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A boundary value problem of the partial differential-integral   

equations and their applications 

Kim Ju Gyong, Ju Kwang Son 

 

Abstract 

We study the boundary value problem of a partial differential-integral equations that have 

many applications in finance and insurance. We will solve a boundary value problem of the 

partial differential-integral equations by using the solution of conjugate equation and 

reflection method and apply it to determine the probability of company bankruptcy in 

insurance mathematics. 
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Introduction 

The partial differential - integral equations is now more in the application of financial and 

insurance. In many papers have considered the boundary value problem of the differential 

equations,however,a few papers have considered the boundary value problem of the 

partial differential-integral equations. 

In [1~5], authors considered the unique existence of the partial differential-integral 

equations by using viscosity analysis and in [5], author considered the maximum value 

problem of the partial differential-integral equations. 

Firstly, we study the boundary value problem of a partial differential-integral equations 

and secondly, apply its result in insurance mathematics. 

1. The boundary value problem of a partial differential-integral equations 

Let consider the following boundary value problem of a partial differential-integral 

equations: 
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where for    22
 RCxf  operator L  define as following: 
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Assumption: 
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(H2)     is the finit measure on 
2B ,    00   and can express 

    2, Rzdzzpdz kkk                           (3) 

,where  zpk  is  the hyper-density function on 
2R . Namely,  
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Then, the operator L  can rewrite as following: 
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From assumption (H2), we can rewrite the matrix 
 ija  into the diagonal-matrix  2i   

by using appropriate variable transformation.   

Comfortably, will express ia
~

 into ia . 

Let’s consider following two operators; 
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Theorem 1: For ],0[],0[,, 2  RxTt  , the solution of the partial differential 

equation  
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Proof: Let’s assume that the solution of the equation (8) on boundary condition (9) 

exist,and apply following transformation:  

       ,;,,;, , xtkexts x . 

Then for ),(),,( 2121 aaa    the equation (8) is following:  
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Now, for 
2,,  RxTt   instituting i  and   into (11), (9), we obtain the 

following equation: 

  0,;,
1

2
2

2
2
22

1

2
2
1 




























 


xts
xxt

                  (12) 

     
     


 


 xexs

xtsxts
x,

12

,;,

0,;0,,,;,0,

 .                             (13) 
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Let’s obtain the solution of above equation by expanding the domain of equation (12) that 

is satisfied the boundary condition (13) the 
 
R  onto 

 R . 

Namely, when s  is the solution of equation (12), we define the expanded solution  as 

following:   
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Also, the condition (13) become as following initial condition: 
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Therefore, we can consider the boundary value problem (12),(13) to following initial value 

problem:   
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The solution of this initial value problem is well-known. Namely, the solution is obtained 

as following:  
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When reduce to 
2
R  the domain in equation (18), we obtain that 
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Theorem 2. The differential-integral equation (1) equal to following integral equation:   

       

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Where the notation    F ,      xtG are denoted as following: 
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where the notation k  is denoted as the equation (10) of theorem 1. 

Proof: Let the solution u  of equation (1) with respect to operator (4) show equation (19). 

With respect to operator A , *A ,we obtain following equation: 
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From the boundary and initial condition of u ,k ,each term of equation (21) is expressed 

as following:  
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From (21)~(24) and (1), we obtain 
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R
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
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2
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Therefore, by substituting equation (26) to (27), we obtain equation (19). 

Namely, the solution of equation (1) is solution of (19). 

Conversely, let the solution of (19) show one of (1). 

Assume that u  is solution of (19). From equation (10),integral kernel G  of (19) is as 

following:    

       


dxdtxtkdtdxxtG
T

R

T

R 


22

,;,,;,

, 

 G  is integrable in domain          RTt  . 
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Therefore, for arbitrary 
 
 R ,   , if u  is the solution of (19), it must satisfy 

following equation: 

         0,,,;,
2 2





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This shows that the braket part of integrade is zero, namely, equation (1) is satisfied.  

The proof is completed. 

Lemma 1: If  xp   is density function of regular distribution and  xp2  is arbitrary 

hyper-density function,  xpp 21   is infinite time differential in usual meaning. Where   

is synthesis multiple symbol.     

Lemma 2:  F ,G  of equation (20) in theorem 2 are infinite time differential on domain 

    2,,  RTt  .  

We omit proof here.  

Theorem 3: On domain   the unique solution of integral equation (19) is as following:   

        









1 2

,,;,,,
k

T

R

k dtdxxtFxtGFu



,           (28) 

where   

   

      dzdszsxtGzsGxtG

xtGxtG

k
T

R

k ,;,,;,,;,

,;,,;,

1

1

2





 












, 

G  equal to equation (20) of theorem 2. 

Proof: By means of lemma 2 and convergence property condition of progressive formula it 

is sufficient to show that inequality (29) hold: 
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 
  1,;,max

2
,

 




T

R

dxdtxtG





.                    (29) 

From the equation (20) of theorem 2, 

     



T

R

T

R

dtdxxtkadxdtxtG



22

,;,,;, 0

 .                (30) 

On the other hand, the equation (10) can rewrite as following: 

 
 

 
  

 
  

 































st

tay

t

tay

t

e
ytk

sta

2
2

2
222

2
1

2
111

21 22
exp

2
,;,

0










 

  
 

  
  



















2
2

222

2
2

2
222

2
1

2
111

22
exp 









a

e
t

tay

t

tay

 

  
 

  
  



















2
1

112

2
2

2
122

2
1

2
111

22
exp 









a

e
t

tay

t

tay

 

  
 

  
 

2
2

22
2
1

11 22

2
2

2
222

2
1

2
111

22
exp 











aa

e
t

tay

t

tay 


















 .  (31) 

Now,  dN ,  jj td    
  ,  jj td    

   are denoted as following: 

  





d x

dxedN 


2

2
1

 

         

    

    
2,1,;

,;

2

2

2

1












j
t

t
td

t

t
td

j

jjj
jj

j

jjj
jj











   .       (32) 

By substituting equation (31) into (30), we have    
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           


 



T

j
jj

zta
T

R

dtdNedNedxdtxtk jj








2

1
2

2
11,;, 0

2

 .       (33) 

We define  jg     so that 
      jjj dNedNg jj

2
2

1 1,   
.  

Then, function  jg     monotonously increase with respect to j ,   00, g  and 

  1, g .  

Therefore, from equation (33), we obtain that    

   

      
00

1
1

1
,;, 00

2
a

e
a

dtedtdxxtk ta
T

ta
T

R

  












.            (34) 

From equation (30), (34), equation (29) is satisfied. Therefore we can apply progressive 

formula of second kinds of integral equations.  

Let the operator      22 ,,0:   RTCRTC   be 

 

       


,,,;,
2

FdtdxxtxtG
T

R

  
 .     

Then, equation (19) equal to operation equation uu  .   

Now, let     ,,0 Fu                                                (35) 

be zero-order approximation. By applying          

                            
    kk uu 1

,                             (36) 

we obtain the equation (28). 

On the other hand, because the operator   is reduced operator, it has the uniquefixed 

point and therefore, approximation formula (36) converges to the unique solution.  

Their applications in insurance mathematics 

The two-dimensional risk model we consider in this paper can be formally stated as   
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 
 

 
 

 
































































)(

1
2

1
1

2

1

2

1

2

1

2

1

2

1

tM

k
k

tM

k
k

z

z

tw

tw
t

c

c

u

u

tR

tR








.              (37) 

Where    tMtM 21 ,  are the number of claims between time 0 and t, which follows a 

Poisson process with parameter λ.  ikz  are claim size random variables as in the 

univariate risk model. For simplicity, we assume that {X1k,k= 1,2,...} and {X2k,k= 1,2,...} 

are independent, and furthermore, both of them are also independent of M1(t), M2(t). 

iu the initial surplus of eath insurance company, ic  the rate at which the premiums are 

received. 

 tRi  is the surplus of i -th insurance company at time t ≥ 0. 

In this paper, we consider the following type of ruin: 

     0,min｜inf 21  tRtRtT . 

With the time of ruin defined, the corresponding probability of ruin is denoted by 

         212121 ,0,0｜, uuRRTPuu  . 

Set       TtRtRtR 21 , .  We can rewrite the equation (37) as following: 

           

 







 


uR

dzdtzdzdtztdwdtctdR
zz

0

,,
11



. 

Where    

  









2

1
21 0

0
,




Tccc
 , 

     
     Tuuu

zz

zz
z 21

2221

1211 ,













, 
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      1 2
,

T

w t w t w t
 are independent brownian motion, 

       Td dzdtdzdtdzdt ,,,,, 1   is Poisson probability measure that i
  are 

independent and have adjustment    dtdzdzdtE ii  , . 

Then,  tR  is Levy process.  On s0  and 
2
Rx , let ruin time xsT ,  define 

       xsRtRtRstT xs  ｜00,inf 21,  

and let ruin probabiliy of T  time before define 
   TTPTxs xs  ,;,

, 

survival probability is expressed as    TxsTxs ;,1;,  . 

  satisfy the following partial differential-integral equation: 

    0,, 



xsLxs
s . 

By means of definition of  , it satisfy 

         1,,,0,0,,00,, 2121  xxTxsxs , 

where the operator L  is  

  







  2

2
21

,
i

i
i

i
xx

cxsL 


 

          dzI
x

zxszxs k

d

k R

z
i

ik  











  





1

12

2

2

,,

. 

Therefore, the survival probability   until time T  can be obtained by means of 

equation (28) as following: 

        dxdtxtFxtGF
k

T

R

k ,,;,,,
1 2

 









. 
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