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Abstract

I focus in this text on the construction of functions fj with the delta property Ci (fj) = δi,j , where Ci are operators
which associate to a function its i-th raw moment. A formal method for their construction is found, however results are
divergent, from what a non-existence of such functions is conjectured. This also prevents an elegant series expansion
with order-by-order moment matching. For a finite interval some partial results are presented: a method of expansion
into raw moment series for finite number of moments and a “non-delta” method based on computing Legendre-expansion
coefficients from moments. As by-product some coefficients formulas are found: coefficients for expanding a Hermite
function into the Taylor series and coefficients for expanding into the Taylor series an element of a Fourier series (i.e.
common formula for sine and cosine) thus formally merging the two (sine and cosine) Fourier sub-series into one.

1 Introduction
An approximation is often based on matching an infinite set of numbers {ci} which characterizes the function to be
expanded (I will denote it g) by some different, well chosen function form. Let {Ci} be a set of functionals

ci = Ci (g) .

If Ci is linear then the most efficient way of constructing an expansion is:

• Find a set of functions {fj} having the delta property with respect to {Ci}

δi,j = Ci (fj)

• Construct the approximation Ag as sum

Ag =
∑
i

cifi ≡
∑
i

Ci (g) fi.

The approximation Ag has the same characterization as g:

Ci (Ag) = Ci

∑
j

cjfj


=
∑
j

cjCi (fj)

=
∑
j

cjδi,j

= ci

= Ci (g)
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In this text the characteristic numbers are raw moments

cn (g) ≡ mn (g) ≡
∫ b

a

xng (x) dx.

It seems this is an interesting and active field of mathematics with many people involved in the so-called “moment problem”.
Here a notice should be made: in this text g can be an arbitrary function with appropriate properties (integrable, etc...)
which is too loose for statistics. A statistical probability needs to be always positive and this is not guaranteed for g.
Therefore the link with statistics in this text might be limited.

2 Orthonormal function approach

2.1 Interval (-1,1) and finite intervals
A finite interval in the moment computation can be seen as equivalent to a moment computed over the whole real axis
for a function which is non-zero only on some limited interval. Then the recipe for constructing functions with the delta
property is as follows. Starting with ∫ b

a

xnfm (x) dx = δn,m

one expands both, xn and fm (x) into series of (some) orthonormal functions {Pk} (in the L2 metrics).

δn,m =

∫ b

a

[ ∞∑
k=0

an,kPk (x)

][ ∞∑
l=0

bm,lPl (x)

]
dx (1)

=
∞∑
k=0

∞∑
l=0

an,kbm,l

∫ b

a

Pk (x)Pl (x) dx

=

∞∑
k=0

∞∑
l=0

an,kbm,lδk,l

=
∞∑
k=0

an,kbm,k

What does the last line mean? In the matrix notation it can be rewritten as

1 = a.bT

or, in other words, if {ak} are the coefficients which express how xn is built from Pk (x), then the coefficients {bn} are
their inverse (up to a transpose), i.e. they encode how Pk (x) is expanded into xn. This is usually a know information for
many common cases, it is the power expansion of the orthonormal system {Pk}. The approximation of g can be written
as

g (x) =
∞∑

n=0

mnfn

with

fn =
∞∑
l=0

wl,nPl (x)

where wl,n are such that

Pn (x) =

∞∑
k=0

wn,kx
k

One can notice an interesting property which I would call “fractal composition”: the same coefficients (with exchanged
indices) are used twice in the summation

fn =
∞∑
l=0

wl,n

∞∑
k=0

wl,kx
k

=

∞∑
l=0

∞∑
k=0

wl,nwl,kx
k
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Now the bad news: it seems such summations do not converge.

2.2 Using Legendre polynomials
The best known orthonormal system on the interval (−1, 1) is the system of normalized Legendre polynomials

Ln (x) =

√
2n+ 1

2
Pn (x)

where Pn are Legendre polynomials

Pn (x) =

n∑
k=0

qn,kx
k (2)

with

qn,k = 2n
(
n

k

)(n+k−1
2

n

)
.

Summation in (2) implies that also the “inverse” summation in the first term of (1) is finite. The coefficients wn,k take
the form

wn,k =

√
2n+ 1

2
2n
(
n

k

)(n+k−1
2

n

)
.

One might construct functions with the delta property fn progressively, by defining the number of terms in the series

fNn =
N∑

k=0

wk,nLk (x) .

It might be easy to show (presumably at x = 1, where the value of all Legendre polynomials is 1) that the limit N → ∞
does not exist, the function values tend to infinity (in many points). The “small good news” is that fNn keeps the delta
property for m ≤ N , i.e. ∫ 1

−1

xmfNn (x) dx = δn,m for m ≤ N.

All f10n functions are shown in Fig. (1). The behavior of the fN2 functions with increasing N is shown in a quasi-logarithmic
plot sig(fN2 )× ln

(
1 +

∣∣fN2 ∣∣) in Fig. (2). It seems the functions fNn (x) gain more and more variations as N increases and
therefore one may assume that even a shape-limit for these functions does not exist.

2.3 Moment expansion in situation where order of approximation is known in advance

If one desires to match N raw moments {mi}N−1
i=0 of a function g, mi =

∫ 1

−1
xig (x) dx, the recipe is as follows:

• Construct functions fN−1
n

fN−1
n =

N−1∑
k=0

wk,nLk (x) ,

where

wk,n =

√
2k + 1

2
2k
(
k

n

)(k+n−1
2

k

)
(3)

and

Lk (x) =

∞∑
m=0

wk,mx
m

=

√
2k + 1

2
Pk (x)

with Pk (x) being the Legendre polynomials.

• Construct the approximation Ag (x)

AN−1
g (x) =

N−1∑
j=0

mjf
N−1
j
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Figure 1: Plots of the f10n functions, n = 0, . . . , 10.

Figure 2: Behavior of the functions f22 , f52 , f102 and f202 shown in a quasi-logarithmic plot. Lines represent
sig(fN2 ) ln

(
1 +

∣∣fN2 ∣∣).
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Figure 3: Functions 3
√
x, exp (x), sin (x) and ln (x+ 2) approximated by moment and Taylor series with 11 terms.

Approximations of four functions1 3
√
x, exp (x), sin (x) and ln (x+ 2) with 11 moments matched, together with Taylor

series of the identical length (value and 10 derivatives matched) are shown in Fig. (3). For any finite polynomial both,
moment expansion (based on Legendre polynomials) and Taylor series, give an exact approximation. Therefore I omit the
x2 function which I usually include in my other texts and replace it with 3

√
x. Graphs are shown on a grater interval than

(−1, 1), it is assumed that for many functions the approximation may hold also in some neighborhood of this interval.
The method is integral-based and therefore there are hopes for convergence also in cases of non-analytic functions (e.g.
3
√
x).

2.4 Non-delta approach
Numerical results suggest that for an arbitrary high (but fixed) N a valid approximation AN

g can be constructed for many
common functions. It seems the “infinite” functions fn ≡ f∞n can be combined so as to give finite results. Maybe one
could define some finite linear combinations of these functions

Fn =
∑
u

cn,ufu

1In my texts I usually chose ln (x+ 1), which is however inappropriate in the current settings: all higher moments could be computed but
not the zero-order one.
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and use those in expansion. Clearly, functions Fn loose the delta property

Ci (Fn) = Ci

(∑
u

cn,ufu

)
=
∑
u

cn,uCi (fu)

=
∑
u

cn,uδi,u

= cn,i

= i-th moment of Fn

Question of moment matching arises. What is the i-th moment of a series of Fn functions?

Ci

( ∞∑
n=0

λnFn

)
=

∞∑
n=0

λnCi (Fn)

=
∞∑

n=0

λncn,i

One wishes to match this moment to a fixed moment mi given in advance

mi =

∞∑
n=0

cn,iλn.

This should be seen as a condition on λn, coefficients cn,i are interpreted as fixed. In matrix notation

m = cTλ

so
λ =

(
c−1
)T
m.

Let me summarize the recipe:

• One has functions Fn defined as linear combinations of (infinite) functions fu via mixing matrix cn,u.

• One has moments mi of a function g to be approximated.

• One computes coefficients λn as

λn =
∞∑
i=0

(
c−1
)
i,n
mi

• The moment expansion of g can then be written as

Ag (x) =

∞∑
n=0

λnFn, (4)

where one needs to keep in mind that this approximation is not “order-by-order” but holds in the limit of large
number of terms.

2.5 Example of a non-delta approach
A clever person might invent its own, original version of the mixing cn,u. I will try the most obvious one where Fn

functions are scaled Legendre polynomials. One has

fn =
∞∑
k=0

wk,nLk (x)

or, in the matrix language
f = wTL,
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where the coefficient w are given by (3). So
L =

(
w−1

)T
f

or

Ln =

∞∑
u=0

w−1
u,nfu

leading to one concrete realization of the mixing
cn,u ≡ w−1

u,n

Let me recall the computation of λ

λn =
∞∑
i=0

(
c−1
)
i,n
mi

=

∞∑
i=0

wn,imi

This is probably not a very surprising result: we are in the standard “Legendre expansion”, with moments related to the
expansion coefficients in a straightforward way as shown by the following computation

an =

∫ 1

−1

g (x)Ln (x) dx

=

∫ 1

−1

dx g (x)
∑
i

wn,ix
i

=
∑
i

wn,i

∫ 1

−1

g (x)xidx

=
∑
i

wn,imi

Well, a different choice of the mixing cn,u is still an open possibility. The important question for using this approach in
analytic formulas for moment expansion is: Am I able to compute (analytically) the sum

∑
i wn,imi?

2.6 Using Fourier series
I was maybe wrong claiming the Legendre polynomials as being the most famous orthonormal system on (−1, 1). It might
actually be the system of trigonometric functions as appearing in the Fourier series

1√
2
, sin (nπx) , cos (nπx) , n = 1, 2, 3, . . .

The “problem” with this system is that it is usually written as two series, sine and cosine. To get the knowledge of the
wk,n coefficients one needs to have a general expression giving the dependence of the k-th function on xm. With some
work one can succeed and merge the two series into one:

tk (x) =


1√
2

for k = 0

sin
(
k+1
2 πx

)
for k = 1, 3, 5, . . .

cos
(
k
2πx

)
for k = 2, 4, 6, . . .

.

Here is the general power expansion for tk:

tk (x) =
∞∑

n=0

wk,nx
n,

where

wk,n =


1√
2
δk,n for k = 0

Re

[(√
1
2+i

√
1
2

)2n+(−1)k−1
×(π⌊ k+1

2 ⌋)n
n!

]
for k > 0

(5)
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with ⌊ ⌋ denoting the floor function.
The “general theory” tells us that we should build the functions fNn as

fNn (x) =

N∑
k=0

wk,ntk (x) .

Numerical computations lead to a deception: functions fNn does not seem to have the delta property for any fixed N (and
m), neither seem to approach this property with increasing N . For some reason the construction of “delta” function fails,
presumably it is associated with some inappropriate order changing of integral and infinite summation which appears in
formulas following the expression (1). Momentum matching approximation based on the Fourier series seems to be an
impasse.

The non-delta approach for Fourier series follows from

ak =

∫ 1

−1

g (x) tk (x)

=

∫ 1

−1

g (x)
∞∑

n=0

wk,nx
n

=
∞∑

n=0

wk,n

∫ 1

−1

g (x)xn

=
∞∑

n=0

wk,nmn

with wk,n given by (5). This approach also fails (numerical observation).

2.7 Finite interval (a, b)
On a general interval (a, b) one needs to scale everything properly. System of orthonormal functions on such interval is
written as

O(a,b)
n (x) =

2

b− a
On

(
2

b− a
x− a+ b

b− a

)
,

where {On} represents an orthonormal system on (−1, 1). One needs to determine the coefficients w(a,b)
n,q . A brute-force

computation gives

O(a,b)
n (x) =

2

b− a
On

(
2

b− a
x− a+ b

b− a

)
=

2

b− a

∞∑
k=0

wn,k

(
2

b− a
x+

a+ b

a− b

)k

=
2

b− a

∞∑
k=0

wn,k

k∑
j=0

(
k

j

)(
2

b− a

)k−j (
a+ b

a− b

)j

xk−j

k − j = q, j = k − q

=
2

b− a

∞∑
k=0

k∑
q=0

wn,k

(
k

k − q

)(
2

b− a

)q (
a+ b

a− b

)k−q

xq
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If I assume the infinite sum can be re-arranged2, then

O(a,b)
n (x) =

2

b− a

∞∑
q=0

∞∑
k=q

wn,k

(
k

k − q

)(
2

b− a

)q (
a+ b

a− b

)k−q

xq

=
∞∑
q=0

 ∞∑
k=q

wn,k

(
k

k − q

)(
2

b− a

)q+1(
a+ b

b− a

)k−q
xq

=
∞∑
q=0

w(a,b)
n,q xq

So one has

w(a,b)
n,q =

∞∑
k=q

wn,k

(
k

k − q

)(
2

b− a

)q+1(
a+ b

a− b

)k−q

I did no numerical computation for a general interval (a, b), I have no numerical results supporting or dismissing the
validity of the last formula.

With a system of orthonormal functions and with coefficients w(a,b)
n,q , one can proceed in a way identical to the (−1, 1)

case.

2.8 Infinite interval (−∞,∞): unsuccessful attempt
One well know system of orthonormal function on the interval (−∞,∞) are Hermite functions

ψn (x) =
(
2nn!

√
π
)− 1

2 e−
x2

2 Hn (x) ,

where Hn are Hermite polynomials

Hn = (−1)
n
ex

2 dn

dxn
e−x2

.

The tricky thing is to find the coefficients wn,k appearing in power expansion of the Hermite functions

ψn (x) =

∞∑
k=0

wn,kx
k.

It is a technical task and the result is

wn,k =
(
2nn!

√
π
)− 1

2
Kn,k(
2
⌊
k
2

⌋)
!!

(6)

Kn,k =

k−⌊ k
2 ⌋∑

j=k−2⌊ k
2 ⌋

(−1)⌊j−
k
2 ⌋ ωk,jhn,2(j+⌊ k

2 ⌋)−k

ωk,j =

(
2
⌊
k
2

⌋)
!![

2
(
k − j −

⌊
k
2

⌋)]
!!

hn,k =

{
0 for k > n

Hn,k else

Hn,k =

0 if n and k have a different parity
n!(−1)

(n−k)
2 2k

k!(n−k
2 )!

if n and k have the same parity

Now one can proceed mechanically, functions with the delta property should be built as

fk (x) =
∞∑

n=0

wn,kψn.

2In an infinite triangle with elements indexed by k, q, q < k rows were summed. Now summing the same triangle by columns.
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Numerical computation show that this construction does not work. The cut-off functions fNk (x) seem not to exhibit any
delta property and seem not to approach the delta property with increasing N .

I also tested the “non-delta” approach on the (−∞,∞) interval using the standard normal distribution3

g (x) =
1√
2π
e−

x2

2 .

The method is identical to the non-delta approach on a finite interval (4) where I chose ψn as functions in the approximation
series

Ag (x) =
∞∑

n=0

λnψn.

Coefficients λn are given by

λn =
∞∑
i=0

wn,imi,

with mi moments to be matched and wn,i given by (6). Attempt leads to a failure: approximation seems to diverge.

3 Conclusion, Summary
Ideas and results presented in this text are rather disappointing because it seems that functions with the delta property
(with respect to the moment expansion) cannot be found. Some practical recipes are proposed for finite interval: Given
a sequence of numbers {mi} (interpreted as moments) one can build approximation in two ways:

• One fixes the number of moments to match to a finite number {mi}i<N , then constructs cut-off functions with the
delta property and builds the series as described in section (2.3).

• One computes (if clever and lucky) Legendre-expansion coefficients from moments and performs standard expansion
into the orthogonal basis of the Legendre polynomials, see sections (2.4,2.5).

Besides, I constructed two possibly interesting coefficients formulas (5) and (6) which seem not to be common in the
literature. The first one allows to formally merge sine and cosine series of a Fourier series into one series, the second one
represents the Taylor expansion of the Hermite functions.

Finally I ask myself whether something new with respect to the “moment problem” was presented. Probably not. Yet,
if there would be a way to deduce from the Legendre coefficients positiveness of the Legendre expansion then a direct link
from moments to conclusion about existence and uniqueness of the corresponding probability distribution could be made:

[{mi}] ↔

[
λn =

∞∑
i=0

wn,imi

]
??↔

[
Ag (x) =

∞∑
n=0

λnLn (x) is positive on (−1, 1)

]
↔ Ag is a unique probability distribution

where the uniqueness follows from the uniqueness of the L2 expansion into the Legendre polynomials.

3One of rare common functions with all moments defined and easily computable on the whole real axis.
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