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1. Introduction 

In [1], Van Heuvelen and Maloney describe a new, reverse type of physics problems 

in which the answer is given and the question is asked. Such problems, which require 

from the solver to follow a working-backward approach, are called physics Jeopardy 

problems (the name was taken from a game show called Jeopardy). 

In quantum physics Jeopardy problems, wave functions describing energy eigenstates 

are given and the respective potentials are asked [2]. 

Herein, we use a simple, one-parameter, symmetric wave function to derive an 

attractive, equal-coupling, double Dirac delta potential, which vanishes in the interior 

region (between the delta functions) and has a centrifugal, angular-momentum-like 

tail in the exterior region (outside the delta functions). The potential admits only one 

bound state, the energy of which can be chosen zero. 

For a detailed study of the double Dirac delta potential, the reader may refer to [3] and 

to references therein, while in [4] the reader can find a detailed analysis of the Dirac 

delta potentials as pedagogical and physical models in quantum physics. 

2. The wave function 

We consider the wave function 

( )
( )1 1

; s
Ax s

x x x x
ψ =

− + +
%

% % % %

       (1) 

where 3 2s >  [5], 1 0x >% , A  the normalization constant, and 0x x x=% , with x  being 

the position and 0 0x >  a length scale. 

Since 1 0x ≠% , the expression 1 1x x x x− + +% % % %  is strictly positive. Then, the wave 

function (1) has no singularities, it is everywhere continuous and finite. 

Also, we have 

( )
( ) ( ) ( )( )

}

( )1 1 1 11 1

;
x x

s s s
A A Ax s

x x x x x x x xx x x x
ψ

− =

− = = =
− − + − + + + −− + + − −

%

% % % % % % % %% % % %

 

Thus 

( ) ( ); ;x s x sψ ψ− =% %  
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That is, ( );x sψ %  is symmetric (i.e. of even parity). 

In the region 1x x>% % , we have 

i. If 1x x< −% % , then 1 0x x+ <% %  and since 1 0x >% , 1 1 0x x x x− < + <% % % % . 

Thus ( )1 1x x x x− = − −% % % %  and ( )1 1x x x x+ = − +% % % % . 

Then (1) becomes 

( )
( ) ( )( ) ( ) ( )1 1

;
2 2s s ss

A A Ax s
x xx x x x

ψ = = =
− −− − − +

%

% %% % % %

 

That is 

( )
( )

;
2 ss

Ax s
x

ψ =
−

%

%

        (2) 

ii. If 1x x>% % , then 1 0x x− >% %  and since 1 0x >% , 1 1 0x x x x+ > − >% % % % . 

Thus 1 1x x x x− = −% % % %  and 1 1x x x x+ = +% % % % . 

Then (1) becomes 

( )
( ) ( )1 1

;
22s s s s

A A Ax s
xx x x x x

ψ = = =
− + +

%
%% % % % %

 

That is 

( );
2s s

Ax s
x

ψ =%
%

        (3) 

Combining (2) and (3), we obtain 

( );
2 ss

Ax s
x

ψ =%

%

        (4) 

for 1x x>% % . 

In the region 1x x≤% % , we have 

1 1x x x− ≤ ≤% % % , thus 1 0x x− ≤% %  and 1 0x x+ ≥% % . 

Then ( )1 1x x x x− = − −% % % %  and 1 1x x x x+ = +% % % % . 

Thus (1) becomes 
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( )
( )( ) ( )11 1

;
2s s

A Ax s
xx x x x

ψ = =
− − + +

%

%% % % %

 

That is 

( )
( )1

;
2 s

Ax s
x

ψ =%

%

        (5) 

The wave function is constant in the region 1x x≤% % . 

Combining (4) and (5), we write the wave function as 

( )
( ) 1

1

1

,  
2

;
,  

2

s

ss

A x x
x

x s
A x x
x

ψ

 ≤
= 
 >


% %

%

%

% %

%

       (6) 

Since it is continuous, ( );x sψ %  is Riemann integrable. Also, ( );x sψ %  is square 

integrable, as it decays as 1 sx% , with 3 2s > . 

The normalization constant A  can be easily calculated by applying the normalization 

condition, i.e. 

( ) 2
1dx xψ

∞

−∞

=∫  

Using that 0x x x=% , we obtain 0dx x dx= % , and since 0 0x > , the previous integral is 

written as 

( ) 2
0 1x dx xψ

∞

−∞

=∫ % %  

or 

( ) 2
0

0

2 1x dx xψ
∞

=∫ % %          (7) 

since ( )xψ %  is symmetric. 

Using (6), the integral in the left-hand side of (7) is written as 
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( )
( ) ( )

1

11

2 2 2 2
2

12 22 2 2 2 1
0 0 1 1

1 1
2 2 2 12 2

x

s ss s s s
xx

A A A A
dx x dx dx x

x s xx x
ψ

∞∞ ∞

−

 
= + = + − =  − 

∫ ∫ ∫
%

%%

% % % % %
% %% %

}

( )

2 2 2 2 22 1 0

12 2 2 1 2 2 1 2 2 1 2 2 1
1 1 1 11

1 1 1 11
2 2 1 2 2 1 2 2 1 22

s

s s s s s s s s s

A A A A A
x

s x x s x s xx

− >

− − − −

 = + = + = + = − − − 
%

% % % %%

( ) ( ) ( )

2 2

2 12 2 1
1 1

2
2 1 2 2 1 2 ss s

s A s A
s x s x −−= =

− −% %

 

That is 

( )
( )( )

2
2

2 1
0 12 1 2 s

s A
dx x

s x
ψ

∞

−=
−∫ % %

%

 

Substituting into (7) yields 

( )( )
( ) ( ) ( )( )2 2 1 2

20 1 1
2 1

0 0 11

2 2 1 2 2 1 2
1

2 42 1 2

s s

s

x s A s x s x
A

x s x x ss x

−

−

− −
= ⇒ = =

−

% %

%%

 

Thus 

( )1

0 1

2 2 1
2

sx sA
x x s

−
=

%

%
 

Then, up to a constant phase, the normalization constant is 

( )1

0 1

2 2 1
2

sx sA
x x s

−
=

%

%
        (8) 

By means of (8), (6) becomes 

( )
1

0 1

1
1

0 1

1 2 1,  
2

;
1 2 1 ,  
2

s

s x x
x x s

x s
xs x x

x x s x

ψ

 −
≤


= 

 − >   
 

% %
%

%

%
% %

% %

       (9) 

Using (9), we calculate the wave function derivative, with respect to x% . 

In the region 1x x<% % , the wave function is constant, thus its derivative vanishes. 

In the region 1x x< −% % , the wave function is, from (9), 
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( ) 1

0 1

1 2 1;
2

sxsx s
x x s x

ψ −  =  − 

%
%

% %
 

Thus 

( ) ( )( )
( )

( )
( )

( ) 12
1 1

1 1 1
0 1 0 1 0 1 1

1 2 1 2 11 2 1 1 1 1;
2 2 2

ss
s

s s

s s s s sx xsx s x
x x s x x s x x x xx x

ψ
+

+ +

− − − −−  ′ = = = = − − −

% %
% %

% % % % %% %

( ) 1
1

3
0 1

2 11
2

ss s x
x x x

+−  =  − 

%

% %
 

In the region 1x x>% % , the wave function is, from (9), 

( ) 1

0 1

1 2 1;
2

sxsx s
x x s x

ψ −  =  
 

%
%

% %
 

Then 

( ) ( ) 1
1

1 1 3
0 1 0 1

2 11 2 1 1;
2 2

s
s

s

s s xs sx s x
x x s x x x x

ψ
+

+

−− −  ′ = = −  
 

%
% %

% % % %
 

Thus, the wave function derivative is 

( ) ( )

( )

1

1
1

13
0 1

1
1

13
0 1

0,  

2 11; ,  
2

2 11 ,  
2

s

s

x x

s s xx s x x
x x x

s s x x x
x x x

ψ
+

+




<
 −  ′ = < −  − 
 −  − >   

% %

%
% % %

% %

%
% %

% %

     (10) 

( );x sψ ′ %  is odd, as expected, since ( );x sψ %  is even. 

At 1x± % , ( );x sψ ′ %  is discontinuous, since from (10) we obtain 

( ) ( )
1 3

0 1

2 11;
2

s s
x s

x x
ψ − −

′ − =%
%

, ( )1 ; 0x sψ +′ − =%  

and 

( )1 ; 0x sψ −′ =% , ( ) ( )
1 3

0 1

2 11;
2

s s
x s

x x
ψ + −

′ = −%
%
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Thus, the wave function derivative has at 1x− %  and 1x%  finite discontinuities, which are 

equal, since 

( ) ( ) ( )
1 1 3

0 1

2 11; ;
2

s s
x s x s

x x
ψ ψ+ − −

′ ′− − − = −% %
%

     (11) 

( ) ( ) ( )
1 1 3

0 1

2 11; ;
2

s s
x s x s

x x
ψ ψ+ − −

′ ′− = −% %
%

 

To summarize, the wave function ( );x sψ %  is continuous, while its first derivative has 

equal discontinuities at 1x± % . 

3. The potential 

Since ( );x sψ %  has no zeros1, it can be the ground-state wave function of a potential 

consisting of a term having, at most, finite discontinuities, and of a sum of two Dirac 

delta functions with one of them acting at 1x− %  and the other at 1x%  (see appendix). 

1. By zeros, we mean real zeros. 

The first term of the potential, which has, at most, finite discontinuities, does not 

induce discontinuities in the wave function derivative [6, 7]. We’ll refer to this term 

as the regular part of the potential. 

A finite discontinuity in the wave function derivative is induced by a Dirac delta 

potential [7]. Particularly, a delta potential ( )xλδ  induces in the wave function 

derivative a finite discontinuity at zero, which is given by [7] 

( ) ( ) ( )
2

2 0
0 0

mλψ
ψ ψ+ −

′ ′− =
h

       (12) 

where the prime denotes differentiation with respect to the position x . 

Since 0x x x=% , we have 

0

1d d
dx x dx

=
%

 

and (12) is written as 
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( ) ( )( ) ( )
2

0

2 01 0 0
m

x
λψ

ψ ψ+ −
′ ′− =

h
       (13) 

where now the prime denotes differentiation with respect to x% . 

Then, from (13), the finite discontinuity in ( );x sψ ′ %  at 1x− %  is induced by a delta 

potential ( )1 1x xλ δ +  and is given by 

( ) ( )( ) ( )1 1
1 1 2

0

2 ;1 ; ;
m x s

x s x s
x

λψ
ψ ψ+ − −

′ ′− − − =
%

% %

h
 

Using (11) and that 

( )1
0 1

1 2 1;
2

sx s
x x s

ψ −
− =%

%
, 

as given by (9), the above discontinuity condition is written as 

( ) 1
0 1

3 2
0 0 1

1 2 12
22 11 1

2

sm
x x ss s

x x x

λ −
 −
 − =
 
 

%

% h
 

Solving the last equation for the coupling 1λ  gives, after a little algebra, 

2

1
0 12

s
mx x

λ = −
h

%
         (14) 

The delta potential acting at 1x− %  is thus attractive. 

Let us do a dimensional check on (14). 

Since [ ] PL=h , [ ]0x L= , and [ ]1 1x =%  (dimensionless), we have 

[ ] ( )2 2

1

PL P L EL
ML M

λ = = =  

Then, since ( ) 1dx xδ
∞

−∞

=∫ , we have ( ) 1L xδ =   , thus ( ) 1x Lδ −=   , and then 

( )1 x Eλ δ =   , and we are ok. 
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The wave function is symmetric, thus ( ) ( )1 1; ;x s x sψ ψ− =% % , and also, the 

discontinuities in the wave function derivative at 1x± %  are equal. Then, the 

discontinuity in the wave function derivative at 1x%  is induced by a delta potential 

acting at 1x% , which has the same coupling as the delta potential acting at 1x− % , i.e. it is 

induced by the delta potential ( )1 1x xλ δ − . 

The sum of the two delta potentials is then 

( ) ( ) ( )( )
2

1 1
0 1

;
2delta

sV x s x x x x
mx x

δ δ= − + + −
h

%
     (15) 

Using that ( ) ( )ax x aδ δ= , we have, since 0 0x > , 

( ) ( )0
0

xx x x
x

δ δ δ
 

= = 
 

%  

That is 

( ) ( )
0

x
x

x
δ

δ =
%

 

Then 

( ) ( )1
1

0

x x
x x

x
δ

δ
±

± =
% %

 

where 1 1 0x x x=% . 

Then (15) is written as 

( ) ( ) ( )( )
2

1 12
0 1

;
2delta

sV x s x x x x
mx x

δ δ= − + + −
h

% % % % %
%

     (16) 

In order to find the regular part of the potential, we’ll calculate the second derivative 

of the wave function. 

Using (10), we have 
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( ) ( ) ( )

( ) ( )

1

2
1

15
0 1

2
1

15
0 1

0,  

1 2 1
; ,  

2

1 2 1
,  

2

s

s

x x

s s s xx s x x
x x x

s s s x x x
x x x

ψ
+

+




<
 + −  ′′ = < −  − 
 + −   >   

% %

%
% % %

% %

%
% %

% %

 

or 

( ) ( ) ( )
1

2

1
15

0 1

0,  

; 1 2 1
,  

2

s

x x

x s s s s x x x
x x x

ψ +

 <
′′ =   + −

>     

% %

% %
% %

% %

    (17) 

Since the wave function describes the ground state of the potential we are looking for, 

it satisfies the energy eigenvalue equation (in position space)2, i.e. 

( ) ( )( ) ( )02

2; ; ; 0mx s E V x s x sψ ψ′′ + − =
h

 

with 0E  being the ground-state energy and ( );V x s  the potential. 

2. The well-known time-independent Schrödinger equation. 

Solving the energy eigenvalue equation for the potential yields 

( ) ( )
( )

2

0

;
;

2 ;
x s

V x s E
m x s

ψ
ψ

′′
= +

h  

Using that 0x x x=% , we obtain 

2 2

2 2 2
0

1d d
dx x dx

=
%

, 

and thus, in terms of x% , the potential is written as 

( ) ( )
( )

2

02
0

;
;

2 ;
x s

V x s E
mx x s

ψ
ψ

′′
= +

%h
%

%
 

Substituting (9) and (17) into the previous equation, we obtain, after a little algebra, 

that the regular part of the potential is 
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( ) ( )
0 1

2

0 12 2
0

,  
; 1

,  
2

reg

E x x
V x s s s

E x x
mx x

 <
= +

+ >


% %

% h
% %

%

      (18) 

From (18), we see that the regular part of the potential has, at 1x± % , finite 

discontinuities, which are 

( ) ( ) ( )
( )

( )2 2

1 1 0 02 2 22
0 10 1

1 1
; ;

22
reg reg

s s s s
V x s V x s E E

mx xmx x
+ −

 + +
− − − = − + = − 

 − 

h h
% %

%%

 

( ) ( ) ( ) ( )2 2

1 1 0 02 2 2 2
0 1 0 1

1 1
; ;

2 2reg reg

s s s s
V x s V x s E E

mx x mx x
+ − + +

− = + − =
h h

% %
% %

 

The two discontinuities are thus opposite. 

The total potential is the sum of the regular part and the delta functions, i.e. 

( ) ( ) ( ); ; ;reg deltaV x s V x s V x s= +% % %        (19) 

Since ( ) ( ) 0; ;regV s V s E±∞ = ±∞ = , the ground-state energy 0E  is the highest bound 

energy of the potential (for a detailed explanation, see, for instance, [8]). 

Thus, the potential (19) has only one bound state, which is also the ground state, of 

energy 0E , which is described by the wave function (9). 

Choosing the infinity as reference point and setting ( ); 0V s±∞ = , we obtain 

0 0E =           (20) 

i.e. the ground-state energy becomes zero. 

The regular part of the potential, given by (18), is then written as 

( ) ( )
1

2

12 2
0

0,  
; 1

,  
2

reg

x x
V x s s s

x x
mx x

 <
= +

>


% %

% h
% %

%

       (21) 

We’ve thus ended up at an attractive double Dirac delta potential (of equal couplings) 

with an angular-momentum-like tail ( ) 2 2 2
01 2s s mx x+ %h , which, for every value of 

3 2s > , has only one, zero-energy, bound state. 
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4. Appendix 

For a potential consisting of a part having, at most, finite discontinuities, and 

of a finite sum of Dirac delta functions, if there exists a nodeless wave function 

( )0 xψ  describing a bound energy eigenstate, then ( )0 xψ  is the ground-state 

wave function. 

Proof 

Let ( )â x  be the position-space operator 

( ) ( ) ( )
( )

0

0 0

1ˆ ˆ
x

a x p x i
p x

ψ
ψ

 ′
 = +
 
 

h        (22) 

where ( )p̂ x i d dx= − h  is the momentum operator in position space and 0p  is a 

(positive) momentum scale. 

The operator ( )â x  is dimensionless. 

The part of the potential which has, at most, finite discontinuities does not induce 

discontinuities in the wave function derivative [6, 7], while each delta function 

induces, in the wave function derivative, a finite discontinuity, at the point where the 

delta function acts [7]. 

Since ( )0 xψ  is nodeless, the function ( ) ( )0 0x xψ ψ′  has no singularities, but it has 

finite discontinuities at the points where the delta functions act. 

Since the number of delta functions in the potential is finite, the function 

( ) ( )0 0x xψ ψ′  has a finite number of finite discontinuities. 

Also, since ( )0 xψ  is a one-dimensional bound energy eigenfunction, it is real, up to a 

constant phase [7]. 

Thus, ( ) ( )0 0x xψ ψ′  is a real function, and then the Hermitian conjugate of the 

operator (22) is given by 

( ) ( ) ( )
( )

0†

0 0

1ˆ ˆ
x

a x p x i
p x

ψ
ψ

 ′
 = −
 
 

h        (23) 

Using (22) and (23), we have 
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( ) ( ) ( ) ( )
( ) ( ) ( )

( )
0 0†

2
0 0 0

1ˆ ˆ ˆ ˆ
x x

a x a x p x i p x i
p x x

ψ ψ
ψ ψ

  ′ ′
  = − + =
  
  

h h

( ) ( ) ( )
( )

( )
( )

2

0 02
2

0 0 0

1 ˆ ˆ ,
x x

p x i p x i
p x x

ψ ψ
ψ ψ

    ′ ′   = + − =        

h h

( ) ( ) ( )
( )

( )
( )

2

0 02 2
2

0 0 0

1 ˆ ˆ ,
x x

p x i p x
p x x

ψ ψ
ψ ψ

    ′ ′   = + +        

h h  

That is 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

2

0 0† 2 2
2

0 0 0

1ˆ ˆ ˆ ˆ ,
x x

a x a x p x i p x
p x x

ψ ψ
ψ ψ

    ′ ′   = + +        

h h    (24) 

If ( )f x  is an arbitrary function, then ( ) ( ) ( )ˆ ,p x f x i f x′= −   h , provided that the 

derivative ( )f x′  exists. This is easily shown by applying the previous commutator to 

an arbitrary wave function. 

Using the previous commutator, we have 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2

0 0 0 0

0 0 0 0

ˆ ,
x x x x

p x i i
x x x x

ψ ψ ψ ψ
ψ ψ ψ ψ

′       ′ ′ ′′ ′      = − = − −
             

h h  

That is 

( ) ( )
( )

( )
( )

( )
( )

2

0 0 0

0 0 0

ˆ ,
x x x

p x i
x x x

ψ ψ ψ
ψ ψ ψ

    ′ ′′ ′    = − −         

h      (25) 

Note 

At the points where ( ) ( )0 0x xψ ψ′  has finite discontinuities, i.e. at the points 

where the delta functions act, the derivative ( ) ( )( )0 0x xψ ψ
′′  is a delta function. 

Similarly, ( )0 xψ ′′  is a delta function at the points where the delta functions act. 

Therefore, the function in the right-hand side of (25) contains delta functions. 

By means of (25), (24) becomes 
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( ) ( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

2 2

2 0 0 0† 2 2
2

0 0 0 0

1ˆ ˆ ˆ
x x x

a x a x p x i
p x x x

ψ ψ ψ
ψ ψ ψ

     ′′ ′ ′     = − − + =            

h h

( ) ( )
( )

( )
( )

( )
( ) ( ) ( )

( )

2 2

0 0 0 02 2 2 2 2
2 2

0 0 0 0 0 0

1 1ˆ ˆ
x x x x

p x p x
p x x x p x

ψ ψ ψ ψ
ψ ψ ψ ψ

       ′′ ′ ′ ′′       = + − + = +                

h h h  

That is 

( ) ( ) ( ) ( )
( )

0† 2 2
2

0 0

1ˆ ˆ ˆ
x

a x a x p x
p x

ψ
ψ

 ′′
 = +
 
 

h       (26) 

Since ( )0 xψ  is an energy eigenfunction, it satisfies the energy eigenvalue equation 

(in position space), i.e. 

( ) ( )( ) ( )0 0 02

2 0mx E V x xψ ψ′′ + − =
h

 

where 0E  is the energy of the state described by ( )0 xψ  and ( )V x  is the potential. 

The previous equation gives 

( )
( ) ( )( )02

0
0

2
x

m V x E
x

ψ
ψ

′′
= −h  

Substituting the previous expression into (26) yields 

( ) ( ) ( ) ( )( )( ) ( ) ( )
2

† 2
0 02 2

0 0

ˆ1 2ˆ ˆ ˆ 2
2

p xma x a x p x m V x E V x E
p p m

 
= + − = + − 

 
 

Using that ( ) ( )
2ˆ
2

p x
V x

m
+  is the Hamiltonian ( )Ĥ x  (in position space), we end up to 

( ) ( ) ( )( )†
02

0

2 ˆˆ ˆ ma x a x H x E
p

= −        (27) 

The operator ( ) ( )†ˆ ˆa x a x  is Hermitian, since 

( ) ( )( ) ( ) ( )( ) ( ) ( )† †† † † †ˆ ˆ ˆ ˆ ˆ ˆa x a x a x a x a x a x= =  

Also, using (27), we have 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )†
0 02 2

0 0

2 2ˆ ˆ ˆ ˆ ˆˆ ˆ , , ,m ma x a x H x H x E H x H x E H x
p p

    = − = − =     

( ) ( ) ( )02
0

0 0

2 ˆ ˆ ˆ, , 0m H x H x E H x
p

 
    = − =    
 
1442443 14243

 

That is, the operator ( ) ( )†ˆ ˆa x a x  commutes with the Hamiltonian. 

Next, we’ll prove that ( ) ( )†ˆ ˆa x a x  has non-negative eigenvalues. 

Proof 

Let ( )xψ  be an eigenfunction of ( ) ( )†ˆ ˆa x a x  with eigenvalue λ . 

Since ( ) ( )†ˆ ˆa x a x  commutes with the Hamiltonian ( )Ĥ x , ( ) ( )†ˆ ˆa x a x  and ( )Ĥ x  

have a common set of eigenfunctions, and thus ( )xψ  is an energy eigenfunction. 

( )xψ  is continuous, but its derivative ( )xψ ′  has a finite number of finite 

discontinuities, at the points where the delta functions of the potential act. 

Let us now consider the function 

( ) ( ) ( ) ( )
( ) ( )

( )
}

( ) ( ) ( )
( )

ˆ

0 0

0 0 0 0

1ˆ ˆ

dp x i
dxx x xia x x p x i x x

p x p x
ψ ψ ψ

ψ ψ ψ
ψ ψ

=−
   ′ ′
   ′= + = − −
   
   

h

h
h  

That is 

( ) ( ) ( ) ( ) ( )
( )

0

0 0

ˆ
x xia x x x

p x
ψ ψ

ψ ψ
ψ

 ′
 ′= − −
 
 

h       (28) 

The function ( ) ( )â x xψ  has no singularities, since ( )0 xψ  is nodeless, but it has a 

finite number of finite discontinuities. 

The wave functions ( )0 xψ  and ( )xψ  as well as their derivatives ( )0 xψ ′  and ( )xψ ′  

are everywhere finite, so that the respective probability densities and currents are 

everywhere finite. 

Then, the Riemann integral ( ) ( ) 2ˆdx a x xψ
∞

−∞
∫  exists3. 

3. If a function has a finite number of discontinuities and it is everywhere finite (i.e. 

if it is bounded), then it is Riemann integrable (see, for instance, [9]). 
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Using that 2 *z z z= , with the asterisk denoting the complex conjugate, we have 

( ) ( ) ( ) ( )( ) ( ) ( )( )2 *ˆ ˆ ˆdx a x x dx a x x a x xψ ψ ψ
∞ ∞

−∞ −∞

=∫ ∫      (29) 

Also, by definition4 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( )

}

††ˆ ˆ
*†* † †ˆ ˆ ˆ ˆ

a x a x

dx x a x a x x dx a x x a x xψ ψ ψ ψ
=

∞ ∞

−∞ −∞

= =∫ ∫

( ) ( )( ) ( ) ( )( )*ˆ ˆdx a x x a x xψ ψ
∞

−∞

= ∫  

That is 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )** †ˆ ˆ ˆ ˆdx x a x a x x dx a x x a x xψ ψ ψ ψ
∞ ∞

−∞ −∞

=∫ ∫    (30) 

4. In position space, the Hermitian conjugate operator ( )†Ô x  of a linear operator 

( )Ô x  is defined by the relation [7, 10] 

( ) ( ) ( ) ( ) ( )( ) ( )
*

* †
2 1 2 1

ˆ ˆdx x O x x dx O x x xϕ ϕ ϕ ϕ
∞ ∞

−∞ −∞

=∫ ∫ , 

where ( ) ( )1 2,x xϕ ϕ  are two arbitrary wave functions (in position space). 

Comparing (29) and (30) yields 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 * † * †ˆ ˆ ˆ ˆ ˆdx a x x dx x a x a x x dx x a x a x xψ ψ ψ ψ ψ
∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫  

But ( ) ( ) ( ) ( )†ˆ ˆa x a x x xψ λψ= , as ( )xψ  is an eigenfunction of ( ) ( )†ˆ ˆa x a x  with 

eigenvalue λ . 

Thus 

( ) ( ) ( ) ( ) ( )2 2*ˆdx a x x dx x x dx xψ ψ λψ λ ψ
∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫  

That is 
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( ) ( ) ( )2 2ˆdx a x x dx xψ λ ψ
∞ ∞

−∞ −∞

=∫ ∫        (31) 

In (31), both integrands are non-negative, thus both integrals are also non-negative. 

Moreover, since ( )xψ  is an eigenfunction, it is linearly independent, and thus it 

cannot be identically zero. Thus, the integral in the right-hand side of (31) is strictly 

positive and, since the integral in the left-hand side is non-negative, λ  must be non-

negative too. 

Therefore, the eigenvalues of ( ) ( )†ˆ ˆa x a x  are non-negative. 

Next, using (27) and that 2
02 0m p > , we derive that the eigenvalues of ( ) 0Ĥ x E−  

are also non-negative, and thus the eigenvalues of the Hamiltonian, i.e. the energies, 

are greater than or equal to 0E . 

Then, since the energy 0E  exists, it is the ground-state energy, and the respective 

wave function ( )0 xψ  is the ground-state wave function. 

Notes 

i. We point out the significance of the existence of the Riemann integral 

( ) ( ) 2ˆdx a x xψ
∞

−∞
∫  in the proof. 

If the wave function ( )0 xψ  had nodes, the function ( ) ( )â x xψ , as given by (28), 

would have singularities and the previous Riemann integral would be ill-defined. 

Also, if the discontinuities in the wave function derivative ( )0 xψ ′  would be 

infinite (in number or in magnitude), the previous Riemann integral would also be 

ill-defined. 

ii. From (28), we see that ( ) ( )0ˆ 0a x xψ = , i.e. the operator ( )â x  kills the 

ground-state wave function. 
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