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Perceptual significance of kernel methods for

natural image processing

Vikas Ramachandra and Truong Q. Nguyen

Abstract: We explore the unifying connection between kernel regression, Volterra series expansion

and multiscale signal decomposition using recent results on function estimation for system identification.

We show that using any of these techniques for (non-linear) image processing tasks is (approximately)

equivalent. Further, we use the relation between wavelets and independent components of natural images.

Kernel methods can be shown to be implicit Volterra series expansions, which are well approximated by

wavelets. Wavelets are, in turn, well represented by independent components of natural images. Thus, it

can be seen that kernel methods are also near optimal in terms of higher order statistical modeling and

approximation of (natural) images. This explains the reason for good results often (perceptually) observed

with the use of kernel methods for many image processing problems.

(1) Introduction: It is known that natural image statistics go well beyond second order moments. It

was shown by [1] that the independent components of natural images are oriented edges at different scales,

which are well captured by multiresolution decompositions, as shown by [2]. Recently, there has been a fair

amount of work on the use of multiresolution decomposition of images and modifications at subbands for

various problems including superresolution [3], denoising [1], deconvolution [2], image quality assessment

[3] etc. There has also been a parallel stream of works which use kernel methods like kernel regression for

image processing tasks including superresolution [4], image denoising [5], deconvolution [6], image edge

enhancement [7] and so on. Most of these tasks can be cast as estimation problems. It is well known that

the choice of kernel helps to regularize the solution of the estimation problem. Although, these techniques

give good results, it is not immediately clear (for the image processing tasks mentioned) how much the

regularization provided by the kernel is useful. Although [8] shows that there is considerable improvement

in image estimation problems when higher order moments are considered, it is not directly motivated by

natural image statistics, since the emphasis in [8] and [9] is more on using kernel methods for faster

implicit higher order expansions of signals.
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We proceed by reviewing the relation between kernel methods and Volterra expansions [9]. Volterra

expansions are then shown to be approximated well by wavelet bases [10]. Thus, kernel methods can be

well approximated by wavelet expansions. Further, it has been observed that the independent components

of natural images are wavelet-like in nature [2],[11]. We briefly talk about extensions using sparse

overcomplete basis representations and their relation to nonlinear ICA. Since kernel methods are well

approximated by wavelets which are also related directly to natural image components, we argue that this

is why kernel methods perform well perceptually.

(2) Volterra series and kernel regression: There is an (implicit) Volterra series for polynomial kernel

regression. Let the input x(t) and output y(t), both functions of time, be related by a mapping y(t) =

H ⇤x(t). Traditionally, y(t) and x(t) are related by a convolution as, y(t) = H1x(t) =
R

h(1)(⌧)x(t� ⌧)d⌧

where H1 gives the transfer function of the linear impulse response. For nonlinear systems, we can extend

the linear response to form this Volterra series operator y(t) = V x(t) = H1x(t) + H2x(t) + · · · where

Hnx(t) =
R

h(n)(⌧1, · · · , ⌧n)x(t� ⌧1) · · · x(t� ⌧n)d⌧1 · · · d⌧n is the nth order Volterra operator, and where

h(n)(⌧1, ⌧2, · · · , ⌧n) are the Volterra kernels, and where H0x(t) = constant. The Volterra series is equivalent

to a Taylor series with memory, relating the output to present and past inputs. This also captures the

multiplicative interaction between input terms. [15] has details of Volterra series convergence. A related

class of mutually uncorrelated operators which are easier to estimate are the Weiner series operators. The

Wiener operators Gn are linear combinations of Volterra operators up to order n. They can be obtained from

the original Volterra series by Gram-Schmidt like orthogonalization.The discrete version of the Volterra

operator is the function: Hn(x) =
Pm

i1=1 · · · Pm
in=1 h

(n)
i1···inxi1 · · · xin If the input data is m dimensional,

the Volterra kernels are given by h
(n)
i1···in . Discrete systems with compact domain can be approximated by

finite, discrete Volterra series [9].

Volterra Series as a linear operator in RKHS: Material in this section is condensed from [9]. Given ob-

servations (x1, y1), · · · , (xN , yN), linear regression tries to estimate y as a function of x,y = f(x) =
PM

j=1 �j'j(x) using �j 2 R and a dictionary of M functions 'j : Rm ! R. In the case of pth-

order Volterra or Wiener series, this dictionary consists of all monomials of x up to order p. Instead

of directly using the monomials as basis functions, it is possible to specify the dictionary in terms

of a kernel function k via 'j(x) = k(x, zj), using a set of points z1, · · · , zM from Rm. We consider

positive definite kernels, i.e. functions k with the property that the Gram matrix Kij = k(xi, xj) is

positive definite for all choices of the x1, · · · , xN from the input domain. Such kernels can be seen

as a dot product in a linear space F , i.e., there exists a map � such that k(x, x0) = �(x)>�(x0). F
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can be identified with a space of functions,f(x) =
PM

j=1 �jk(x, zj) This space is a reproducing kernel

Hilbert space (RKHS). Using the representer theorem, we can show that the optimal solution f(x) can

be expressed in terms of the training points xjs only, i.e. f(x) =
PM

j=1 �jk(x, xj), where �j 2 R. The

optimal �js in the mean squared sense can be shown to be � = K�1y, where the K is the Gram

matrix of the training input points xj , and y is a stack of the training output points yj . For a test point

x, y = f(x) = �>k(x) = y>K�1k(x) where k(x) = [k(x, x1), k(x, x2), · · · , k(x, xN)]. The Volterra

operators can be expressed using the kernel framework. The nth-order Volterra operator is a weighted

sum of all nth-order monomials of the input vector x. For n = 0, 1, 2, · · ·, we define the map �n as

�n(x) = [xn
1 , x

n�1
1 x2, · · · , x1x

n�1
2 , x

n
2 , · · · , x

n
m]and �0(x) = 1, such that �n maps the input x 2 Rm into

a vector �n(x) 2 Fn = Rmn containing all mn ordered monomials of degree n evaluated at x. Using

�n, we write the nth-order Volterra operator as a scalar product in Fn, Hn(x) = ⌘>n �n(x) with the

coefficients stacked into the vector ⌘n = [hn
1,1,···,1, h

n
1,2,···,1, · · · , ]> 2 Fn. The functions �n form an RKHS

characterized by the polynomial kernels, �n(x1)>�n(x2) = (x1x2)n = kn(x1, x2) The estimation problem

can be solved directly if one applies the same idea to the entire pth-order Volterra series. The entire pth-

order Volterra series is also a scalar product in F p:
Pn=0

p Hn(x) = (⌘p)>�(p)(x) Also, the inner products

are: �p(x1)>�p(x1) =
Pn=0

p ↵2
n(x>1 x2)n = kp(x1, x2). The output via a Volterra series for a given test

point is: y = f(x) =
Pn=0

p Hn(x) = y>K�1
p kp(x) Thus, there is an equivalence between polynomial

kernel regression and Volterra system estimation.

(3) Wavelet expansion of Volterra operators: The discussion in this section is condensed from [10].

A multiwavelet basis for L2(R), the vector space of square-integrable functions, is composed of the scaled

translates and dilates of multiple wavelet functions [ 1, · · · , r]. These multiwavelets are generated from

r scaling functions [⇢1, · · · , ⇢r]. Because multiwavelets employ multiple scaling functions and wavelets,

there is more freedom to design these functions to satisfy a greater range of properties, which enables

better representation of many more system responses. By construction, the multiwavelets [ 1, · · · , r]

satisfy the equations: ⇢s(x) =
p

2
P

p,t a
s,t
p ⇢

t(2x � p), s = 1, · · · , r; s(x) =
p

2
P

p,t b
s,t
p ⇢

t(2x � p), s =

1, · · · , r. Multiwavelets and scaling functions are formed recursively as linear combinations of scaling

functions with half the support. The scaled translates and dilates of the scaling functions and multi-

wavelets are: ⇢s
j,k(x) = 2j/2⇢s(2jx � k), s

j,k(x) = 2j/2 s(2jx � k) j 2 Z gives the resolution level

and k 2 Z is the translation index. A given approximation space Vj can be decomposed as: Vj =

Vj�1
L

Wj�1, where Wj�1 is the corresponding wavelet space. Recursively applying this relation, we get,

Vj = Vj0

L
Wj0

L
Wj0+1

L · · · L
Wj�2

L
Wj�1. In a multiwavelet multiresolution analysis, a function f 2
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L2(R) is first approximated in terms of a fine-resolution space Vj as: fj(x) =
Ps=1

r

P
k2Z as

j,k⇢
s
j,k(x) where

as
j,k are scaling function expansion coefficients and fj denotes an approximation of function f at resolution

level j. This can be written equivalently as fj(x) =
Ps=1

r

P
k2Z as

j,k⇢
s
j0,k(x)+

Ps=1
r

Pj�1
l=j0

P
k2Z bs

l,k 
s
l,k(x)

This representation is in terms of the scaling functions on the coarsest resolution level j0 and the

multiwavelets on levels j0 through j�1. The multiscale expansion is often a very sparse, i.e. a function can

often be accurately represented using a few multiwavelet coefficients. Higher-dimensional multiwavelets

are obtained as the tensor products of the one-dimensional scaling functions and multiwavelets. The family

of piecewise-polynomial multiwavelets is particularly well suited for the representation of Volterra kernels

because the functions can easily be adapted to the domains of support of the kernels.

Multiwavelet representation of kernels and operators: Here, we explain how one would represent first

order Volterra operators using multiwavelets. Extension of this to higher order operators, although straight-

forward, requires cumbersome notation and we avoid it here. The reader can find the derivations for higher

order operators in [10].

First order operator approximation: We recall the first order operator is convolution. We start by ap-

proximating the input x(t) with a zero order hold. If the input and output are sampled at a rate of 2j

Hz and there are a total of N data points, a zero-order hold approximation of the input can be written

as: xj(t) =
PN�1

k=1 xj,k�j,k(t) where the characteristic function �j,k is defined as: �j,k(t) = 2j/2�(2jt� k)

and � is the characteristic function of the interval [0, 1]. The zero-order hold is simply a piecewise

constant approximation of the input. The coefficients uj,k are equivalent to scaled samples of the input.

Discretizing the output at a sampling rate of 2j Hz, equation (2) yields N equations for the discrete

first-order outputs: y1,j(tn) =
R tn
0 h1(⌧)x(t � ⌧)d⌧, n = 1, · · · , N where tn = 2�jn. The translated

zero-order hold approximation of the input can be written as: xj(tn � ⌧) =
Pn�1

k=0 xj,n�k�1⌧j,k Next,

the first-order kernel h1 is represented in terms of the piecewise-polynomial multiwavelets. The first-

order kernel can be approximated in terms of the (boundary-adapted) scaling functions on level j1 as:

h1,j1(⌧) =
P

p
Ps=1

r as
j1,p⇢

s
j1,p(⌧) Substituting equations (18) and (19) into equation (17), the expression for

the output becomes, y1,j(tn) =
Pn1�1

k=0

P
p

Pr
s=1 xj,n�k�1aj1,p

R T1
0 ⇢s

j1,p(⌧)�j,k(⌧)d⌧ , wheren1 = nforn <

2jT1and2jT1forn � 2jT1 This can be written as: y
1,j

= M1a1 where y1,j is a vector of discrete first-order

outputs and a1 is a vector of scaling function coefficients that represent the first-order kernel. Similarly,

for second and higher order operators, the kernel is expressed as a linear combination of a tensor product

of scaling functions. To summarize, we see that a multiresolution approximation is possible for a Volterra

series expansion. The output is expressed as a linear combination of the multiscale basis functions, the
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weights of which are dependent on the interaction between the input signal values.

(4) Multiresolution analysis and image statistics: Marginal distributions of oriented bandpass filter

responses of natural images are highly kurtotic with sharp peaks at zero and much longer tails than

Gaussian density, and have a number of important implications to sensory neural coding of natural visual

scene [1]. A multiscale decomposition can capture many higher order image statistics as was shown in

[2], where it was discussed that wavelet-like filters emerge on applying ICA (Independent component

analysis) on natural images, which captures the higher order interactions between image pixels. Most

basis vectors are localized in both space and frequency. It is clear that the basis functions representing

lower frequencies are spatially more spread, but are also more localized in the frequency domain than

those representing high frequencies. This is essentially the main property of wavelets.

Over-complete bases and nonlinear ICA: By selecting multiresolution bases from an overcomplete dic-

tionary, we induce sparsity on the coefficients, (basis pursuit) which leads to a non-linear relation between

the chosen bases and the input. In [14], learning sparse overcomplete representations was shown to be a

nonlinear extension of ICA. This can explain the nonlinear response of the human visual cortical cells

[13]. Thus, sparse extensions of ICA and overcomplete wavelet/ basis expansions are closely interrelated.

(5) Conclusion: In this paper, we discussed the equivalence of kernel regression and multiresolution

analysis for image processing tasks which rely on natural image statistics. The relation was drawn by

relating polynomial kernel methods to (implicit) Volterra series expansion, finding multiwavelet approx-

imations for Volterra operators and using the relation between multiresolution decomposition and the

independent components of natural images.
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