.14.1 Example

Let us consider the example (2) in [2.9.1]. We define M ∈
NSS(U,E) as following :

fM (e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.7, 0.3, 0.2) >,<
x3, (0.5, 0.5, 0.7) >};

fM (e2) = {< x1, (0.6, 0.3, 0.5) >,< x2, (0.4, 0.7, 0.6) >,<
x3, (0.8, 0.3, 0.5) >};

We denote M ∩ φu = φM ,M ∩ 1u = 1M ,M ∩ N1 =
M1,M ∩ N2 = M2,M ∩ N3 = M3; Then M1,M2,M3 are
given as following :
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fM1
(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.6, 0.6, 0.6) >,<

x3, (0.5, 0.6, 0.7) >};
fM1(e2) = {< x1, (0.6, 0.4, 0.5) >,< x2, (0.4, 0.7, 0.6) >,<

x3, (0.7, 0.5, 0.6) >};
fM2(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.5, 0.7, 0.6) >,<

x3, (0.4, 0.7, 0.7) >};
fM2

(e2) = {< x1, (0.6, 0.6, 0.5) >,< x2, (0.4, 0.8, 0.6) >,<
x3, (0.5, 0.8, 0.6) >};

fM3
(e1) = {< x1, (0.4, 0.6, 0.8) >,< x2, (0.4, 0.8, 0.8) >,<

x3, (0.3, 0.8, 0.7) >};
fM3

(e2) = {< x1, (0.5, 0.8, 0.6) >,< x2, (0.4, 0.9, 0.6) >,<
x3, (0.2, 0.9, 0.7) >};

Here M1 ∩M2 = M2,M1 ∩M3 = M3,M2 ∩M3 = M3 and
M1 ∪M2 = M2,M1 ∪M3 = M3,M2 ∪M3 = M3. Then τM =
{φM , 1M ,M1,M2,M3} is neutrosophic soft subspace topology
on (U,E).

2.15 Theorem [33]
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E) and M,N ∈ NSS(U,E). Then,
(i) If ßu is a base of τu then ßM = {B ∩M : B ∈ ßu} is a base
for the topology τM .
(ii) If Q is closed NSS in M and M is closed NSS in N , then Q
is closed in N .
(iii) Let Q ⊂ M . If Q is the closure of Q then Q ∩M is the
closure of Q in M .
(iv) An NSS M ∈ NSS(U,E) is an open NSS iff M is a neigh-
bourhood of each NSS N contained in M .

2.16 Proposition (De-Morgan’s law)[33]
Let N1, N2 be two neutrosophic soft sets over (U,E). Then,
(i) (N1∪N2)c = N1

c∩N2
c (ii) (N1∩N2)c = N1

c∪N2
c.

3 Connectedness
In this section, the concept of connectedness on neutrosophic
soft topological space has been introduced with suitable exam-
ple. Some related theorems have been developed in continuation.

3.1 Definition
Two neutrosophic soft sets N1, N2 of a neutrosophic soft topo-
logical space (U,E, τu) over (U,E) are said to be separated if
(i) N1 ∩N2 = φu and (ii) N1 ∩N2 = φu or N1 ∩N2 = φu.

3.2 Definition
Let (U,E, τu) be a neutrosophic soft topological space over
(U,E). Then a pair of nonempty neutrosophic soft open sets
N1, N2 is called a neutrosophic soft separation of (U,E, τu) if
1u = N1 ∪N2 and N1 ∩N2 = φu.

In the Example (1) of [2.9.1], the pairN1, N2 is a neutrosophic
soft separation of (U,E, τu) as 1u = N1∪N2 andN1∩N2 = φu.

3.3 Definition
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft connected if there does not exist a neutrosophic
soft separation of (U,E, τu). Otherwise, (U,E, τu) is called neu-
trosophic soft disconnected.

The topological space in the Example (2) of [2.9.1] is con-
nected but (1) of [2.9.1] is disconnected.

3.4 Theorem
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft disconnected iff there exists a nonempty proper
neutrosophic soft subset of 1u which is both neutrosophic soft
open and neutrosophic soft closed.

Proof. Let M ⊂ 1u,M 6= φu and M is both neutrosophic soft
open and closed. Then M c ⊂ 1u,M

c 6= φu and M c is both
neutrosophic soft open and closed, also. Let P = M c. Then
M = M and P = P . Thus 1u can be expressed as the union
of two separated neutrosophic soft sets M,P and so, is neutro-
sophic soft disconnected.

Conversely, let 1u be neutrosophic soft disconnected. Then
there exists nonempty neutrosophic soft open sets N1, N2 such
that 1u = N1 ∪N2 and N1 ∩N2 = φu. Then N1 = N c

2 i.e., N1

is closed, also. Similarly, N2 = N c
1 and so, N2 is closed.

3.5 Theorem
A neutrosophic soft topological space (U,E, τu) is said to be
neutrosophic soft connected iff there exists neutrosophic soft sets
in NSS(U,E) which are both neutrosophic soft open and neutro-
sophic soft closed, are φu and 1u.

Proof. Let (U,E, τu) be a connected neutrosophic soft topologi-
cal space. For contrary, we suppose that M is both neutrosophic
soft open and closed different from φu, 1u. Then M c is also both
neutrosophic soft open and closed different from φu, 1u. Also
M ∩M c = φu and M ∪M c = 1u. Therefore M,M c is a neu-
trosophic soft separation of 1u. This is a contradiction. So, the
only neutrosophic soft closed and open sets in NSS(U,E) are φu
and 1u.

Conversely, let M,P be a neutrosophic soft separation of
(U,E, τu). Then M 6= N i.e., M = P c, otherwise M = 1u
implies P = φu, a contradiction. This shows that M is both neu-
trosophic soft open and neutrosophic soft closed different from
φu, 1u. This is a contradiction. Hence, (U,E, τu) is connected.

3.6 Theorem
If the neutrosophic soft setsN1, N2 form a neutrosophic soft sep-
aration of (U,E, τu) and if (U,E, τM ) is a neutrosophic soft con-
nected subspace of (U,E, τu), then M ⊂ N1 or M ⊂ N2.
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Proof. Here N1, N2 ∈ τu such that N1 ∩ N2 = φu and
N1 ∪ N2 = 1u. Then N1 ∩M,N2 ∩M ∈ τM as (U,E, τM )
is a neutrosophic soft topological subspace of (U,E, τu). Now
(N1 ∩M)∩ (N2 ∩M) = (N1 ∩N2)∩M = φu ∩M = φu and
(N1 ∩M) ∪ (N2 ∩M) = (N1 ∪ N2) ∩M = 1u ∩M = M .
Thus the pair N1 ∩M,N2 ∩M would constitute a neutrosophic
soft separation of (U,E, τM ), a contradiction.

Hence, one of N1 ∩ M and N2 ∩ M is empty and so M is
entirely contained in one of them.

3.7 Theorem
Let (U,E, τM ) be a neutrosophic soft topological subspace of
(U,E, τu). A separation of (U,E, τM ) is a pair of disjoint
nonempty neutrosophic soft setsM1,M2 whose union isM such
that M1 ∩M2 = φu and M2 ∩M1 = φu.

Proof. Suppose M1,M2 forms a separation of (U,E, τM ). Then
M1 is both neutrosophic soft open and closed subset of M by
Theorem [3.4]. The neutrosophic soft closure of M1 in M is
M1 ∩ M by Theorem [2.19]. Since M1 is neutrosophic soft
closed in M then M1 = M1 ∩ M . It implies M1 ∩ M2 =
(M1 ∩M) ∩M2 = M1 ∩M2 = φu. Similarly, M2 ∩M1 = φu.

Conversely, let M = M1 ∪M2 with M1 ∩M2 = φu such that
M1 ∩M2 = φu and M2 ∩M1 = φu. Then M ∩M1 = φu and
M ∩M2 = φu ⇒ M1,M2 are neutrosophic soft closed in M .
Also M1 = M c

2 implies both are neutrosophic soft open in M .

3.8 Theorem
Let (U,E, τM ) be a connected neutrosophic soft subspace of
(U,E, τu). If (U,E, τP ) be any neutrosophic soft subspace of
(U,E, τu) such that M ⊂ P ⊂ M , then (U,E, τP ) is also neu-
trosophic soft connected.

Proof. Let the neutrosophic soft set P satisfy the hypothesis.
If possible, let P1, P2 form a neutrosophic soft separation of
(U,E, τP ). Then M ⊂ P1 or M ⊂ P2. Let M ∩ P1 = φu.
So M ⊂ P c1 and P c1 is closed NSS. It implies M ⊂ P ⊂ M ⊂
P c1 ⇒ P ⊂ P c1 ⇒ P ∩ P1 = φu. This is a contradiction to the
fact that P1 ∪ P2 = P . Hence, (U,E, τP ) is neutrosophic soft
connected.

3.9 Theorem
Arbitrary union of connected neutrosophic soft subspaces of
(U,E, τu) having nonempty intersection is also neutrosophic soft
connected.

Proof. Let {(U,E, τNi) : i ∈ Γ} be a class of connected neutro-
sophic soft subspaces of (U,E, τu) with nonempty intersection.
Let τM = ∪i(τNi

). If possible, we take a neutrosophic soft sep-
aration P,Q of (U,E, τM ). For each i, P ∩ Ni and Q ∩ Ni are
disjoint neutrosophic soft open sets in the subspace such that their
union is Ni. Since each (U,E, τNi) is connected, any of P ∩Ni
andQ∩Ni must be empty. Let P ∩Ni = φu ⇒ Q∩Ni = Ni ⇒

Ni ⊂ Q, ∀i ∈ Γ⇒ ∪iNi ⊂ Q⇒M ⊂ Q⇒ P ∪Q ⊂ Q⇒ P
is empty, a contradiction. So, (U,E, τM ) is neutrosophic soft
connected.

3.10 Theorem
Arbitrary union of a family of connected neutrosophic soft sub-
spaces of (U,E, τu) such that one of the members of the family
has nonempty intersection with every member of the family, is
neutrosophic soft connected.

Proof. Let {(U,E, τNi) : i ∈ Γ} be a class of connected neu-
trosophic soft subspaces of (U,E, τu) and Nk be a fixed member
such that Nk ∩ Ni 6= φu for each i ∈ Γ. Let Mi = Nk ∪ Ni.
Then by Theorem [3.9], (U,E, τMi

) is a neutrosophic soft con-
nected for each i ∈ Γ. Now, ∪iMi = ∪i(Nk ∪ Ni) =
(Nk ∪N1)∪ (Nk ∪N2)∪ · · · = Nk ∪ (N1 ∪N2 ∪ · · · ) = ∪iNi
and ∩iMi = ∩i(Nk ∪ Ni) = (Nk ∪ N1) ∩ (Nk ∪ N2) ∩ · · · =
Nk ∪ (N1 ∩N2 ∩ · · · ) 6= φu.

This completes the theorem.

4 Compactness
Here, the notion of compactness on neutrosophic soft topological
space is developed with some basic theorems.

4.1 Definition
Let (U,E, τu) be a neutrosophic soft topological space and M ∈
τu. A family Ω = {Qi : i ∈ Γ} of neutrosophic soft sets is said
to be a cover of M if M ⊂ ∪Qi.
If every member of that family which covers M is neutrosophic
soft open then it is called open cover of M . A subfamily of Ω
which also covers M is called a subcover of M .

4.1.1 Definition

Let (U,E, τu) be a neutrosophic soft topological space and M ∈
τu. Suppose Ω be an open cover of M . If Ω has a finite subcover
which also coversM thenM is called neutrosophic soft compact.

4.1.2 Example

In the Example (1) of [2.9.1], 1u = ∪4i=1Ni. So
{N1, N2, N3, N4} is an open cover of (U,E, τu). Also, 1u =
N1 ∪ N2 or 1u = N1 ∪ N4. So (U,E, τu) is neutrosophic soft
compact topological space.

4.2 Theorem
Let (U,E, τu) be a neutrosophic soft compact topological space
and M be a neutrosophic soft closed set of that space. Then M
is also compact.

Proof. Let Ω = {Qi : i ∈ Γ} be an open cover of M .
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Then {Qi} ∪ M c is an open cover of (U,E, τu), obviously.
Since (U,E, τu) is compact so there exists a finite subcover of
{Qi} ∪M c such that

1u = Q1 ∪Q2 ∪ · · · ∪Qn ∪M c

⇒ M ⊂ 1u = Q1 ∪Q2 ∪ · · · ∪Qn ∪M c

⇒ M ⊂ Q1 ∪Q2 ∪ · · · ∪Qn as M ∩M c = φu.

Hence, M has a finite subcover and so is compact.

4.3 Theorem

Let (U,E, τu) be a neutrosophic soft Hausdorff topological space
and M be a neutrosophic soft compact set belonging to that
space. Then M is a closed NSS.

Proof. Let eK ∈ M c be a neutrosophic soft point. Then for
each eS ∈ M , we have eK 6= eS . So by definition of Hausdorff
space, there are disjoint neutrosophic soft open sets NK , NS so
that eK ∈ NK and eS ∈ NS . Let {NS : eS ∈ M} be a neu-
trosophic soft open cover of M . Since M is neutrosophic soft
compact so it has a finite subcover, say, {NS1

, NS2
, · · ·NSn

} i.e.,
M ⊂ NS1

∪NS2
∪ · · · ∪NSn

= P , say. Then P is neutrosophic
soft open.

Let Q = NK1
∩ NK2

∩ · · · ∩ NKn
where each NKi

is open
NSS corresponding to eKi

∈ M c. Now, NSi
∩ NKi

= φu ⇒
NSi
∩ Q = φu for each i. Then P ∩ Q = (NS1

∪ NS2
∪ · · · ∪

NSn) ∩Q = (NS1 ∩Q) ∪ (NS2 ∩Q) ∪ · · · ∪ (NSn ∩Q) = φu.
SinceM ⊂ P and P ∩Q = φu, soM∩Q = φu ⇒ Q ⊂M c and
Q is open NSS. This implies M c is open NSS i.e., M is closed.

4.4 Theorem

A neutrosophic soft topological space is compact iff each family
of neutrosophic soft closed sets with the finite intersection prop-
erty has a nonempty intersection.

Proof. Let (U,E, τu) be a compact neutrosophic soft topological
space. Consider Ω = {Qi : i ∈ Γ} be a family of closed NSSs
such that ∩iQi = φu. We show Ω can not have finite intersec-
tion property. Let ∆ = {Qci : Qi ∈ Ω, i ∈ Γ}. Then ∆ is an
open cover of (U,E, τu) such that there exists a finite subcover
{Qc1, Qc2, · · · , Qcn}. Now ∩ni=1Qi = 1u−(Qc1∪Qc2∪· · ·∪Qcn) =
1u − 1u = φu by Definition [2.8]. Hence, the ‘if part’ holds.

Next assume that (U,E, τu) is not compact. Then, a neutro-
sophic soft open cover {Qi : i ∈ Γ}, say, of (U,E, τu) has no
finite subcover i.e., Q1 ∪ Q2 ∪ · · · ∪ Qn 6= 1u. This implies
Qc1 ∩ Qc2 ∩ · · · ∩ Qcn 6= φu by Definition [2.8] and Proposition
[2.16]. Thus {Qci : i ∈ Γ} has finite intersection property. Then
by hypothesis, ∩iQci 6= φu and ∪iQi 6= 1u which is a contradic-
tion. Hence, (U,E, τu) is compact.

5 Neutrosophic soft continuous map-
pings

In this section, first we define neutrosophic soft mapping, then
define image and pre-image of an NSS under a neutrosophic soft
mapping. In continuation, we introduce the notion of neutro-
sophic soft continuous mapping in a neutrosophic soft topologi-
cal space along with some of it’s properties.
In rest of the paper, if M be an NSS over U via parameter set E,
we write (M,E), an NSS over U i.e., (M,E) = {< e, fM (e) >:
e ∈ E}.

5.1 Definition
Let, ϕ : U → V and ψ : E → E be two functions where E is
the parameter set for each of the crisp sets U and V . Then the
pair (ϕ,ψ) is called an NSS function from (U,E) to (V,E). We
write, (ϕ,ψ) : (U,E)→ (V,E).

5.1.1 Definition

Let (M,E) and (N,E) be two NSSs defined over U and V ,
respectively and (ϕ,ψ) be an NSS function from (U,E) to
(V,E). Then,
(1) The image of (M,E) under (ϕ,ψ), denoted by
(ϕ,ψ)(M,E), is an NSS over V and is defined as :
(ϕ,ψ)(M,E) = (ϕ(M), ψ(E)) = {< ψ(a), fϕ(M)(ψ(a)) >:
a ∈ E} where ∀b ∈ ψ(E),∀y ∈ V .

Tfϕ(M)(b)(y) =

{
maxϕ(x)=y maxψ(a)=b [TfM (a)(x)], if x ∈ ϕ−1(y)
0 , otherwise.

Ifϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [IfM (a)(x)], if x ∈ ϕ−1(y)
1 , otherwise.

Ffϕ(M)(b)(y) =

{
minϕ(x)=y minψ(a)=b [FfM (a)(x)], if x ∈ ϕ−1(y)
1 , otherwise.

(2) The pre-image of (N,E) under (ϕ,ψ), denoted by
(ϕ,ψ)−1(N,E), is an NSS over U and is defined by :

(ϕ,ψ)−1(N,E) = (ϕ−1(N), ψ−1(E)) where ∀a ∈
ψ−1(E),∀x ∈ U .

Tfϕ−1(N)(a)
(x) = TfN (ψ(a))(ϕ(x))

Ifϕ−1(N)(a)
(x) = IfN (ψ(a))(ϕ(x))

Ffϕ−1(N)(a)
(x) = FfN (ψ(a))(ϕ(x))

If ψ and ϕ are injective (surjective), then (ϕ,ψ) is injective (sur-
jective).

5.1.2 Proposition

Let, (ϕ,ψ) : (U,E) → (V,E) be a neutrosophic soft mapping
and (M1, E) and (M2, E) be two NSSs defined over U . Then
the followings hold.
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(1) (M1, E) ⊆ (ϕ,ψ)−1[(ϕ,ψ)(M1, E)]
(2) [(ϕ,ψ)(M1, E)]c ⊆ (ϕ,ψ)(M1, E)c, if ϕ is surjective.
(3) (ϕ,ψ)[(M1, E) ∪ (M2, E)] = (ϕ,ψ)(M1, E) ∪
(ϕ,ψ)(M2, E)
(4) (ϕ,ψ)[(M1, E) ∩ (M2, E)] = (ϕ,ψ)(M1, E) ∩
(ϕ,ψ)(M2, E)

Proof.
(1) (ϕ,ψ)−1[(ϕ,ψ)(M1, E)] = (ϕ,ψ)−1[ϕ(M1), ψ(E)] =
[ϕ−1(ϕ(M1)), ψ−1(ψ(E))]. Then for a ∈ ψ−1(ψ(E)) and
x ∈ U , we have, Tfϕ−1(ϕ(M1))(a)

(x) = Tfϕ(M1)(ψ(a))(ϕ(x)) =

maxϕ(x) maxψ(a)[TfM (a)(x)]. Now, TfM (a)(x) ≤
maxϕ(x) maxψ(a)[TfM (a)(x)] = Tfϕ−1(ϕ(M1))(a)

(x).
Similarly, IfM (a)(x) ≥ Ifϕ−1(ϕ(M1))(a)

(x) and FfM (a)(x) ≥
Ffϕ−1(ϕ(M1))(a)

(x).
Hence, (M1, E) ⊆ (ϕ,ψ)−1[(ϕ,ψ)(M1, E)].

(2) Suppose, ϕ is surjective mapping. Here, [(ϕ,ψ)(M1, E)]c =
[(ϕ(M1))c, ψ(E)] and (ϕ,ψ)(M1, E)c = [ϕ(M c

1 ), ψ(E)].
For b ∈ ψ(E) and y ∈ V , we have, Tf(ϕ(M1))c (b)(y) =

Ff(ϕ(M1))(b)(y) = minϕ(x)=y minψ(a)=b[FfM1
(a)(x)]. But,

Tfϕ(Mc
1)(b)(y) = maxϕ(x)=y maxψ(a)=b[TfMc

1
(a)(x)] =

maxϕ(x)=y maxψ(a)=b[FfM1
(a)(x)]. Thus, Tf(ϕ(M1))c (b)(y) ≤

Tfϕ(Mc
1)(b)(y) · · · · · · · · · (i)

Similarly, Ff(ϕ(M1))c (b)(y) ≥ Ffϕ(Mc
1)(b)(y) · · · · · · · · · (ii)

Finally, If(ϕ(M1))c (b)(y) = 1 − If(ϕ(M1))(b)(y) =

1 − minϕ(x)=y minψ(a)=b[IfM1
(a)(x)] and Ifϕ(Mc

1)(b)(y) =

minϕ(x)=y minψ(a)=b[IfMc
1
(a)(x)] = minϕ(x)=y minψ(a)=b[1−

IfM1
(a)(x)].

This shows, If(ϕ(M1))c (b)(y) ≥ Ifϕ(Mc
1)(b)(y) · · · · · · · · · (iii)

This completes the 2nd part.

(3) Let, (M1, E) ∪ (M2, E) = (M,E).
Then, (ϕ,ψ)[(M1, E) ∪ (M2, E)] = (ϕ,ψ)(M,E) =
[ϕ(M), ψ(E)]. So, for b ∈ ψ(E) and y ∈ V , we have,

Tfϕ(M)(b)(y) = max
ϕ(x)=y

max
ψ(a)=b

[TfM (a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) � TfM2

(a)(x)]

Next, (ϕ,ψ)(M1, E) ∪ (ϕ,ψ)(M2, E) = [ϕ(M1) ∪
ϕ(M2), ψ(E)] = [P,ψ(E)], say. Then,

TfP (b)(y)

= Tfϕ(M1)(b)(y) � Tfϕ(M2)(b)(y)

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x)] � max

ϕ(x)=y
max
ψ(a)=b

[TfM2
(a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) � TfM2

(a)(x)]

Thus, Tfϕ(M)(b)(y) = TfP (b)(y). Similar results also hold for
I, F .

This completes the proof of part (3).

(4) Let, (M1, E) ∩ (M2, E) = (M,E).
Then, (ϕ,ψ)[(M1, E) ∩ (M2, E)] = (ϕ,ψ)(M,E) =
[ϕ(M), ψ(E)]. So, for b ∈ ψ(E) and y ∈ V , we have,

Tfϕ(M)(b)(y) = max
ϕ(x)=y

max
ψ(a)=b

[TfM (a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) ∗ TfM2

(a)(x)]

Next, (ϕ,ψ)(M1, E) ∩ (ϕ,ψ)(M2, E) = [ϕ(M1) ∩
ϕ(M2), ψ(E)] = [Q,ψ(E)], say. Then,

TfQ(b)(y)

= Tfϕ(M1)(b)(y) ∗ Tfϕ(M2)(b)(y)

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x)] ∗ max

ϕ(x)=y
max
ψ(a)=b

[TfM2
(a)(x)]

= max
ϕ(x)=y

max
ψ(a)=b

[TfM1
(a)(x) ∗ TfM2

(a)(x)]

Thus, Tfϕ(M)(b)(y) = TfQ(b)(y). Similar results also hold for
I, F .

This ends the last part.

5.1.3 Proposition

Let, (ϕ,ψ) : (U,E) → (V,E) be a neutrosophic soft mapping
and (N1, E) and (N2, E) be two NSSs defined over V . Then the
followings hold.
(1) (ϕ,ψ)[(ϕ,ψ)−1(N1, E)] = (N1, E), if (ϕ,ψ) is surjective.
(2) [(ϕ,ψ)−1(N1, E)]c = (ϕ,ψ)−1(N1, E)c

(3) (ϕ,ψ)−1[(N1, E) ∪ (N2, E)] = (ϕ,ψ)−1(N1, E) ∪
(ϕ,ψ)−1(N2, E)
(4) (ϕ,ψ)−1[(N1, E) ∩ (N2, E)] = (ϕ,ψ)−1(N1, E) ∩
(ϕ,ψ)−1(N2, E)

Proof. We shall prove (2) and (3), only. The others can be proved
similarly.
(2) Here, [(ϕ,ψ)−1(N1, E)]c = [(ϕ−1(N))c, ψ−1(E)]. Then,
for a ∈ ψ−1(E), x ∈ U ,

Tf(ϕ−1(N))c (a)
(x) = Ffϕ−1(N)(a)

(x) = FfN (ψ(a))(ϕ(x)),
If(ϕ−1(N))c (a)

(x) = 1− Ifϕ−1(N)(a)
(x) = 1− IfN (ψ(a))(ϕ(x)),

Ff(ϕ−1(N))c (a)
(x) = Tfϕ−1(N)(a)

(x) = TfN (ψ(a))(ϕ(x)).

Next, (ϕ,ψ)−1(N1, E)c = [ϕ−1(N c
1 ), ψ)−1(E)]. Then,

Tfϕ−1(Nc)(a)
(x) = TfNc (a)(x) = FfN (ψ(a))(ϕ(x)),

Ifϕ−1(Nc)(a)
(x) = IfNc (a)(x) = 1− IfN (ψ(a))(ϕ(x)),

Ffϕ−1(Nc)(a)
(x) = FfNc (a)(x) = TfN (ψ(a))(ϕ(x)).

Hence, the result is proved.

(3) Let, (N1, E) ∪ (N2, E) = (N,E).
Then, (ϕ,ψ)−1[(N1, E) ∪ (N2, E)] = (ϕ,ψ)−1(N,E) =
[ϕ−1(N), ψ−1(E)]. So, for a ∈ ψ−1(E) and x ∈ U , we have,

Tfϕ−1(N)(a)
(x) = TfN (ψ(a))(ϕ(x))

= TfN1
(ψ(a))(ϕ(x)) � TfN2

(ψ(a))(ϕ(x))
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Next, (ϕ,ψ)−1(N1, E) ∪ (ϕ,ψ)−1(N2, E) = [ϕ−1(N1) ∪
ϕ−1(N2), ψ−1(E)] = [R,ψ−1(E)], say. Then,

TfR(a)(x) = Tfϕ−1(N1)(a)
(x) � Tfϕ−1(N2)(a)

(x)

= TfN1
(ψ(a))(ϕ(x)) � TfN2

(ψ(a))(ϕ(x))

Thus, Tfϕ−1(N)(a)
(x) = TfR(a)(x). Similar results also hold for

I, F .
This completes the proof of part (3).

5.2 Definition

Let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a mapping where
(U,E, τu) and (V,E, τv) be two neutrosophic soft topological
spaces.
(1) For each neutrosophic soft open set (M,E) ∈ (U,E, τu), if
the image (ϕ,ψ)(M,E) is open in (V,E, τv) then (ϕ,ψ) is said
to be neutrosophic soft open mapping.
(2) For each neutrosophic soft closed set (Q,E) ∈ (U,E, τu), if
the image (ϕ,ψ)(Q,E) is closed in (V,E, τv) then (ϕ,ψ) is said
to be neutrosophic soft closed mapping.

5.3 Theorem

Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topolog-
ical spaces and (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a mapping.
Then,
(1) (ϕ,ψ) is a neutrosophic soft open mapping iff for each
neutrosophic soft set (M,E) ∈ (U,E, τu), there be hold
(ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o.
(2) (ϕ,ψ) is a neutrosophic soft closed mapping iff for each
neutrosophic soft set (Q,E) ∈ (U,E, τu), there be hold
[(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E).

Proof. (1) Let (ϕ,ψ) is a neutrosophic soft open mapping and
(M,E) ∈ (U,E, τu). Then (M,E)o is a neutrosophic soft
open set and (M,E)o ⊂ (M,E). Since (ϕ,ψ) is a neutro-
sophic soft open mapping, (ϕ,ψ)(M,E)o is neutrosophic soft
open in (V,E, τv). Then (ϕ,ψ)(M,E)o ⊂ (ϕ,ψ)(M,E).
But [(ϕ,ψ)(M,E)]o is the largest open NSS contained in
(ϕ,ψ)(M,E). Hence, (ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o is ob-
tained.

Conversely, suppose (M,E) be an open NSS in (U,E, τu)
such that the given condition holds. Then (M,E) = (M,E)o

and so (ϕ,ψ)(M,E) = (ϕ,ψ)(M,E)o ⊂ [(ϕ,ψ)(M,E)]o ⊂
(ϕ,ψ)(M,E). Hence, [(ϕ,ψ)(M,E)]o = (ϕ,ψ)(M,E). This
ends the proof.

(2) Let (ϕ,ψ) is a neutrosophic soft closed mapping and
(Q,E) ∈ (U,E, τu). Then (Q,E) is a neutrosophic soft
closed set and (Q,E) ⊂ (Q,E). Since (ϕ,ψ) is a neutro-
sophic soft closed mapping, (ϕ,ψ)(Q,E) is neutrosophic soft
closed in (V,E, τv). Then (ϕ,ψ)(Q,E) ⊂ (ϕ,ψ)(Q,E).
But [(ϕ,ψ)(Q,E)] is the smallest closed NSS containing

(ϕ,ψ)(Q,E). Hence, [(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E) is ob-
tained.

Conversely, suppose (Q,E) be a closed NSS in (U,E, τu)
such that the given condition holds. Then (Q,E) = (Q,E)
and so (ϕ,ψ)(Q,E) ⊂ [(ϕ,ψ)(Q,E)] ⊂ (ϕ,ψ)(Q,E) =
(ϕ,ψ)(Q,E). Hence, [(ϕ,ψ)(Q,E)] = (ϕ,ψ)(Q,E). This
completes the proof.

5.4 Definition
Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topolog-
ical spaces. Then (ϕ,ψ) : (U,E, τu) → (V,E, τv) is said to be
a neutrosophic soft continuous mapping if for each (N,E) ∈ τv ,
the inverse image (ϕ,ψ)−1(N,E) ∈ τu i.e., the inverse image of
each open NSS in (V,E, τv) is also open in (U,E, τu).

5.4.1 Example

For two neutrosophic soft topological spaces (U,E, τu) and
(V,E, τv), let (ϕ,ψ) : (U,E, τu)→ (V,E, τv) be a mapping.
(1) If τv is the neutrosophic soft indiscrete topology on V , then
(ϕ,ψ) is a neutrosophic soft continuous mapping.
(2) If τu is the neutrosophic soft discrete topology on U , then
(ϕ,ψ) is a neutrosophic soft continuous mapping.
(3) Let, U = {u1, u2, u3}, V = {v1, v2, v3}, E =
{e1, e2}, τv = {φv, 1v, (N1, E), (N2, E)}, τu =
{φu, 1u, (M1, E), (M2, E), (M3, E)}, where (N1, E), (N2, E)
are as follows :

fN1
(e1) = {< v1, (0.8, 0.5, 0.6) >,< v2, (0.5, 0.7, 0.6) >,<

v3, (0.4, 0.7, 0.5) >};
fN1

(e2) = {< v1, (0.7, 0.6, 0.5) >,< v2, (0.6, 0.8, 0.4) >,<
v3, (0.5, 0.8, 0.6) >};

fN2
(e1) = {< v1, (0.6, 0.6, 0.7) >,< v2, (0.4, 0.8, 0.8) >,<

v3, (0.3, 0.8, 0.6) >};
fN2(e2) = {< v1, (0.5, 0.8, 0.6) >,< v2, (0.5, 0.9, 0.5) >,<

v3, (0.2, 0.9, 0.7) >};

and (M1, E), (M2, E), (M3, E) are given as followings :

fM1(e1) = {< u1, (0.8, 0.4, 0.5) >,< u2, (0.7, 0.5, 0.6) >,<
u3, (0.7, 0.7, 0.3) >};

fM1
(e2) = {< u1, (1.0, 0.5, 0.4) >,< u2, (0.5, 0.6, 0.4) >,<

u3, (0.6, 0.6, 0.6) >};
fM2

(e1) = {< u1, (0.5, 0.8, 0.6) >,< u2, (0.2, 0.9, 0.7) >,<
u3, (0.5, 0.9, 0.5) >};

fM2
(e2) = {< u1, (0.6, 0.6, 0.7) >,< u2, (0.3, 0.8, 0.6) >,<

u3, (0.4, 0.8, 0.8) >};
fM3

(e1) = {< u1, (0.7, 0.6, 0.5) >,< u2, (0.5, 0.8, 0.6) >,<
u3, (0.6, 0.8, 0.4) >};

fM3(e2) = {< u1, (0.8, 0.5, 0.6) >,< u2, (0.4, 0.7, 0.5) >,<
u3, (0.5, 0.7, 0.6) >};

The t-norm and s-norm in both τu, τv are defined as a ∗ b =
min{a, b} and a � b = max{a, b}. Consider the mapping (ϕ,ψ)
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as : ϕ(u1) = v1, ϕ(u2) = v3, ϕ(u3) = v2 and ψ(e1) =
e2, ψ(e2) = e1. Then (ϕ,ψ)−1(N1, E), (ϕ,ψ)−1(N2, E) ∈ τu.

For convenience, the calculation of (ϕ,ψ)−1(N1, E) is pro-
vided for one parameter. The others are in similar way.

Tfϕ−1(N1)(e1)
(u1) = TfN1

(ψ(e1))(ϕ(u1)) = TfN1
(e2)(v1) = 0.7

Ifϕ−1(N1)(e1)
(u1) = IfN1

(ψ(e1))(ϕ(u1)) = IfN1
(e2)(v1) = 0.6

Ffϕ−1(N1)(e1)
(u1) = FfN1

(ψ(e1))(ϕ(u1)) = FfN1
(e2)(v1) = 0.5

Tfϕ−1(N1)(e1)
(u2) = TfN1

(ψ(e1))(ϕ(u2)) = TfN1
(e2)(v3) = 0.5

Ifϕ−1(N1)(e1)
(u2) = IfN1

(ψ(e1))(ϕ(u2)) = IfN1
(e2)(v3) = 0.8

Ffϕ−1(N1)(e1)
(u2) = FfN1

(ψ(e1))(ϕ(u2)) = FfN1
(e2)(v3) = 0.6

Tfϕ−1(N1)(e1)
(u3) = TfN1

(ψ(e1))(ϕ(u3)) = TfN1
(e2)(v2) = 0.6

Ifϕ−1(N1)(e1)
(u3) = IfN1

(ψ(e1))(ϕ(u3)) = IfN1
(e2)(v2) = 0.8

Ffϕ−1(N1)(e1)
(u3) = FfN1

(ψ(e1))(ϕ(u3)) = FfN1
(e2)(v2) = 0.4

5.4.2 Proposition

Let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a neutro-
sophic soft continuous mapping. Then for each e ∈ E,
(ϕ,ψ) : (U, τeu) → (V, τev ) is a neutrosophic continuous
mapping.

Proof. Let, (N,E) ∈ τv . Since (ϕ,ψ) be a neutrosophic
soft continuous mapping, so (ϕ,ψ)−1(N,E) ∈ τu. It
implies (ϕ,ψ)−1({< e, fN (e) >: e ∈ E}) ∈ τu i.e.,
(ϕ,ψ)−1(< e, fN (e) >) ∈ τeu for < e, fN (e) >∈ τev . This
follows the theorem.

But the converse does not hold. The following example shows
the fact.
Let, U = {u1, u2, u3}, V = {v1, v2, v3}, E =
{e1, e2}, τv = {φv, 1v, (N1, E), (N2, E)}, τu =
{φu, 1u, (M1, E), (M2, E), (M3, E)}, where (N1, E), (N2, E)
are as follows :

fN1
(e1) = {< v1, (0.8, 0.5, 0.6) >,< v2, (0.5, 0.7, 0.6) >,<

v3, (0.4, 0.7, 0.5) >};
fN1(e2) = {< v1, (0.7, 0.6, 0.5) >,< v2, (0.6, 0.8, 0.4) >,<

v3, (0.5, 0.8, 0.6) >};
fN2(e1) = {< v1, (1.0, 0.5, 0.4) >,< v2, (0.6, 0.6, 0.6) >,<

v3, (0.5, 0.6, 0.4) >};
fN2

(e2) = {< v1, (0.8, 0.4, 0.5) >,< v2, (0.7, 0.7, 0.3) >,<
v3, (0.7, 0.5, 0.6) >};

and (M1, E), (M2, E), (M3, E) are given as follows :

fM1(e1) = {< u1, (0.6, 0.6, 0.6) >,< u2, (0.5, 0.6, 0.4) >,<
u3, (1.0, 0.5, 0.4) >};

fM1
(e2) = {< u1, (0.7, 0.7, 0.3) >,< u2, (0.7, 0.5, 0.6) >,<

u3, (0.8, 0.4, 0.5) >};
fM2

(e1) = {< u1, (0.5, 0.7, 0.6) >,< u2, (0.4, 0.7, 0.5) >,<
u3, (0.8, 0.5, 0.6) >};

fM2
(e2) = {< u1, (0.5, 0.9, 0.5) >,< u2, (0.2, 0.9, 0.7) >,<

u3, (0.5, 0.8, 0.6) >};
fM3

(e1) = {< u1, (0.5, 0.6, 0.6) >,< u2, (0.4, 0.7, 0.4) >,<
u3, (0.9, 0.5, 0.5) >};

fM3
(e2) = {< u1, (0.6, 0.8, 0.4) >,< u2, (0.5, 0.8, 0.6) >,<

u3, (0.7, 0.6, 0.5) >};

The t-norm and s-norm in both τu, τv are defined as a ∗ b =
min{a, b} and a � b = max{a, b}. Define a neutrosophic soft
mapping (ϕ,ψ) as : ϕ(u1) = v2, ϕ(u2) = v3, ϕ(u3) = v1 and
ψ(e1) = e1, ψ(e2) = e2. We now calculate (ϕ,ψ)−1(N1, E).

Tfϕ−1(N1)(e1)
(u1) = TfN1

(ψ(e1))(ϕ(u1)) = TfN1
(e1)(v2) = 0.5

Ifϕ−1(N1)(e1)
(u1) = IfN1

(ψ(e1))(ϕ(u1)) = IfN1
(e1)(v2) = 0.7

Ffϕ−1(N1)(e1)
(u1) = FfN1

(ψ(e1))(ϕ(u1)) = FfN1
(e1)(v2) = 0.6

Tfϕ−1(N1)(e1)
(u2) = TfN1

(ψ(e1))(ϕ(u2)) = TfN1
(e1)(v3) = 0.4

Ifϕ−1(N1)(e1)
(u2) = IfN1

(ψ(e1))(ϕ(u2)) = IfN1
(e1)(v3) = 0.7

Ffϕ−1(N1)(e1)
(u2) = FfN1

(ψ(e1))(ϕ(u2)) = FfN1
(e1)(v3) = 0.5

Tfϕ−1(N1)(e1)
(u3) = TfN1

(ψ(e1))(ϕ(u3)) = TfN1
(e1)(v1) = 0.8

Ifϕ−1(N1)(e1)
(u3) = IfN1

(ψ(e1))(ϕ(u3)) = IfN1
(e1)(v1) = 0.5

Ffϕ−1(N1)(e1)
(u3) = FfN1

(ψ(e1))(ϕ(u3)) = FfN1
(e1)(v1) = 0.6

Tfϕ−1(N1)(e2)
(u1) = TfN1

(ψ(e2))(ϕ(u1)) = TfN1
(e2)(v2) = 0.6

Ifϕ−1(N1)(e2)
(u1) = IfN1

(ψ(e2))(ϕ(u1)) = IfN1
(e2)(v2) = 0.8

Ffϕ−1(N1)(e2)
(u1) = FfN1

(ψ(e2))(ϕ(u1)) = FfN1
(e2)(v2) = 0.4

Tfϕ−1(N1)(e2)
(u2) = TfN1

(ψ(e2))(ϕ(u2)) = TfN1
(e2)(v3) = 0.5

Ifϕ−1(N1)(e2)
(u2) = IfN1

(ψ(e2))(ϕ(u2)) = IfN1
(e2)(v3) = 0.8

Ffϕ−1(N1)(e2)
(u2) = FfN1

(ψ(e2))(ϕ(u2)) = FfN1
(e2)(v3) = 0.6

Tfϕ−1(N1)(e2)
(u3) = TfN1

(ψ(e2))(ϕ(u3)) = TfN1
(e2)(v1) = 0.7

Ifϕ−1(N1)(e2)
(u3) = IfN1

(ψ(e2))(ϕ(u3)) = IfN1
(e2)(v1) = 0.6

Ffϕ−1(N1)(e2)
(u3) = FfN1

(ψ(e2))(ϕ(u3)) = FfN1
(e2)(v1) = 0.5

Thus (ϕ,ψ)−1(N1, E) /∈ τu though (ϕ,ψ)−1(N2, E) =
(M1, E). So (ϕ,ψ)−1 is not neutrosophic soft continuous. Now,

τe1u = {(0, 1, 1), (1, 0, 0), fM1
(e1), fM2

(e1), fM3
(e1)},

τe2u = {(0, 1, 1), (1, 0, 0), fM1
(e2), fM2

(e2), fM3
(e2)};

τe1v = {(0, 1, 1), (1, 0, 0), fN1(e1), fN2(e1)},
τe2v = {(0, 1, 1), (1, 0, 0), fN1(e2), fN2(e2)};

Then, (ϕ,ψ) : (U, τe1u ) → (V, τe1v ) is neutrosophic con-
tinuous mapping because (ϕ,ψ)−1[fN1(e1)] = fM2(e1) and
(ϕ,ψ)−1[fN2(e1)] = fM1(e1).
Similarly, (ϕ,ψ) : (U, τe2u ) → (V, τe2v ) is neutrosophic con-
tinuous mapping as : (ϕ,ψ)−1[fN1

(e2)] = fM3
(e2) and

(ϕ,ψ)−1[fN2
(e2)] = fM1

(e2).
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5.5 Theorem

For two neutrosophic soft topological spaces (U,E, τu) and
(V,E, τv), let (ϕ,ψ) : (U,E, τu) → (V,E, τv) be a neu-
trosophic soft mapping. Then the following conditions are
equivalent.
(1) (ϕ,ψ) is neutrosophic soft continuous mapping.
(2) The inverse image of a closed NSS in (V,E, τv) is closed in
(U,E, τu).
(3) For each (M,E) ∈ NSS(U,E), (ϕ,ψ)(M,E) ⊂
(ϕ,ψ)(M,E).
(4) For each (N,E) ∈ NSS(V,E), (ϕ,ψ)−1(N,E) ⊂
(ϕ,ψ)−1(N,E).
(5) For each (N,E) ∈ NSS(V,E), (ϕ,ψ)−1(N,E)o ⊂
[(ϕ,ψ)−1(N,E)]o.

Proof. (1)⇒ (2)
Let, (Q,E) be a closed NSS in (V,E, τv). Then
(Q,E)c ∈ τv and so by (1), (ϕ,ψ)−1(Q,E)c ∈ τu. But
(ϕ,ψ)−1(Q,E)c = ((ϕ,ψ)−1(Q,E))c. So (ϕ,ψ)−1(Q,E) is a
closed NSS in (U,E, τu).

(2)⇒ (3)
Let, (M,E) ∈ NSS(U,E). Since (M,E) ⊂
(ϕ,ψ)−1((ϕ,ψ)(M,E)) and (ϕ,ψ)(M,E) ⊂ (ϕ,ψ)(M,E),
we have (M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)) ⊂
(ϕ,ψ)−1((ϕ,ψ)(M,E)). Obviously, (ϕ,ψ)(M,E) is
closed in (V,E, τv). Then by (2), (ϕ,ψ)−1((ϕ,ψ)(M,E))
is closed in (U,E, τu). But, since (M,E) ⊂ (M,E)
and (M,E) is the smallest closed NSS, so (M,E) ⊂
(M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)). This implies
(ϕ,ψ)(M,E) ⊂ (ϕ,ψ)[(ϕ,ψ)−1((ϕ,ψ)(M,E))] i.e.,
(ϕ,ψ)(M,E) ⊂ (ϕ,ψ)(M,E) is obtained.

(3)⇒ (4)
Let, (N,E) ∈ NSS(V,E) and (ϕ,ψ)−1(N,E) =
(M,E). Then (ϕ,ψ)−1(N,E) = (M,E). But by
(3), we have (M,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)) i.e.,
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1((ϕ,ψ)(M,E)). This shows
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1[(ϕ,ψ)((ϕ,ψ)−1(N,E))] i.e.,
(ϕ,ψ)−1(N,E) ⊂ (ϕ,ψ)−1(N,E).

(4)⇒ (5)
Let, (N,E) ∈ NSS(V,E). Replacing (N,E) by (N,E)c and
applying (4), we have (ϕ,ψ)−1(N,E)c ⊂ (ϕ,ψ)−1((N,E)c)
i.e., [(ϕ,ψ)−1((N,E)c)]c ⊂ [(ϕ,ψ)−1(N,E)c]c. By
Theorem (ii) of [2.15.2], since (N,E)o = [(N,E)c]c,
so (ϕ,ψ)−1(N,E)o = (ϕ,ψ)−1((N,E)c)c =
[(ϕ,ψ)−1((N,E)c)]c ⊂ [(ϕ,ψ)−1(N,E)c]c =
[(ϕ,ψ)−1(N,E)]o.

(5)⇒ (1)
Let, (N,E) be an open NSS in (V,E, τv). Then
(N,E)o = (N,E). Since [(ϕ,ψ)−1(N,E)]o ⊂
(ϕ,ψ)−1(N,E) = (ϕ,ψ)−1(N,E)o ⊂ [(ϕ,ψ)−1(N,E)]o,
so [(ϕ,ψ)−1(N,E)]o = (ϕ,ψ)−1(N,E) is obtained. Thus,
(ϕ,ψ)−1(N,E) is an open NSS in (U,E, τu) and so (ϕ,ψ) is
neutrosophic soft continuous mapping.

5.6 Theorem

Let, (U,E, τu) and (V,E, τv) be two neutrosophic soft topo-
logical spaces. Also let, (ϕ,ψ) : (U,E, τu) → (V,E, τv) be
a continuous neutrosophic soft mapping. If (M,E) is neutro-
sophic soft compact in (U,E, τu), then (ϕ,ψ)(M,E) is so in
(V,E, τv).

Proof. Let {(Ni, E) : i ∈ Γ} be a neutrosophic soft open cov-
ering of (ϕ,ψ)(M,E) i.e., (ϕ,ψ)(M,E) ⊂ ∪i(Ni, E). Since,
(ϕ,ψ) is neutrosophic soft continuous, {(ϕ,ψ)−1(Ni, E) :
i ∈ Γ} is a neutrosophic soft open cover of (M,E). But,
(M,E) is neutrosophic soft compact. So, there exists a fi-
nite subcover {(ϕ,ψ)−1(Ni, E) : 1 ≤ i ≤ k} such that
(M,E) ⊂ ∪ki=1(ϕ,ψ)−1(Ni, E) hold. Hence, (ϕ,ψ)(M,E) ⊂
(ϕ,ψ)[∪ki=1(ϕ,ψ)−1(Ni, E)] =
∪ki=1(ϕ,ψ)[(ϕ,ψ)−1(Ni, E)] = ∪ki=1(Ni, E).

This shows that (ϕ,ψ)(M,E) is covered by a finite number
of member of {(Ni, E) : i ∈ Γ}. Hence, (ϕ,ψ)(M,E) is
neutrosophic soft compact also.

5.7 Theorem

Let, (U,E, τu) be a neutrosophic soft topological space and
(V,E, τv) be a neutrosophic soft Hausdorff space. Then, a neu-
trosophic soft function (ϕ,ψ) : (U,E, τu)→ (V,E, τv) is closed
if it is continuous.

Proof. Let (Q,E) be any neutrosophic soft closed set in
(U,E, τu). Then by Theorem [4.2], (Q,E) is compact NSS.
Since (ϕ,ψ) is continuous neutrosophic soft function then
(ϕ,ψ)(Q,E) is compact NSS in (V,E, τv). As (V,E, τv) is
neutrosophic soft Hausdorff space, so (ϕ,ψ)(Q,E) is closed by
Theorem [4.3].

6 Conclusion
Topology is a major sector in mathematics and it can give
many relationships between other scientific area and mathemati-
cal models. The motivation of the present paper is to extend the
concept of topological structure on neutrosophic soft set intro-
duced in the paper [33]. Here, we have defined connectedness
and compactness on neutrosophic soft topological space, neutro-
sophic soft continuous mappings. These are illustrated by suit-
able examples. Their several related properties and structural
characteristics have been investigated. We expect, this paper will
promote the future study on neutrosophic soft topological groups
and many other general frameworks.
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