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I start with a historical note on the galactic rotation curves issue. The problem
with the virial theorem in observed galactic dynamics, lead to the Dark Matter hy-
pothesis but also to Modified Newtonian Dynamics or MOND. Then I move (away)
from MOND towards a relativistic, Lagrangian approach of orbital dynamics in a
curved Schwarzschild metric. I propose a ‘constant Lagrangian’ model for galactic
scale geodetic dynamics. I will show with four rotation fitting curves to what extend
my proposed model galaxies ‘constant Lagrangian’ postulate works in these limited
number of situations. The fitted galaxies are NGC 2403, NGC 3198, UGC 6614
and F571-8. In the paper I present a theoretical context in which the ‘constant La-
grangian’ postulate might replace the classical virial theorem on a galactic scale. But
the proposed postulate isn’t a ‘general law of nature’ because in the solar system and
in the GNSS relativistic context, the classical virial theorem is proven accurate. Due
to the limitations of the proposed postulate, a statement regarding Dark Matter can’t
be made. But the model might achieve within the GR-Schwarzschild paradigm what
MOND achieves within the Newtonian paradigm, fitting the experimental galactic

rotation curves.

PACS numbers: 95.30.Sf, 95.35.4+d
Keywords: Dark Matter, MOND, Schwarzschild, Galactic rotation curves

2)Electronic mail: haas2u@gmail.com


mailto:haas2u@gmail.com

CONTENTS

II.

I11.

IV.

VI

VII.

. The virial theorem in trouble on the galactic scale.

MOND

Classical Lagrangian dynamics

A geodetic approach of gravitational orbits

. A relativistic virial theorem for a model galaxy

Fitting four real galactic rotation curves
Dark Matter, an unresolved issue

References

13

19

21



I. THE VIRIAL THEOREM IN TROUBLE ON THE GALACTIC SCALE.

In 1932 the Dutch astronomer Oort observed that the stars in the galactic vicinity of
the Sun are moving peculiarly fast, almost 8 times as fast as could be inferred from the
calculated Newtonian acceleration. Oort assumed that dark matter would be the cause of
this apparent difference, with ‘dark’ referring to ordinary matter not seen by us due to

various reasons (Oort, 1932).

In 1933 Dark Matter was mentioned as “dunkle Materie” in a paper by Zwicky. Fritz
Zwicky was studying the Coma Cluster of galaxies and found that his calculations for orbital
acceleration and stellar mass within it was off by a large factor. He concluded that there
should be a much greater density of dark matter within the cluster than there was luminous
matter. Zwicky concluded that this constituted an unsolved problem (Zwicky, 1933). In
1937 Zwicky regarded his study on the Coma Cluster a test of Newton’s law of gravity on the
largest cosmological scale possible, by applying the virial theorem on a cluster of galaxies.
He also mentioned in his 1937 paper the possibility to test the virial theorem by applying it
to the rotational velocities of the individual stars in the separate galaxies. But he concluded

that this was technologically out of reach (Zwicky, 1937).
The breakthrough research of Rubin and Ford around 1970-1975 established beyond doubt

the outer rotational velocity curves of individual galaxies, which turned out to be flat (Rubin
et al., 1978). This was in conflict with velocity curves that resulted from the application of
the virial theorem to the luminous mass of these galaxies. Rubin and Ford cited colleagues
who suggested the existence of a large galactic halo of dark matter. In a 1980 paper pre-
senting further research they concluded that the form of the rotation curves implied that
significant non-luminous mass should be located at large distances beyond the optical galaxy.
The total mass of a galaxy should, for large distances, increase at least as fast as the distance
from the center (Rubin et al., 1980).

The third major evidence for Dark Matter was the gravitational lensing effect of clusters
of galaxies. The mass of stars and hot gas in clusters who collectively act as a gravitational
lens is too small to bend the light from the background galaxies as much as they actually
do. A large density of dark matter in the center of these cluster is needed to explain the

strength of the observed lensing effect (Koopmans et al., 2009).

In the course of decades it has become more and more clear that ordinary matter can’t
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be the cause of those observed phenomena. That realization caused the term ‘dark matter’
to evolve into ‘Dark Matter’, with the capital letters indicating its elusive character. Today
it has been predominantly, but not unanimously, been accepted that non-baryonic particles
must exist in the calculated densities. A range of different astrophysical measurements point

in this direction. I quote:

Astrophysical observations have provided compelling evidence for the existence
of a non-baryonic dark component of the universe: dark matter (DM). The cur-
rently most accurate, although somewhat indirect, determination of DM abun-
dance comes from global fits of cosmological parameters to a variety of observa-
tions, while the nature of DM remains largely unknown. One of the candidates
for a DM particle is a weakly interacting massive particle (WIMP). (The ATLAS
Collaboration, 2018)

II. MOND

One of the few non-particle approaches to the problem of Dark Matter is MOND or
MOdified Newtonian Dynamics. MOND started in 1983 with two seminal paper of Milgrom.

I quote from his papers:

All determinations of dynamical mass within galazies and galazy systems make
use of a virial relation of the form V? = MGr~1 where V is some typical velocity
of particles in the system, ris of the order of the size of the system, M is the mass
to be determined, and G is the gravitational constant. [...] It must have occurred
to many that there may, in fact, not be much hidden mass in the universe and
that the dynamical masses determined on the basis of the above virial relation

are gross overestimates of the true gravitational masses.(Milgrom, 1983b)

I have considered the possibility that Newton’s second law does not describe the
motion of objects under the conditions which prevail in galaxies and systems of
galaxies. In particular I allowed for the inertia term not to be proportional to
the acceleration of the object but rather be a more general function of it. With

some simplifying assumptions I was led to the form

Mgt (aio) a=F,
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replacing mga = F. [...] For accelerations much larger than the acceleration

constant (ag), i1 = 1, and the Newtonian dynamics is restored. (Milgrom, 1983b)

I use a modified form of the Newtonian dynamics (inertia and/or gravity) to
describe the motion of bodies in the gravitational fields of galazxies, assuming
that galaxies contain no hidden mass, with the following main results. 1. The
Keplerian, circular velocity around a finite galaxy becomes independent of r at
large radii, thus resulting in asymptotically flat velocity curves. 2. The asymptotic
circular velocity (V) is determined only by the total mass of the galaxy (M):
V4 = a¢yGM, where ag is an acceleration constant appearing in the modified
dynamics. This relation is consistent with the observed Tully-Fisher relation if
one uses a luminosity parameter which is proportional to the observable mass.

(Milgrom, 1983a)

The original Tully-Fisher relation is a relation between the luminosity of a spiral galaxy
and its, maximum, rotation velocity (Tully and Fisher, 1977). The physical basis of the
Tully-Fisher relation is the relation between a galaxy’s total baryonic mass and the velocity
at the flat end of the rotation curve, the final velocity. According to McGaugh both stellar
and gas mass of galaxies have to be taken into account in the relation that is referred to as
the Baryonic Tully-Fisher (BTF) relation (McGaugh, 2005). In 2005 McGaugh determined
the baryonic version of the LT relation as My = 5007, see (McGaugh, 2005) and Fig(1). In
this form, My is expressed in solar mass M, = 1,99 - 1030 kg units and the final velocity of
the galactic rotation velocity curve vy is expressed in km/s. If we express the galactic mass
in kg and the velocity in m/s we get the total baryonic mass, final velocity relations in SI
unit values as My, = 1,0 - 100},

In 1983, Milgrom interpreted the BTF relation as an indication of a deviation from
Newtonian gravity, making a modification of Newtonian dynamics or MOND necessary
(Milgrom, 1983b). Using McGaug’s 2005 values in SI units, Milgrom presented the BTF
relation in the form v;% = 1,0 - 1072°M, = GagM,, resulting in an acceleration ag = 1,5 -
10719 m /s? in McGaug’s values. Milgrom hypothesized that this relation should hold exactly,
thus interpreting it as an inductive law of nature instead of looking at it as just an empirical
relation (Milgrom, 1983a). The resulting acceleration can be written as 5-ag ~ cHp, with the

velocity of light ¢ and the Hubble constant Hy. According to Milgrom, the deeper significance
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FIG. 1. The Baryonic Tully-Fisher relation. Reprint from McGaug 2005 (McGaugh, 2005).

of this relation between this special galactic acceleration and the Hubble acceleration should

be revealed by future cosmological insights (Milgrom, 1983b).

III. CLASSICAL LAGRANGIAN DYNAMICS

The Lagrangian equation of motion reads

d (0L oL
L e ) 1
dt((9(1> dq ! W

In classical gravitational dynamics I assume circular orbits with ¢ = v and ¢ = r. The
Lagrangian itself is then given by L = K — V| with V the Newtonian potential gravitational
energy and K the kinetic energy. One then gets

()t o

dt\og)  dt
The other part gives
oL av
== 3)
q dr
so one gets Newton’s equation of motion in a central field of gravity
av
F,=——. 4
g9 dr ( )



Further analysis of the context results in the identification of the Hamiltonian of the system,
H = K+V, as being a constant of the orbital motion and the virial theorem as describing a
relation between K and V' in one single orbit but also between different orbits, 2K +V = 0.

On the galactic scale it is assumed that velocities are so low and gravitational fields are so
weak, that Newtonian mechanics suffices and not much of relativity is needed. The problem
with the rotational velocities of stars in galaxies and galaxies in cluster of galaxies is thus
supposed to be a Newtonian physics issue that can be dealt with in the dynamics described
above. The Dark Matter solution to the too fast rotational galactic velocities has two faces.
On the one hand one tries to describe the density distribution of Dark Matter, needed in
order to match the measurements with classical dynamics, specifically the virial theorem.
On the other hand one tries to identify the Dark Matter constituents, usually seen as an

out-of-the-box extension of the known Standard Model of particle physics.

IV. A GEODETIC APPROACH OF GRAVITATIONAL ORBITS

The problem with the previous analysis is connected to the notion of geodetic motion
in General Relativity. The problem can best be described in a semi-relativistic approach
using the classical Lagrangian equation of motion for geodetic orbits. The most important
aspect of geodetic motion in GR is that it requires no force to move on a geodetic. This has

important implications for the Lagrangian equation of motion, because F' = 0 on a geodetic.

One gets
d (0L
—|=)=F,=0 5
(%) -n 6
and as a consequence also
oL dL
8_q === 0. (6)
As a result, one gets the crucial
L =K —V = constant (7)

on geodetic orbits.
This result, the Lagrangian of the system as being the constant of the geodetic motion, is
used on a daily basis by many of us because it is used by GNSS systems for the relativistic

correction of atomic clocks in their satellites. Let’s elaborate this a bit further. In General



Relativity, the proper time-rate dr is defined through the metric distance ds as ds = cdr.

The square metric distance is defined through
ds® = g, dxtdz”. (8)

Given coordinate world time-rate dt, which is the time-rate of a standard clock at a position
where dr = dt (in GR-Schwarzschild this implies a clock at rest at infinity), we get the
general

ds? B cAdr? dx* dx”

a2~ e T M a dr

with the geodesic four-vector velocity V#. In this equation, dr stands for the local proper

= g V'V, 9)

clock-rate of a clock in a geodetic orbit in a field of gravity and dt is the universal clock-rate.
Because of this interpretation of dt, the velocity V* is the velocity as seen from a position
where dr = dt. See for example (Singer, 1956), (Weinberg, 1972, p. 79), (Misner et al.,
1973, p. 1054-1055), (Straumann, 1984, p. 97), (Ohanian and Ruffini, 2013, p. 119).

In case of the Schwarzschild metric in polar coordinates, we have (Ruggiero et al., 2008)
20 20\ '
ds® = (1 - —2> dt* — (1 + —2> dr® — r*df* — r*sin*0d¢?. (10)
c c

In case of a clock on a circular geodesic on the equator of a central non-rotating mass M we

have & =0, % =, sinf = 1 and % = w. We thus get

dt ' dt
ds? 2dr? 2P
d_; = CdtZ = (1 + §> 2 — r2w? (11)
and
dr? 20 r2w?
w it E T (12)
With vy = rw we have
2 2
di — @ _ Yorbit (13)
dt? c? 2
So finally we get the GR result
dr 20 02,
e (14

with d7 as the clock-rate of a standard clock A in a geodetic orbit and dt as the ‘universal’
clock-rate G of a standard clock at rest in infinity, the only condition for which dr = dt.
The result of Eqn. (14) is the basic relativistic correction used in GNSS clock frequencies,

with the first as the gravity effect or gravitational potential correction and the second as the
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velocity effect or the correction due to Special Relativity (Ashby, 2002; Heéimovié, 2013;
Delva and Lodewyck, 2013).

2
Given the classical definitions of K = % and V = m®, we get

dr 2L
— = ]1-= 1
dt U, (15)

All the satellites of a GNSS system are being installed on a similar orbit and thus syntonized
relative to one another because they share the same high and velocity and have constant
L and fl—; on those orbits. But different GNSS systems, as for example GPS compared to
GALILEOQO, are functioning on different orbits with different velocities and those systems
aren’t syntonized relative to one another. This non-syntonization between satellites on
orbits with different heights and virial theorem connected velocities is very annoying for the

effort towards realizing an integration of the different GNSS systems into one single global

network.

V. A RELATIVISTIC VIRIAL THEOREM FOR A MODEL GALAXY

When I connected
dr? 20 w2, 2L
— _ Zorbit __ 1 e 16
dt? + c2 c? Uy (16)

to the problem of the galactic rotation curve, I realized that the flat rotation curve implies

atomic clock syntonization in those areas. In those outer regions, the potential can be
assumed to be zero and the velocity constant. Those flat rotation rate zones are the GNSS
engineer’s dream come true. This made me curious as to the clock-rate status in the inner
regions. The intriguing thing is that you can jump from orbit to orbit and still encounter
a constant clock-rate on all the orbiting satellites you encounter on an imaginary voyage
through the outer regions of galaxies. This implies that precisely in those regions where
the classical virial theorem seems in trouble, L ~ constant, not just in one single orbit but
also between different orbits. It should be clear that for those geodetic orbits the classical
virial theorem, which in its most essential form states that Fj,quity = Frentripetai, becomes
meaningless because on circular geodetics this reduces to the empty expression 0 = 0.

In order to study the relativistic clock-rate behavior in the inner regions of galaxies, I
had to construct a model galaxy. Real galaxies are way to fussy, complex and messed up

to get interpretable results. My model galaxy is build of a model bulge with mass M and



radius R and a Schwardschild metric emptiness around it. The model bulge has constant

M 3M

V. 4rnR3

density pp = and its composing stars rotate on geodetics in a quasi-solid way.
So all those stars in the bulge have equal angular velocity on their geodetic orbits, with
v = wr. On the boundary between the quasi solid spherical bulge and the emptiness outside
of it, the orbital velocities are behaving smoothly. So the last star in the bulge and the first
star in the Schwarzschild region have equal velocities and potentials. I also assume that the
Newtonian potential itself is unchanged and unchallenged, remains classical in the whole

galaxy and its surroundings. Such a model galaxy doesn’t have a SMBH in the center of its

bulge and it only has some very lonely stars in the space outside the bulge.

Point Relation | Expression
; GM
Outside the bulge | T~ R g
. M
On the Surface r=R 5
(3R -1 |
Inside the bulge r<R 'G‘”‘ R J
3 GM
At the centre r=0 '?( R J
£
0 S p
I |
r=0 r<R |r=R |r>R

FIG. 2. The potential inside and out of a model bulge

The gravitational potential in such a case is well known, see Fig.(2). If this sphere would

be in a condition where the classical virial theorem would hold, so 2K = —V| then on the

boundary r = R we would have K = %—% and L = K -V = ?,g:_é\/[_ At the center of the
: _ _ 3GM

rotating sphere, K = 0 and we also have L = =5~

From r = 0 to r = R, the potential ® increased as r2. The kinetic energy does the same
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because v? = w?r?. One can conclude that they increase identical and that L = K — V is a

constant inside the quasi-solid sphere. We can write for the region from r =0 tor = R

L _ O  GM _3GM

m 2 r 2R

= constant. (17)

As a result, in such a model bulge, L is a constant of the motion, not only in one orbit but

also between orbits. All the clocks in such a model bulge would be syntonized.

Thus, in the model galaxy that I am about to construct, we have L = constant inside the
model bulge and we have L = constant in the outer regions where the rotational velocity
curve flattens and the Newtonian potential turns negligibly small. So let’s be bold and
declare L = K — V = constant in the entire galaxy, without changing the Newtonian

potential. What would that have as effects?

& = it{F yrer™2 <R
-V (in units EEIEIIEr ;mg_yr :}R r {in units of R)
_of GM/R) L(r)~3 H

Lagrangian L = Korbit - V = galactic constant

Orbital kinetic energy K

orbit

== Newtonian potential energy V

= Escape kinetic energy Kesc

FIG. 3. The square of the orbital velocity profile in the model galaxy with L = constant.
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We would get K = L+ V and L =V (r = 0) so for the region 0 < r < R we get

GM r
2
= 1
Uorbit R R ( 8)
and outside the model bulge, where R < r < oo, we have
3GM GM
Ugrbit = - : (19)

R T

In Fig.(3) I sketched the result, with —V = 4+ K scqpe-

From the perspective of a free fall Einstein elevator observer, the free fall on a radial
geodetic from infinity towards the center of the bulge, the other free fall tangential geodetics
seem to abide the law of conservation of energy, because the escape kinetic energy plus
the orbital kinetic energy is a constant on my model galaxy with galactic constant L. An
Einstein elevator system with test mass m that would be put in an orbital collapse situation,
magically descending from orbit to orbit in a process in thermodynamic equilibrium, would
have constant total kinetic energy, from the radial free fall perspective. This can be expressed
as L = Korpit — V' = Koppit + Kescape = K final-

Such a model galaxy would also be a GNSS engineer’s dream come true because the

whole model galaxy is in one single syntonized time-bubble.

dr 2L
— =4/l - —. 2
dt U, (20)

Given the Baryonic Tully-Fisher relation in Milgrom’s version v;%mal = GayM with 2may ~

cHy, with ag as Milgrom’s galactic minimum acceleration and Hy as the Hubble constant,
we get as a galactic time bubble fix

dr / 2L / U]%inal / U;L‘inal
dt UO c? ct ( )
GayM GHyM M
1— —4/1 = =41 =4/ —— 22
\/ WL \/ o] S (22)

in which I used L = 3GM/R = Kfipu = %m%%maz and My = GC—; This last constant can be

referred to as an apparent mass of the Universe, a purely theoretical number constant, see
(Mercier, 2015). In a model Universe, this would imply that my model galaxy would be in
a proper time bubble with clock-rate dr relative to the universal clock-rate dt in proportion

to the masses of galaxy M and Universe M. In my model galaxy theoretical environment
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the Baryonic Tully-Fisher relationship implies that the galactic time bubble is fixed through
the mass of my model galaxy and that this fix is a cosmological one. So what is a universal
acceleration minimum ay in MOND can be interpreted as a universally correlated (through
Myy) but still local (through M) time bubble fix in my model galaxy geodetic environment.

This doesn’t imply that I can integrate my model galaxy approach into MOND, because
you either take the perspective of geodetic motion without any force of gravity, or you don’t
have a curved metric and use the classical gravitational acceleration approach. My approach
of L = constant started with setting F, = 0 in the Lagrangian equation of motion. Milgrom
started by modifying Newton’s second law, leading to an adapted Fj, # 0. You can’t have it

both ways. My approach of L = constant and Milgrom’s Fj, = map are mutually exclusive.

VI. FITTING FOUR REAL GALACTIC ROTATION CURVES

Having determined the model galactic velocity rotation curve based on the Lagrangian
as a galactic constant of orbital motion, the question is to what extend real galaxies can be
modeled in this way. For this I used the experimental velocity rotation data of four galaxies:
NGC 2403, NGC 3198, UGC 6614 and F571-8. I plotted them in Excell. The velocity
rotation curve data come from different sources. The NGC 2403 data are from (Begeman,
2006, p. 51). The UGC 6614 and F571-8 data are from (McGaugh et al., 2001) and were
retrieved from the data website of McGaugh. The NGC 3198 data are from (Karukes et al.,
2015, p. 2) and brought to my attention by (Vossos and Vossos, 2017).

2

In this section I present the plots of V7, against r, with in each plot the experimental

values in red stars and the theoretical values in black bars. The fitting plots are given in
two versions. The first plot is with one single fit for M and R, this is the pure model. In
the second plot the two parameters M and R are used as one single‘free’ parameter for
every single measurement, because the time-bubble or L is constant constraint leaves only
one degree of freedom. The locked in through L variation of M and R in plot 2 can be
monitored using the apparent model mass density of the bulge ppuge. This density varies
as M, with locked in R, varies. With this parameter freedom of one single value, M and
with locked R in L and ppyge, all four experimental curves could be fitted really nice. The

most important cut in the model is the change from the model bulge to the model empty

space around it. In the model bulge, V2, oc r?, outside the model bulge V2, oc —r~!. In the
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fixed fitting curve, the apparent mass density of the bulge is the main variable that changes

due to more realistic circumstances. The excell data sheets of the plots are in the appendix.

The fact that it is possible to exactly plot the rotation curves with just one free parameter

should be significant for the underlying physics. In my approach, one free parameter can

force a time-bubble on a whole galaxy.
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FIG. 4. UGC 2403 Plot1, V2, against r, pure model.
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VII. DARK MATTER, AN UNRESOLVED ISSUE

What about ‘dark matter’ and Dark Matter? Well, the early assumption of Oort and
Zwicky that the astronomers where not seeing a lot of ordinary matter, the ‘dark matter’
postulate, turned out to be falsified. The attention then turned towards Dark Matter in the
sense on non-baryonic (=non-ordinary Standard Model) stuff. The search for Dark Matter
continues at ever increasing strengths.

My model galaxy, obeying to the ‘constant Lagrangian’ condition, just focuses on one
aspect related to Dark Matter, the galactic rotation velocity curves. There are more issues
leading to the Dark Matter hypothesis, unrelated to my model galaxy approach. Such as

gravitational lensing, the galaxy cluster virial problem and cosmology related issues.

I have shown in four rotation fitting curves that my proposed model galaxies ‘constant
Lagrangian’ postulate works in a limited number of situations. I also gave a theoretical con-
text in which the ‘constant Lagrangian’ postulate might replace the classical virial theorem
on a galactic scale. But it isn’t a ‘general law of nature’ because in the solar system and in

the GNSS relativistic context, the classical virial theorem is proven accurate.

The question regarding Dark Matter depends on the status of the ‘constant Lagrangian’
postulate. If it is a cosmological law of nature, then we don’t need Dark Matter. But then
we do need to explain why the classical virial theorem is valid in the context of the solar
system. If Einstein’s theory is fundamental, then Newton’s needs to be justified. If the
‘constant Lagrangian’ postulate only functions (if it functions in that context in the first
place) at the scale of individual galaxies, then the postulate needs further justification. A

Dark Matter density distribution curve can easily provide such a justification.

The fact that it turned out to be possible to exactly plot the rotation curves with just
one free parameter might indicate towards the underlying physics. In my approach, one free
parameter can force a time-bubble on a whole galaxy. One free parameter needed to enforce
a galactic time-bubble condition might well indicate a Dark Matter density distribution.

The problem with deriving a Dark Matter density distribution function from my postulate
is that one then mixes two mutually exclusive axiomatic systems. I would have to add
the classical energy situation, as expected according to the classical virial theorem, to my
L = K -V plot, drawn in a geodetic context where Fy is supposed to be zero. It can be done

quite easily, but at the price of mixing mutually exclusive theoretical axiomatic approaches.
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This mixing of axioms results for r > R in

3M (2 2 1 r
S el e Y 2
pOM = (RT r2  r? n(R)) (23)
or, with pg = M/V =3M/4rR, in
2R* 2R* R? r
poM = P (T Tz Tl <Tz>) ’ (24)

with M and R referring to the mass and the radius of the pure model galactic bulge.

I can conclude that the ‘constant Lagrangian’ postulate leads to an interesting model
galaxy and that the pure model can be adjusted using the two key parameters, the model
bulge’s mass M and radius R, to match the four galaxy rotation curves to which is was
exposed. Once the pure model parameters of M and R are chosen, only one of those
parameters remains as a degree of freedom because the other one is then given through
L. The model itself doesn’t decide on the existence of Dark Matter, because the postulate
doesn’t justify itself but is in need of external justification. On that level will the Dark
Matter discussion play out. The model is presented in the context of Special and General
relativity, it is a metric approach with the Schwarzschild metric and the related time dilation
formula at its core. As such, it might be an interesting addition to the MOND approach

towards galactic and cosmological virial theorem issues.
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FIG. 12. UGC 2403 Excell datasheet 1, V
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6724

gz:

35
10201
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18436
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15225
1rEE3
Trdzd
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TrEE3
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2414 43253
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Rfix
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5.32E+03
B.3ZE+03
5.32E+03
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E.32E+03
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5.32E+03
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2.03E+04
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2.03E+04
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FIG. 13. UGC 2403 Excell datasheet 1,
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Pfiged

pbulge  3MGIR

IR
43.3
30.2
185
14.5
12.0
0.9

Z.03E+04
Z.03E+04
Z.08E+04
2.03E+04
Z.03E+04
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V2, against r, fixed model.

orb

unit GM/F Mfix
4.33E+04 4.8
43253 4.8
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43253 4.8
43253 4.8
43253 4.8
43253 4.8
43253 4.8
43253 4.8
43253 4.8
43253 4.8
432534 4.8

s

Rfix fix GM/R pbulge
12 1.73E+H04
12 1.73E+04
12 1.73eH04
12 1.73E+04
12 1.73E+04

1

|~}

1.73E+04

12 1.73E+04
12 1.73eH04
12 1.73E+04

1

]

1.73E+04

12 1.73E+H04
12 1.73E+04
12 1.73E+H04
12 1.73E+04
12 1.73e+04

daray s s

3MG/R
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19E+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19e+04
0.7 5.19E+04
0.7 5.19e+04

. 14. UGC 6614 Excell datasheet 1, VOQTb against r, pure model.

24

Vinal kmni:
144
144
144
144
144
144
144
144
144
144
144
144
144
1dd
144
144
144
144
144
144
144
144
144
144
144
1dd
144
144
144
144
144
144

oy s

Vfinal km/s
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228



Rkpc

0.4
12
3.1
8.8
10.2
11.1
12
13
15.1
23.9
25.2
33.5
35.3
454
61.9

Rkpc

0.2
0.7
12
2.1
3.1
34
4.3
4.9
5.5
6.5
8.4

10

14

fix
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RA2
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fix
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Vdisk2
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3025
3745
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Vbulger2
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4774.81
4395.69
4096
3782.25
3249
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unit GM/F Mfix
4.33eHM4
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43253
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432534

1.5
0.95
0.84
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3.2

3.4

3.7

4

4.6

q

4.3

4.6

4.7

5
7]

Rfix

3.75
2.38
2.10
6.75
8.00
8.50
9.25
10.00
11.50
10.00
10.75
11.50
11.75
12.50
17.50

fix GM/R pbulge 3MG/R

L73EH4
L73E+04
1.73E+04
L73E+04
1.73E+04
L73e+H4
1.73E+04
L73EH4
L73E+04
1.73E+04
L73E+04
1.73E+04
L73E+04
1.73E+04
L73E+H4

6.8 5.19e+04
16.9 5.196+04
21.7 5.19e+04
2.1 5.19E+04
1.5 5.19e+04
1.3 5.19e+04
1.1 5.19E+04
1.0 5.19e+04
0.7 5.19E+04
1.0 5.19E+04
0.8 5.19E+04
0.7 5.19E+04
0.7 5.19E+04
0.6 5.19E+04
0.3 5.19e+04

FIG. 15. UGC 6614 Excell datasheet 1, Vfb against r, fixed model.

G= 6.674E-11
Runit= | 1kpc= 3.086E+19 meter
Munit=  1E+10*Me 2.00E+40 kg
VA2 mode VA2 Vmodel Vexp
26 154 5.1 12.4
318 1406 17.8 37.5
934 3192 30.6 56.5
2862 4775 53.5 69.1
6236 7310 79.0 85.5
7502 7586 86.6 87.1
11149 11025 106 105
12873 12455 113 111.6
14221 13456 119 116
15915 15426 126 124.2
18022 18117 134 134.6
19176 19628 138 140.1
20906 20707 145 143.9

GMunit/Runit =

(

4.33E+10 (m/s)*2 = Vunit"2

208 km/s

43227 (km/s)*2

Vunit=

Vunith2 =
vdisk"2 Vbulger2
31 289
250 2052
548 3376
1056 2959
1505 2228
1576 2061
1798 1560
1866 1362
1910 1176
1910 986
1781 745
1616 625
1190 441

unit Gl

M/ Mfix

4.33e+04
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253

R
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7

X

vfinal km/s
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228

Pbulge=3M/(4*3 14*R"3)*1000

fix GM/R pbulge IMG/R
3.6 8.41E+H03
3.6 8.41E+03
3.6 8.41E+03
3.6 8.41E+H03
3.6 B.41E+03
3.6 8.41E+03
3.6 8.41E+03
3.6 B.41E+03
3.6 8.41E+03
3.6 8.41E+H03
3.6 B.41E+03
3.6 8.41E+03
3.6 8.41E+03

FIG. 16. F571 8 Excell datasheet 1, Vfrb against r, pure model.

G=

Runi

1kpc=
Munit=  1E+10*Moe =

VA2model VA2

141
1431
3171
43809
7233
7502

11149
12520
13435
15250
18022
19608
20597

FIG.

154
1406
3192
4775
7310
7586

11025
12455
13456
15426
18117
19628
20707

6.674E-11
3.086E+19 meter
2.00E+40 kg

Vmodel Vexp

11.9
37.8
56.3
69.3
85.0
86.6
106
112
116
123
134
140
144

Vdiskr2

12.4 31
37.5 250
56.5 548
69.1 1056
85.5 1505
87.1 1576
105 1798
1116 1866
116 1510
124.2 1510
134.6 1781
140.1 1616
143.9 1150

Vunith2 =

2Vbulge*2

6751.22
5918.72
4455.68
4122.32
3120.5
2723.22
2352.58
1971.82
1450.58
1250
832

4.336+10 (m/fs)*2=  Vunitr2
208 km/s
43227 (kmjs)~2

unit GM/R
4.33E+04
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253
43253

Mfix

0.2
0.33
0.38
0.54
0.65

0.7

0.7
0.72
0.75
0.75

0.7
0.65
0.75

Rfix

15
L7
2.0
2.8
3.3
3.6
3.6
3.7
3.9
3.9
3.6
3.3
3.9

3.6 2.52E+H4
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+H4
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+H4
3.6 2.52E+04
3.6 2.52E+04
3.6 2.52E+04

Vfinal km/
159
159
159
159
159
159
159
159
159
159
159
159
159

Pbulge=3M/(4*3.14*R3)* 1000

fix GM/R  phulge
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03
8.41E+03

19.5
16.1
12.2
6.0
4.2
3.6
3.6
34
3.1
3.1
3.6
4.2
3.1

17. F571 8 Excell datasheet 1, Vozb against r, fixed model.
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T

3MG/R  Vfinal km/s

2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04
2.52E+04

159
159
159
159
139
159
159
159



o o s B B e s s e B g i i s
B2 kepe™2 E. kpe Vimis Vmeodel |V (lkm's)y" V'2modal vnit GME  Mfix Efix fix GMTE  pbulge 3MGR Viinal km/'s
4.00 2 79.00 22 6241.00 486 433E-04 1.7 84 8.T3EH3 069 263E+04 162
9.00 3 97.80 33 S364.84 1117 43233 IET 8.4 E.TIEH03 069 2.63E+04 162
16.00 4 118.00 43 13524 1985 43233 1T 84 E.TIEH03 069 2.63E+04 162
3025 55 139.40 61 194324 3733 43233 1.7 84 H.T75EH3 0.69 263EHM 162
36.00 6 14420 67| 20793.6 4465 43233 b 34 8.T5EH3 069 263E+04 162
45.00 7 143.30 78| 205349 6079 43233 1:7 34 8.T5EH3 069 263E+04 162
54.00 E 130.30 89| 22590.1 7540 43233 17 84 &.TIEH03 069 2.63E+04 162
81.00 9 14550 100 22470 10048 43233 17 84 E.TIEH03 069 2.63E+04 162
102.01 101 152.10 112 231344 12655 43233 1.7 84 B8.T75EH3 0,69 263EHM 162
121.00 11 151.10 123 223312 15011 43233 1.7 84 8.T5EH3 069 263E+04 162
14641 12. 15620 135 243934 138144 43233 1.7 34 8.T5EH3 069 263E+04 162
158.81 141 1el.00 157] 25921 245584 43233 1T 8.4 E.TIEH03 069 2.63E+04 162
25921 le.1 15530 179 241181 32138 43233 1.7 84 E.TIEH03 069 2.63E+04 162
32761 181 148.70 135 22111.7] 15136 43233 1.7 84 B8.T75EH3 0,69 263EHM 162
404.01 20.1 149.10 133 222308 18644 43233 1-7 84 8.T5EH3 069 263E+04 162
43841 22, 148.40 140 22022. 19607 43233 17 34 8.T5EH03 069 263E+04 162
380.81 241 14620 142 213744 20139 43233 17 84 E.TIEH03 069 2.63E+04 162
681.21 281 14550 144 211703 20626 43233 15T 84 E.TIEH03 069 2.63E+04 162
78961 281 147.30 145 216973 21027 43233 1.7 84 B8.T75EH3 .69 2.63EHM 162
912.04 302 146.50 145 214623 21391 43233 1.7 84 8.T5EH3 069 263E+04 162
1036.34 322 14840 147 220226 21694 43233 B 34 B8.T5EH3 069 263E+04 162
1165964 2 149.30 148 222805 21961 43233 1T 84 E.TIEH03 069 2.63E+04 162
131044 382 14550 140 22470 22199 43233 17 84 &.TIEH03 069 2.63E+04 162
143524 382 149.30 150 22290.5 22411 43233 1.7 84 B8.T75E+3 0.6% 2.63EHM 162
1616.04 402 150.00 150 22500 22603 43233 1.7 84 8.T5EH03 069 263E+04 162
177241 421 147.60 151 21785.8| 22763 43233 1.7 84 8.T5EH03 069 263E+04 162
1933.64 42 145.80 151 22440 22934 43233 1.7 84 E.TIEH03 069 2.63E+04 162
213444 46.2 15150 152 22952.3| 23078 43233 1T 84 E.TIEH03 069 2.63E+04 162
232324 482 151.50 152 230736 23210 43233 1.7 84 B8.T75EH3 .68 2.63EHM 162
FIG. 18. NGC 3198 Excell datasheet 1, Vfrb against r, pure model.

B2 lepe"2 Rlpe Viemis Vmodal V(lem'sy'?  V'Zmodel unit GME  Mfix Rfix  fixGMR  pbulge 3MGR Vfinal s
4.00 2 79.00 79 6241.00 4.33E+04 0.48 24 B.75E+03 8.59  2.63E+04 162
9.00 3 97.80 98 9364.84 43253 0.58 29 B.75E+03 5.89  2.63E+04 162
16.00 4 118.00 117 13924 43253 0.65 32 B.75E+03 469 2.63E+04 162
3025 55 139.40 139 1943236 43253 0.75 37 B.J5E+03 352 2.63E+4 162
36.00 & 14420 144 20793.64 43253 0.79 39 B.75E+03 317 2.63E+M 162
49.00 7 143.30 144 2053489 43253 0.92 45 B.JSE+03 234 2.63E+M 162
64.00 B 150.30 150 22590.09 43253 1.01 50 B.ISEH3 194 2.63E+04 162
81.00 g 149.90 149 2247001 43253 114 56 8.75E+03 152 2.63E+4 162
102.01 10.1 152.10 153 2313441 43253 125 62 B.ISEHI3 127 2.63E+M4 162
121.00 11 151.10 152| 2283121 43253 137 6.3  8.75E+03 105 2.63E+04 162
146.41 121 156.20 156 2439844 43253 147 73| B.ISE43 092 2.63E+4 162
198.81 141 161.00 161 25921 43253 1.66 2| BISEH3 0.72)  2.63EHM 162
25921 16.1 155.30 156  24118.09 43253 196 9.7 B.75E+03 052 2.63E+04 162
32761 18.1 148.70 147 2211169 43253 0.97 48 B.75E+03 210 2.63E+M 162
404.01 201 149.10 148 2223051 43253 1 48 B75EHA 198 2.63E+HM4 162
488.41 221 14840 149| 2202256 43253 1 49 B.75E+03 193 2.63E+04 162
580.81 241 14620 147 2137444 43253 13 64 8.75E+03 117 2.63E+M4 162
681.21 261 145.50 144 2117025 43253 17 5.4 BISEH3 0.69  2.63E+04 162
789.61 28.1 147.30 145 2169729 43253 17 8.4 B.7SEH3 069 2.63E+04 162
912.04 302 146.50 146 2146235 43253 17 8.4 B.75E+3 0.69  2.63E+04 162
1036.84 322 14840 147| 2202256 43253 N 8.4 BISE3 069 2.63E+4 162
1169.64 M2 149.30 148 22290.49 43253 17 8.4 B.7SE43 0.69  2.63E+04 162
1310.44 362 149.90 149 2247001 43253 17 8.4 B.7SEH3 0.69  2.63E+04 162
1459.24 382 149.30 150 2220049 43253 17 34 B.75E+03 0.69  2.63E+04 162
1616.04 402 150.00 150 22500 43253 17 8.4 B.TSE43 0.69  2.63E+04 162
1772.41 2.1 147 .60 149 2178576 43253 2 9.9 B.75E+03 049 2.63E+04 162
1953.64 42 145.80 151 22440.04 43253 17 84  8.75E+03 0.69  2.63E+04 162
213444 162 151.50 152| 2295235 43253 17 8.4 B.7SE43 069 2.63E+04 162
232324 482 151.90 152  23073.61 43253 17 8.4 B.7SE43 0.69  2.63E+04 162

FIG. 19. NGC 3198 Excell datasheet 1, V02Tb against r, fixed model.
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