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Abstract
We study the boundary value problem of a partial differential-integral equations that have
many applications in finance and insurance. We will solve a boundary value problem of the
partial differential-integral equations by using the solution of conjugate equation and
reflection method and apply it to determine the probability of company bankruptcy in
insurance mathematics.
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Introduction

The partial differential - integral equations is now more in the application of financial and
insurance. In many papers have considered the boundary value problem of the differential
equations,however,a few papers have considered the boundary value problem of the
partial differential-integral equations.

In [1~5], authors considered the unique existence of the partial differential-integral
equations by using viscosity analysis and in [5], author considered the maximum value
problem of the partial differential-integral equations.

Firstly, we study the boundary value problem of a partial differential-integral equations

and secondly, apply its result in insurance mathematics.

1. The boundary value problem of a partial differential-integral equations

Let consider the following boundary value problem of a partial differential-integral

equations:

[%+L)u(s,x)= 0, (sx)efo.r]xr

(1)
u(T,x)zl, xeRf, u(s,(xl,O)’jzo, se[O,T], xleRi
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u(s,(O, X2)') =0 se [0, T], x € }?i,

(2)

2 2
where for f(x)eC (R+) operator L define as following:

k=1 p2 i=1

Assumption:

(H1) %> 1=0L2 4re constant and cule) =12 k=1d are satisfyed
ﬂcik (z)vk (dz)< o0
RZ
2 2

a;00,> 1|0
o) VOER (0%0) 3250 21; | |,

(H2) V() is the finit measure on BZ, V({O}):O and can express

A (dz) =D (Z)dz, ze R’ (3)

,where pk(Z) is the hyper-density function on R’ . Namely,
p ()20 [p(s)z =L
/\)2

Then, the operator L can rewrite as following:

Eho-3a L 15757, 20 Mx OO WRACER)E

= oo (4)




a =a, — i}tkjcjk (Z) D, (Z) dz
k=1 R
d
a, = a, — z&k
k=1
d
D, (Z - X) =D, (c;1 (Z — X))Zc; (Z — X)

®)

N _(~2
From assumption (H2), we can rewrite the matrix (a’f) into the diagonal-matrix o= (Gi )

by using appropriate variable transformation.

% into ¢

i

Comfortably, will express

Let’s consider following two operators;

2 2
ASIE-anii-‘rl Gi28—2+a0
ot ox, 2o oOx; (©)

N 0 0 13 ol

A'=-2-Na L 4> ta
ot "o, 221 ot o

2 _
Theorem 1: For 7 <!=T, X6 € R =[0,0]x[0,%] 4o soiution of the partial differential
equation

As*k(t,x;r,f)z 0

k(6,(0, ;)= k(1. (x,0))= 0

9)
is as following. Namely,
k(t, X7, §)= exp{ﬂ’(t —7)+ (a,x - 5)}
) | (xi=¢ )2 (xi+¢ )2
s 2(#7)6,-2 _ 2([—7)0,-2
Xg1/2ﬁ(t—750'i ¢ ¢
(10)



Proof: Let’s assume that the solution of the equation (8) on boundary condition (9)

exist,and apply following transformation:

s(t.x;7,8)= ekt x,7,£)

Then for & =(@1:®), @ =(a1,a3) e equation (8) is following:

O _ (a,a)+laTO'2a+aO s+(—a1+alzal)ﬁ+
ot 2 ox
2 2
+(—a2 +022a2)£+{0126—;+0'228—;:|=0
axz 6)61 a.X2 (11)
2
Now, for r<t<T, x,gek instituting % and B into (11), (9), we obtain the

following equation:

o 1 0’ 0
[‘5*?{“@*“5 E;W}S(“’”’é)zo )

s(t,(0,x, \7,&) = s(t,(x,,0),7,£) =0
S(r,x;r,f): e’(“’x)é‘(x—f) . (13)

a; . 1
ai:_lza 12152’ ﬂ=a0+(a,a)+50{TO'20(

O;

Where
Let’s obtain the solution of above equation by expanding the domain of equation (12) that

is satisfied the boundary condition (13) the R, onto 7.

Namely, when S is the solution of equation (12), we define the expanded solution I as

following:
s(t, xl,xz);r,f) x20, 20
F(t x'rf)z —s(t,(—xl,xz);z',§) x <0, x20
Y —st,(xl,—x2);‘r,§) x 20, x<0
s(t, —xl,—xz);r,f) x <0, x<0 ' (14)

Also, the condition (13) become as following initial condition:



ef(a’x)é(x -¢) , 20, x,>0
—eTMNTON Sy 8 x4 &), 20, x,<0
— MMM S (x4 8,y &), <0, X, 20

eMMta: §(x1 +&, x, +§2), x <0, x,<0

I(r.x7.8)=plx.¢)=

(15)
Therefore, we can consider the boundary value problem (12),(13) to following initial value

problem:
o 1 282 282
- — —+o,— |+ B I'lt,x;7,5)=0
{ ot r(al 6x12 T2 6x22 P (xré‘)

[(r.x;7,8)=p(x.&) (17)

(16)

The solution of this initial value problem is well-known. Namely, the solution is obtained

as following:

NEN
5
5
|

F(txz'df I x—y,&

w/2iz0' t— z'

-g) G-
= expi=(a. )} (t oo P E . T)Jz -
(x1—§1)2+(x2+2§2) (x1+2§1) ( 52)
Ty T i) Ll
(xl+§l) +(x2+682)
+exps — L —7) %2 exp{f(t—7)}

(18)

2
When reduce to R the domain in equation (18), we obtain that
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k(t,x;7,&)= e(“’x)s(t,x; 7,)

2

—exp{(ax §+ﬂt— Hma e

Theorem 2. The differential-integral equation (1) equal to following integral equation:

u(r, cf) = VT[ Iu(t,x)G(t,x;r, f)dxdt + F(r,f)
er . (19)

Where the notation F(T 95), G(t XT g)are denoted as following:

= J-k(T,x;T,f)dx

d
G(t,x;r,f) = z&, .[k(t,z;r,f)p, (z —x)dz

ooR , (20)

where the notation X is denoted as the equation (10) of theorem 1.

Proof: Let the solution ¥ of equation (1) with respect to operator (4) show equation (19).

With respect to operator A , A* ,we obtain following equation:

KA = kAl )) -t * () =
LR R (et

i=1 i =1 i i

(21)

From the boundary and initial condition of ¢, k ,each term of equation (21) is expressed

as following:
j T%(u( )k(-))dtdx —J. u( )k( )|T dx =
J-k T,x;7 f)dx— .[ ( )5(x—§)dx:



= jk(T,x;r,&)dx—u(Tsf)

R (22)
T T+
j j 6x1 ) et = j j | didx, =0
R ; (23)
T
j I ﬁ{k()ﬁu_()_ u(-)%}dxdt =0
, Ox; Ox; Ox;
TRy . (24)
From (21)~(24) and (1), we obtain
”k Vdixdt = jkarg)dx u(z, &)
TR (25)
T
j j k(T x;7, & )A(u())dxdt =
T R?

7 R?

IJ‘kardf{ z&kj tzplz x)dz]dxdt

T

= —j ju(t,x)G(t,x;r,f)dxdt

t R?

(26)

Therefore, by substituting equation (26) to (27), we obtain equation (19).
Namely, the solution of equation (1) is solution of (19).

Conversely, let the solution of (19) show one of (1).

Assume that Y is solution of (19). From equation (10),integral kernel G of (19) is as

following:

? [ Glt.x7, )i < |/1|} [ (e 7 )nae < o
TR} T R

G is integrable in domain X = {(t 5) € [T T] x R+}.
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Therefore, for arbitrary ¢ € R+,0 <7 < T if u is the solution of (19), it must satisfy
following equation:

Tjk(t,x;r,i Z/ij ult,z)py (z = x Mz |dxdt = 0

TR 27)

This shows that the braket part of integrade is zero, namely, equation (1) is satisfied.
The proof is completed.

Lemma 1: If p(X) is density function of regular distribution and p2(x) is arbitrary

hyper-density function, Py *Pz(x) is infinite time differential in usual meaning. Where *

is synthesis multiple symbol.

Lemma 2: ' ,G of equation (20) in theorem 2 are infinite time differential on domain

5= {.6)efr.T]x R}

We omit proof here.
Theorem 3: On domain 2 the unique solution of integral equation (19) is as following:
w T
u(r,&)= +Zj G*(t,x;7,&)F (¢, x )dxdt
ek , (28)

where

G(t,x%;7,8)= G, x;7,8)
T
G* (l‘, X7, é‘) = J- IG(S, zT, éﬁ*(k_l)(t,x; s, z)dzds

t R?
G equal to equation (20) of theorem 2.

Proof: By means of lemma 2 and convergence property condition of progressive formula it
is sufficient to show that inequality (29) hold:



T

max Glt,x;7,& )dtdx <1
J Jla( )
7 R2

(7.6 )ez
(29)
From the equation (20) of theorem 2,
T T
j jG(z,x;f,g)dtdx < |aq| j j k(t,x7, & )ddt
TR TR (30)

On the other hand, the equation (10) can rewrite as following:

k(t,y;r,§)= el )(exp{— (yl -&—a (t - T))z _ (yz -5 —a (t - T))Z }

2noy0,(t -1 202 (t-7) 203(t—s)

il 2012 (t - r) N 20'22 (t - r)

G-é-al-o) _(u+&-al-o)f }

207 (t - T) 20; (t - T)

|

irsal-of  (-&-al-of]
| )

|

aé) 24,5,
B (J’1 +& — al(t - T))z (yz +&, - az(t - T))z }e_iﬁ_zozz

20'12(t—r) 20'22(t—r) 31
Now, N(d),df(t 4 gf),df(t 3 951) are denoted as following:
d._x
N(d)= o= |e Tdx
: - (‘fj +a0)(- 7))
dl./(t’r’ /) O'j\/t—T
2
d, (t;z.’ge/): - (95/ —a,0)(t- T)) =12
. O-./\/t -7 (32)

By substituting equation (31) into (30), we have



f j k(t, %7, & )dndt] =

T R?

Jermt v, -2 -, Mo

(33)

We define g(r ‘ff’) so that g(r’éf): ‘_ N(dlf)_ e (1 - N(d2f ))‘ .
Then, function g(r 51') monotonously increase with respect to 65-/' , g(r,O) =0 and
g(r+o0)=1
Therefore, from equation (33), we obtain that

T T | .

[ [, x| < [ e (=0 = L (- gool)) < L

7 R? T o 0

) (34)

From equation (30), (34), equation (29) is satisfied. Therefore we can apply progressive

formula of second kinds of integral equations.

@: C((o, T]x R? )—> c((r, T]x Rf)

Let the operator be

(I)((p) = /I,T jG(t, X7, cf)(/)(t, x)dxdt + F(z’, §)

T R?
Then, equation (19) equal to operation equation ¥ = Du
0 _
Now, let Y (T’é)_ F(T’é) (35)

be zero-order approximation. By applying

u(k+1) — (D(u(k)), (36)

we obtain the equation (28).

On the other hand, because the operator ® s reduced operator, it has the uniquefixed
point and therefore, approximation formula (36) converges to the unique solution.

Their applications in insurance mathematics

The two-dimensional risk model we consider in this paper can be formally stated as
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fe=1 . (37)

Where Ml (t)’ M2 (t)

. . Z. . . .
Poisson process with parameter A. { ’k} are claim size random variables as

are the number of claims between time 0 and t, which follows a

univariate risk model. For simplicity, we assume that {X1k,k= 1,2,...} and {X2k,k=

are independent, and furthermore, both of them are also independent of M1(t),

U; the initial surplus of eath insurance company, € the rate at which the premiums are

received.

Ri(t) is the surplus of 7 th insurance company attimet = 0.

In this paper, we consider the following type of ruin:

T :inf{t |min{R, (¢), R, (¢) } < 0}

With the time of ruin defined, the corresponding probability of ruin is denoted by

®(”1>”2):P{T<°O I(R,(0), RZ(O)):(”DMZ)}

T
Set R(t) - (R1 (t)’ Ry (t)) . We can rewrite the equation (37) as following:

dR(t)=c-dt + o -dwlt)+ .[OC(Z)(,U—V)(dt,dz)+ Ia(z),u(dt,dz)

‘Z‘Sl ‘z‘>1
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T
W(t) B (W1 (t)’ "2 (t)) are independent brownian motion,

T
pldr,dz) = (u(dt dz), -+, pg(dt, dz)) is Poisson probability measure that * are

independent and have adjustment Ep, (dt,dz) =Vi (dz)dt'

2
Then, R(t) is Levy process. On 0<s and XER, , let ruin time Tix define
T,.=inf{t>s, R(6)<0v Ry(r)<0l R(s)=x|

¥(s,x;T)=P{T, <T}|

and let ruin probabiliy of T time before define

survival probability is expressed as (D(S’X;T) =1- \P(S’X;T).

O satisfy the following partial differential-integral equation:

i<I>(S,x)+ L<I>(S,x) =0
Oos _

By means of definition of D it satisfy

(s, (6,0)) =0, ®(s,(0,x,))=0, O(T,(x,x,))=1

where the operator L s

RO
Zc 28x2

2
+i O(s,x+ az )=, (2) aq)

k=1 RZ ,'

Iy v, (dz)

Therefore, the survival probability @ yntil time T can be obtained by means of

equation (28) as following:

d(z,& +§j G" (t,x;7,E)F (2, x )dxdt

=17 p
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