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Abstract
Starting from a simple, one-parameter, symmetric wave function, we
derive an attractive double Dirac delta potential with a centrifugal,
angular-momentum-like tale, which has only one bound state, the energy

of which can be set to zero.
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1. Introduction

In [1], Van Heuvelen and Maloney describe a new, reverse type of physics problems
in which the answer is given and the question is asked. Such problems, which require
from the solver to follow a working-backward approach, are called physics Jeopardy
problems (the name was taken from a game show called Jeopardy).

In quantum physics Jeopardy problems, wave functions describing energy eigenstates
are given and the respective potentials are asked [2].

Herein, we use a simple, one-parameter, symmetric wave function to derive an
attractive, equal-coupling, double Dirac delta potential, which vanishes in the interior
region (between the delta functions) and has a centrifugal, angular-momentum-like
tail in the exterior region (outside the delta functions). The potential admits only one
bound state, the energy of which can be chosen zero.

For a detailed study of the double Dirac delta potential, the reader may refer to [3] and
to references therein, while in [4] the reader can find a detailed analysis of the Dirac

delta potentials as pedagogical and physical models in quantum physics.

2. The wave function

We consider the wave function

T —— ()

(|)z—)zl|+|)z+xl|)‘

where s >3/2 [5], X, >0, A the normalization constant, and X =x/x,, with x being
the position and x, >0 a length scale.
Since X, #0, the expression |)E—)El|+|)~c+)~cl| is strictly positive. Then, the wave

function (1) has no singularities, it is everywhere continuous and finite.

Also, we have

W(_x;s):(l—i—xlhl—ﬁil \(FEese )




That is, w(%;s) is symmetric (i.e. of even parity).
In the region |)E| > X,, we have

1. If x<—X%,,then x+x, <0 and since X, >0, X—X, <x+X, <0.

Thus |[¥—%|=—(%-%) and |¥+5|=—(3+%).
Then (1) becomes
v (Fs) = A - A”: A”
(—(3-%)—-(¥+%)) (=2%) 2'(-%)
That is
v (%) =—2— @)

ii. If x> x,, then x—X, >0 and since X, >0, X+X, >X—x,>0.

Thus |[¥—%|=%-% and [¥+%|=%+5%.

Then (1) becomes
v (%s)= -2
(x-x+x+x) (2x) 2'%
That is
- A
p(¥s) = 3)

Combining (2) and (3), we obtain

; Q)

for |%|> %,.

In the region || < %, we have

~% <F<F,thus $-% <0 and ¥+ >0.
Then |- %|=—(%-%) and [T+ %|=X+% .

Thus (1) becomes



l//(x;S):(—(fC—)El)-l-fC-l-fcl)v :(2)21)‘
That is
w(%s)= 4 : (5)

The wave function is constant in the region |)E| <X.

Combining (4) and (5), we write the wave function as

w(%s)= (6)

Since it is continuous, w(X;s) is Riemann integrable. Also, y(X;s) is square

", with s >3/2.

integrable, as it decays as 1/ |)~c

The normalization constant 4 can be easily calculated by applying the normalization

condition, i.e.
jdx‘t//(x)‘z =1

Using that % =x/x,, we obtain dx =x,d%, and since x, >0, the previous integral is

written as

xoj.[di‘y/(i)‘z -1

or

2xOId)z\y/(fc)f —1 (7

since /(X) is symmetric.

Using (6), the integral in the left-hand side of (7) is written as
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That is
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dx\y (X)| =
! b () (2s-1)(2% )"
Substituting into (7) yields

2x,5]4[ - (2s-1)(2%)"" _(2s —1)(~25c1 )
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Thus
4= (2%,) 2s~—1
2 XX, S
Then, up to a constant phase, the normalization constant is
X, X,S
By means of (8), (6) becomes
L=l ey,
2\ x,x,s

v (%s)= | ©)

> 5
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Using (9), we calculate the wave function derivative, with respect to x .

In the region |)~c| < X,, the wave function is constant, thus its derivative vanishes.

In the region x < —X,, the wave function is, from (9),



XX, s \ —X
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In the region x > X,, the wave function is, from (9),

w (%) =% 251 (ifj
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Thus, the wave function derivative is

0, |3 <%,
~ 1 2 _1 ~ s+1 ~ ~
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01
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' (X;s) is odd, as expected, since (%;s) is even.

At %, y'(%;s) is discontinuous, since from (10) we obtain




Thus, the wave function derivative has at —X, and X, finite discontinuities, which are

equal, since
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To summarize, the wave function y/(i;s) is continuous, while its first derivative has

equal discontinuities at *X, .

3. The potential

Since y(%;s) has no zeros', it can be the ground-state wave function of a potential

consisting of a term having, at most, finite discontinuities, and of a sum of two Dirac

delta functions with one of them acting at —X, and the other at X, (see appendix).

1. By zeros, we mean real zeros.

The first term of the potential, which has, at most, finite discontinuities, does not
induce discontinuities in the wave function derivative [6, 7]. We’ll refer to this term
as the regular part of the potential.

A finite discontinuity in the wave function derivative is induced by a Dirac delta

potential [7]. Particularly, a delta potential A5(x) induces in the wave function

derivative a finite discontinuity at zero, which is given by [7]

_2mAy(0)

v (0)-v (0= (12)

where the prime denotes differentiation with respect to the position x.
Since X =x/x,, we have

d_1d

dx  x, di

and (12) is written as
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where now the prime denotes differentiation with respect to x .
Then, from (13), the finite discontinuity in '(X;s) at X% is induced by a delta

potential 4,6 (x+x,) and is given by
2 o~
i(y/(_;;;s)_,//(_,;l;S)):—’"W( %:5)

Using (11) and that

- 1 [2s—1
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071

as given by (9), the above discontinuity condition is written as

ama L [P
1| 1 [s(2s-1) | 2\ x,%s
x| 2\ x& | n

Solving the last equation for the coupling A, gives, after a little algebra,

sh’
= (14)
2mx,X,

The delta potential acting at —X, is thus attractive.

Let us do a dimensional check on (14).
Since [h] =PL, [xo] =L, and [)El] =1 (dimensionless), we have

(L) _ P
ML M

2

[4]= L=EL

Then, since j dx§(x) =1, we have L[§(x)] =1, thus [5()6)] =" and then

[/115()6)] = E, and we ate ok.



The wave function is symmetric, thus w(-%;s)=w(%;s), and also, the
discontinuities in the wave function derivative at =X are equal. Then, the
discontinuity in the wave function derivative at X, is induced by a delta potential
acting at X,, which has the same coupling as the delta potential acting at —X, , i.e. it is
induced by the delta potential 45 (x—x,).
The sum of the two delta potentials is then

hZ

Vioia (x;s):_2ns1x5c (§(x+x1)+§(x—xl)) (15)

Using that §(ax) = §(x)/|a

, we have, since x, >0,

§(xix1)=—

where ¥ =x,/x, .

Then (15) is written as
sh’

Vo ()z;s)=—2mx = (6(x+%)+0(3-%))) (16)

In order to find the regular part of the potential, we’ll calculate the second derivative
of the wave function.

Using (10), we have
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0, |¥ <%
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Since the wave function describes the ground state of the potential we are looking for,

it satisfies the energy eigenvalue equation (in position space)?, i.e.
” 2m
w'"(x;5) +F(EO —V(x;s))t//(x;s) =0

with E, being the ground-state energy and V' (x;s) the potential.

2. The well-known time-independent Schrédinger equation.

Solving the energy eigenvalue equation for the potential yields

i I//"(X;S)
2m y(x;5)

V(x;s)= +E,

Using that ¥ = x/x, , we obtain

4 _1d
dx’  x,;dv’’

and thus, in terms of X, the potential is written as

2 ",
V(5s)=—" v'(Bs) | g

2mx,? y (%)

Substituting (9) and (17) into the previous equation, we obtain, after a little algebra,

that the regular part of the potential is



E,,

V. (%s)= 2 18
,eg(x S) s(s+1)?21 vE, )E|>)~Cl (18)

X<%

2mx,’ X
From (18), we see that the regular part of the potential has, at +X,, finite
discontinuities, which are

(i) (_xl;s):EO_{Ll)h;EO}:_M

2mx,’ (-%,) 2mx,’ %

— . s(s+1)h2 s(s+1)h2

The two discontinuities are thus opposite.

The total potential is the sum of the regular part and the delta functions, i.e.

V(%8) =V, (%8)+ V0. (%55) (19)

reg

Since V (+o0;5) =V, (*o0;5) = E,, the ground-state energy E, is the highest bound

energy of the potential (for a detailed explanation, see, for instance, [8]).
Thus, the potential (19) has only one bound state, which is also the ground state, of

energy E,, which is described by the wave function (9).

Choosing the infinity as reference point and setting V(ioo;s) =0, we obtain
E, =0 (20)

i.e. the ground-state energy becomes zero.

The regular part of the potential, given by (18), is then written as

0, |¥ <%
Vo (555) = 2 21
(5] S s, ey
2mx,"x

We’ve thus ended up at an attractive double Dirac delta potential (of equal couplings)

with an angular-momentum-like tail s(s+1)#’ / 2mx,’x” , which, for every value of

s >3/2, has only one, zero-energy, bound state.



4. Appendix

For a potential consisting of a part having, at most, finite discontinuities, and

of a finite sum of Dirac delta functions, if there exists a nodeless wave function

w,(x) describing a bound energy eigenstate, then vy, (x) is the ground-state

wave function.

Proof

Let @(x) be the position-space operator

a(x)—LOLﬁ(x)ﬂhM} 22)

vy (%)

where f?(x)z—ihd/dx is the momentum operator in position space and p, is a

(positive) momentum scale.

The operator d(x) is dimensionless.

The part of the potential which has, at most, finite discontinuities does not induce
discontinuities in the wave function derivative [6, 7], while each delta function
induces, in the wave function derivative, a finite discontinuity, at the point where the

delta function acts [7].
Since y,(x) is nodeless, the function y, (x) / w,(x) has no singularities, but it has

finite discontinuities at the points where the delta functions act.

Since the number of delta functions in the potential is finite, the function
v, (x) / ¥, (x) has a finite number of finite discontinuities.

Also, since v, (x) is a one-dimensional bound energy eigenfunction, it is real, up to a
constant phase [7].

Thus, t//o'(x)/ ¥, (x) is a real function, and then the Hermitian conjugate of the

operator (22) is given by

it (x) —LL f)(x)ihM} (23)

v, (x)

Using (22) and (23), we have



L -l et
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Thatis
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If f(x) is an arbitrary function, then [fo(x),f(x)] =—ihf’(x), provided that the
derivative f '(x) exists. This is easily shown by applying the previous commutator to

an arbitrary wave function.

Using the previous commutator, we have

ow @] (W) e e (W)
{p( )’mx)} h{m)} ”{mw {mw”

- V/O’(x) _ l/lo"(x)_ y/o'(x) ’
{p(x)’ y/O(x)} h[%(x) L”O(’C)} } (25)

Note

At the points where l//o' (x)/l/lo (x) has finite discontinuities, i.e. at the points

where the delta functions act, the derivative (l//o' (x) / v, (x)) is a delta function.

Similarly, l//o" (x) is a delta function at the points where the delta functions act.

Therefore, the function in the right-hand side of (25) contains delta functions.

By means of (25), (24) becomes



o v, (x) | w(x 7
_L 52 (x)+ 72 ‘//o"(x) ‘//o’(x) 2 Y ‘//o’(x) 2 _ 1| . )+ 2M
" ) ”"{mx) [mw” ”"{mx)} pf{ () wo(x)}
That is
&*(x)&(x)—pio{ﬁz(x)%z%} (26)

Since y, (x) is an energy eigenfunction, it satisfies the energy eigenvalue equation
(in position space), i.e.

! (x)+ 2 (B, () () =0

where E, is the energy of the state described by w, (x) and ¥ (x) is the potential.

The previous equation gives

h2M=2m(V(x)—EO)

v, (x)

Substituting the previous expression into (26) yields

A (x)a(x) = ——( 52 om(V(x)=E.)) = 2" p*(x) V(x)\—E
()= (5 () 2 (1 () -) = 25| v (),
. P (x) . A L
Using that 2—+V(x) is the Hamiltonian H (x) (in position space), we end up to
m
. . 2m (A
a*(x)a(x)=p—”§(H(x)—E0) 27)
0

The operator @' (x)a(x) is Hermitian, since

(4" (x)a(x)) =a' (x)(a" (x)) =a' (x)a(x)

Also, using (27), we have



That is, the operator @' (x)a(x) commutes with the Hamiltonian.

Next, we’ll prove that 4" (x)a(x) has non-negative eigenvalues.

Proof

Let y(x) be an eigenfunction of 4" (x)a(x) with eigenvalue 4.
Since @' (x)a(x) commutes with the Hamiltonian I:I(x), a'(x)a(x) and I:I(x)
have a common set of eigenfunctions, and thus t//(x) is an energy eigenfunction.

w(x) is continuous, but its derivative w'(x) has a finite number of finite

discontinuities, at the points where the delta functions of the potential act.

Let us now consider the function

P(x)=—in
; N VRO =il (D (x)
a(x)l//(x)_po {p( ) hl/lo(x)}l//( ) po{ ( ) l/lo(x) }
That is
. | e v (v ()
a(xJ(x)== {w( — ) } (28)

The function a(x)w(x) has no singularities, since i, (x) is nodeless, but it has a
finite number of finite discontinuities.

The wave functions y,(x) and y (x) as well as their derivatives y, (x) and y'(x)
are everywhere finite, so that the respective probability densities and currents are

everywhere finite.

Then, the Riemann integral .[ dx‘& (x)y ()c)‘2 exists’.

3. If a function has a finite number of discontinuities and it is everywhere finite (i.c.

if it is bounded), then it is Riemann integrable (see, for instance, [9]).



Using that |z|2 = z z, with the asterisk denoting the complex conjugate, we have

0 0
*

[ ax|a(x)y (x) = [ dx(a(x)p(x)) (a(x)w(x)) (29)

—00 —00

Also, by definition*

That is

];dw* (x)a' (x)(@(x)p (x))

Il
—_—
&
—_
Q>
—_
=
~
<
—_
=
~—~
N
—_
Q>
—_
=
~
<
—_
=
~—~
N

(30)

4. In position space, the Hermitian conjugate operator Of (x) of a linear operator

é(x) is defined by the relation [7, 10]
[ dxp, (x)0(x) g, (x) = [ (0" (x) g (x)) &1(x),

—00

where x), X) are two arbitrary wave functions (in position space).
D ?, ry p p

Comparing (29) and (30) yields

0

J aas)w (of = [y’ (1) (5)(a ()0 () = [ i (0" (0o ()

—00

But a'(x)a(x)y(x)=Aw(x), as w(x) is an eigenfunction of a'(x)a(x) with
eigenvalue 4.

Thus

0

Idx

—00

i (<) () = ];dw* () A (x) = /”tzdx‘t//(x)‘z

That is



['e]

jdx

—00

i (<) (x) = z]; dxly (x)f 31)

In (31), both integrands are non-negative, thus both integrals are also non-negative.

Moreover, since t//(x) is an eigenfunction, it is linearly independent, and thus it

cannot be identically zero. Thus, the integral in the right-hand side of (31) is strictly
positive and, since the integral in the left-hand side is non-negative, 4 must be non-
negative too.

Therefore, the eigenvalues of a'(x)d(x) are non-negative.

Next, using (27) and that 2m/ P.. >0, we derive that the eigenvalues of H (x)—EO

are also non-negative, and thus the eigenvalues of the Hamiltonian, i.e. the energies,

are greater than or equalto E|.

Then, since the energy E, exists, it is the ground-state energy, and the respective

wave function i, (x) is the ground-state wave function.

Notes

i. We point out the significance of the existence of the Riemann integral
o0 R 2 -
jdx‘a(x)l//(x)‘ in the proof.

If the wave function ¥, (x) had nodes, the function @ (x) l//(x) , as given by (28),

would have singularities and the previous Riemann integral would be ill-defined.

Also, if the discontinuities in the wave function derivative ¥/, (x) would be

infinite (in number or in magnitude), the previous Riemann integral would also be

ill-defined.
ii. From (28), we see that &(X)I/IO(X)ZO, ie. the operator &(x) kills the

ground-state wave function.
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