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0. Abstract

Successive real-valued measurements of any physical chaotic oscillator can 
serve as entropy inputs to a random number generator (RNG) with 
correspondingly many whole numbered outputs of arbitrarily small bias, 
assuming that no correlation exists between successive such measurements 
apart from what would be implied by their probability distribution function 
(AKA the oscillator’s analog “generator”, which is constant over time and 
thus asymptotically discoverable).

Given some historical measurements (a “snapshot”) of such an oscillator, we 
can then train the RNG to expect inputs distributed uniformally among the 
real intervals defined by those measurements and spanning the entire real 
line. Each interval thus implies an index in sorted order, starting with the 
leftmost which maps to zero; the RNG does nothing more than to perform 
this mapping. We can then replace that first oscillator with a second one 
presumed to abide by the same generator. It would then be possible to 
characterize the accuracy of that presumption by quantifying the ensuing 
change in quality of the RNG.

Randomness quality is most accurately expressed via dyspoissonism, which 
is a normalized equivalent of the log of the number of ways in which a 
particular distribution of frequencies (occurrence counts) of masks (whole 
numbers) can occur. Thus the difference in dyspoissonism between the RNG 
output sets will serve to estimate the information divergence between their 



respective generators, which in turn constitutes a ranking quantifier for the 
purpose of anomaly detection.

1. From Generator Outputs to RNG Intervals

Consider such an oscillator. Reading its outputs requires measurement of a 
physical property, such as mass; a composite thereof, such as the power in a 
particular frequency band of the radio spectrum; or even a financial quantifier
such as transaction size. With negligible loss of generality, we can assume 
that all such measurements are unique. (If this is not the case, then trivial 
accommodations can be made to this method.)

Assume that we have a snapshot consisting of Z measurements (Z>1), all of 
which on the (closed) interval [X0, XZ-1] where X0 and XZ-1 are the minimum 
and maximum, respectively. Furthermore, we assume that all such X values 
are sorted such that X0 is the closest to negative infinity and XZ-1 is closest to 
positive infinity. (We can forget the order of the particular measurements 
without incurring information loss because they are assumed to be 
uncorrelated. That is, there is nothing to be learned from the snapshot apart 
from the asymptotic convergence of our model of the generator with the 
actual one.) Therefore, again with negligible loss of generality, we can 
assume the existence of (Z+1) orthogonal intervals of nonzero length, the 
union of which being the entire real line, namely:

{(-∞, X0), [X0, X1), [X1, X2)... [XZ-2, XZ-1), [XZ-1, ∞)}

where square brackets and parentheses indicate closed (inclusive) and open 
(exclusive) interval ends, respectively. We can then replace each interval with
its respective whole numbered index such that (-∞, X0) corresponds to zero 
and [XZ-1, ∞) corresponds to Z. But we also interpret Z as zero because 
symmetry implies that the expected probability contribution from the union 
of the infinite intervals equals the expected contribution from each finite 
interval. Therefore the intervals are better denoted as:

{[XZ-1, X0), [X0, X1), [X1, X2)... [XZ-2, XZ-1)}



where [XZ-1, X0) – an “antiinterval” – denotes the union of (-∞, X0) and [XZ-1, 
∞). (One could, of course, assign the end intervals to distinct index values, at 
the cost of some statistical distortion. This is a design tradeoff to be evaluated
upon implementation.)

Given the set of N intervals obtained as described above, we can then map 
any measurement (which might be digitized as a signed integer, floating-
point, or fixed-point value) to a whole number on [0, (Z-1)]. Because each 
interval corresponds to one measurement, the width of each one is thus a 
crude approximation of an equiprobable generator slice. Therefore, to the 
extent that the snapshot is unbiased, the RNG should be unbiased. But just 
how unbiased is the snapshot expected to be?

2. Poisson Jitter Limitations to Snapshot Bias

Ideally, each snapshot interval corresponds to a probability slice of the 
generator (hereinafter simply “slice”) with area (1/Z).

But this is not so. The intervals are established by random measurements of 
the generator, akin to the distribution of typos made by a writer with a 
constant error rate. In the limit of infinitely many pages, the number of typos 
on each page is an archetype of Poisson noise.

Metaphorically, the “pages” are equiprobable slices and the “typos” are 
measurements. Therefore the number of measurements “owned” by each 
equiprobable slice is also Poisson noise.

But the same logic would apply again if we were to map at least Z additional 
measurements of the same oscillator to their corresponding interval indexes, 
resulting in a “Poisson squared bias” of the RNG. If instead we used a 
different oscillator, the bias would be at least as bad, asymptotically 
speaking. Quantifying the extent of that bias requires counting the number of 
members in certain topological equivalence classes, which is the subject of 
the next section.

3. A Quick Primer on Logfreedom and Dyspoissonism



3.1. The Terminology of Mask Lists

We presume that the reader is familiar with the terminology of mask lists [1]. 
To briefly summarize:

“Masks” are the whole numbers which occur in a “mask list” (set of masks) 
which is indexed from zero, sensitive to order, and may contain repeats, like 
the outputs of the RNG described above. Conventionally, the minimum mask 
is presumed to be zero, and the maximum, (Z-1), where (Z>1). Z is called the
“mask span”. The nonzero number of masks in such a list, denoted Q, is 
called the “mask count”. (In the examples above, we’ve assumed that (Q=Z), 
but in general this is not required.)

A “frequency list” consists of the frequencies (occurrence counts) of 
corresponding masks on [0, (Z-1)]. The sum of the items in a frequency list is
thus always Q.

A “population list” consists of the populations (frequencies by another name 
so as to avoid confusion) of the frequencies from zero through Q (because Q 
is the greatest possible frequency). The sum of the items in a population list is
thus always Z.

In the limit of large Q, a mask list generated by an unbiased random number 
generator will give rise to a population list which, pursuant to area 
normalization, approaches a Poisson distribution. In the specific case that 
(Q=Z), the result will be a lambda-one Poisson distribution (LOPD), which 
has mean and variance both equal to (1/Z). Suffice to say that there are 
theoretical reasons to believe that LOPDs provide particularly good entropy 
contrast, that is, differentiation between interesting and uninteresting mask 
lists.

The number of distinct mask lists having the same population list is called the
“way count” of that population list. The natural log of the way count is called
the “logfreedom” of that list. Logfreedom is a useful concept simply because 
way counts tend to exceed the native numerical precision supported in 



common microprocessors. Finally, note that the way count is just the 
multiplicity of a given population list over the set of all mask lists with some 
particular Q and Z (but much less verbose!).

3.2. The Logfreedom Formula

As derived in [2], the logfreedom L of a mask list with mask count Q and 
mask span Z is (exactly) given by:

L≡lnQ!+ ln Z!−ln H [0]!−∑
F=1

Q

ln H [F ]!−∑
F=1

Q

H [F ] ln F!

where H[F] denotes “the population of frequency F”. (Recall that zero 
factorial is one, so there are no infinities to worry about.) Note that the 
original formula had the summations going from (F=1) to K, where K is the 
greatest frequency with nonzero population; Q is more intuitive, if a bit 
obtuse.  Note also that the logs of factorials are efficiently computable using 
interval arithmetic for safety’s sake, as explained in [3].

Recall that logfreedom is the log of the number of members of an 
equivalence class uniquely associated with a particular population list. The 
more members, the greater the probability of generating a member of that 
class via an unbiased RNG.

It’s best to think of logfreedom as a randomness quantifier, rather than a form
of entropy, although it does have a fairly direct connection to the latter: 
assuming that the population list corresponding to a given mask list has zero 
information cost, then logfreedom measures the number of bits (indirectly, 
via conversion from nats) required to encode the “way” corresponding 
uniquely to that mask list. A “way” is just a whole number on the interval [0, 
(W-1)], where W is the way count of the population list. In the limit of 
infinite Q, but with fixed Z, the ratio of logfreedom to Shannon entropy 
approaches one (assuming that both are expressed in the same units).

Finally, consider an illustrative example of the difference between 
logfreedom and entropy when (Q=Z): whereas the maximum entropy mask 



list would contain exactly one instance of each mask, the maximum 
logfreedom one would asymptotically correspond to an LOPD.

3.3. Comparing RNGs with Logfreedom

Suppose we have a set of mask lists of identical Q and Z (but with Q and Z 
not necessarily equal), each one having been generated by a different RNG. 
We can then compute the logfreedom of each mask list, then sort them. The 
result will be a list of absolute values of logs of probability slices of 
population lists. We would then conclude that the RNG which generated the 
mask list with the maximum logfreedom was probably the least biased. But 
this analysis is problematic because differences in logfreedom are absolute 
differences in information, which need to be normalized to be sensible. 
Dyspoissonism would be more useful in that regard, which is the subject of 
the next section.

3.4. Comparing RNGs with Dyspoissonism

Briefly, dyspoissonism measures the fractional data compression due to the 
replacement of a mask list with a series of bits which encode its way. (Recall 
that a way is just a whole number.) That is, if we assume that the 
corresponding population list is provided at zero information cost, then 
dyspoissonism measures the fractional savings afforded by expressing the 
mask list as its way. Therefore, considering that all mask lists are 
equiprobable outputs of an unbiased RNG, we can think of dyspoissonism as 
representing the statistically fair fractional overhead due to encoding the 
population list, which we have assumed as given for free. Thus the larger the 
dyspoissonism, the less common the population list in question must be, and 
therefore the “less random” the mask list.

Given a mask list with mask count Q, mask span Z, and logfreedom L, its 
dyspoissonism D is given by:

D≡1−
L

Q ln Z



where (Q ln Z) is called the “raw entropy” (in nats) of the mask list because it
quantifies the amount of information necessary to encode that list, given only
Q and Z for free. (Raw entropy is just the log of (Z^Q), which is the way 
count associated with all unique mask lists constrained only by Q and Z.)

Given the requirement that (Z>1), which is simply to avoid discussion of the 
trivial case, D cannot exceed (½), but doubling it would misrepresent its role 
as a compression fraction. D can never (quite) be zero, due to the nonzero fair
information overhead of population lists. Its minimum possible value for 
some particular Q and Z is denoted D0(Q, Z). Implicitly, D0 occurs when L is 
maximized. Unfortunately, L maximization seems to be intractable in the 
general case, even though binary searches for local maxima can rapidly 
converge on a good approximation thereof. (Dyspoissometer [4] has 
functions to do this in addition to a whole suite of dyspoissonism tools. 
Agnentro [5] implements dyspoissonism using interval arithmetic.)

Dyspoissonism effectively allows us to measure the logscale difference 
between a pair of mask lists in terms of fractional compressibility. This then 
allows us to compare various RNGs on an apples-to-apples basis. However, 
Q and Z should be kept constant so as to avoid distortions due to differences 
in D0. As Q increases, an unbiased RNG will cause D to approach zero. If this
fails to occur, then the extent of bias is monotonically manifested via the 
asymptotic nonzero value of D, which answers the problem above involving 
the futility of logfreedom ranking alone.

3.5. Dyspoissonism is Topological and Empirical

Dyspoissonism is essentially a topological measurement of randomness 
because it’s concerned with states as opposed to ordered quantities. In other 
words, it makes no difference that index 5 is greater than index 3; they’re just
different states. We could, in principle, hunt for wideband anomalies using 
floating-point values to analyze a distribution of magnitudes relative to 
expectation. However, this sort of approach invites unfounded delusions of 
interpolation, as literally all we know about the generator is the snapshot. 
Perhaps, in practice, there is some theoretical presumption that the generator 
is purely Gaussian (normal) or lognormal in its distribution, but reality never 



follows such elegant rules. We should therefore use as much information as 
possible, but without overstepping the bounds of what is actually known. 
Dyspoissonism fits the bill because it refers only to intervals in the abstract 
sense, but makes no assumptions about the behavior of the generator within 
them.

4. Wideband Anomaly Ranking via Dyspoissonism

4.1. Wideband: Definition and Constraints

“Wideband” describes a real-valued vector of physical origin, each scalar 
component of which assumed to have resulted from a constant – but not 
necessarily identical – generator. Despite its common use in the context of 
electromagnetic signals, the term could just as easily apply to the lowest 
temperatures in Chicago on each day in June. It would not be unreasonable to
assume that June is brief enough relative to an entire year that the same 
underlying statistics govern each day’s temperature. An analog thermometer 
in the city is thus a chaotic oscillator which is constrained by an essentially 
constant distribution, but otherwise produces random real-valued 
measurements from day to day.

Equally so, we could compare those temperatures to the same in any other 
city, allowing us to establish some notion of thermal distance between 
Chicago and Mumbai in June, for example. We could do so using Euclidean 
distance in 30 dimensions, but this technique could fail to detect the 
difference between the following: good agreement with occasional spikey 
differences; and overall slightly worse agreement due to pervasive noise, but 
without such extreme spikes. That distinction is critical: it’s the difference 
between detecting a single scalar that sticks out like a sore thumb, and 
detecting a very subtle wideband signal spread across many scalar 
components of the same vector.

Furthermore, as always, apples-to-apples matters. It would not, for example, 
be reasonable to compare June to July, and not only because the generators 
are always materially different even in Chicago itself, but because the 



number of measurements would differ – (Q=30) and (Q=31), respectively. In 
theory, we can compensate for differences in Q by accounting for the implied
differences in the distribution of dyspoissonism itself, but doing so is beyond 
the scope of this paper.

4.2. Preparation

The first step is to measure the oscillator (physical system) repeatedly. 
Ideally, this should be done a number of times which is a multiple of Z. In 
practice, (Z=(2^8)) makes sense because in that case each mask will fit in 
exactly one byte.

Next we need to sort the measurements, resulting in a useful snapshot of the 
generator. Duplicate measurements are expected to be rare, given sufficient 
numerical precision. If they occur, they can probably be deleted and replaced 
with other measurements at the cost of some presumably trivial bias.

If in fact a multiple M of (2^8) measurements are produced, then each 
successive M measurements can be consolidated into one interval, resulting 
in a snapshot with (2^8) items. If the total number of measurements is not a 
multiple of Z, then some sort of error distribution or interpolation will be 
necessary, hopefully without excessively damaging sensitivity.

4.3. Measuring the Dyspoissonism of Each Oscillator

For the moment, we assume that each scalar of each vector is a manifestation 
of the same generator.

As snapshots, each containing Q measurements, arrive from subsequent 
oscillators, convert their constituent measurements to interval indexes on [0, 
(Z-1)] using the “training” snapshot obtained in the previous step. (Q need 
not be the same as during training, and will generally be much smaller, as 
comparatively vast amounts of information are required to develop an 
accurate impression of the generator in the first place.) Then measure the 
dyspoissonism of each resulting mask list. Finally, rank them in descending 
order so that the most anomalous wideband signals will appear at the top of 



the list.

If in fact all of the subsequent oscillators share the same generator as the first 
one, then, in the limit of large Q, we expect all the dyspoissonisms to be on 
the order of the minimum threshold, DT, given by:

DT≈1−(1−D0)
2

which is the expected minimum of D after accounting for the aforementioned
Poisson squared bias (hence the power of 2), and where D0 is as defined 
above.

This result has been verified over the course of 30,000 trials using a physical 
(“true”) RNG with (Q=(2^16)) and (Z=(2^8)) – not that that amounts to a 
mathematical proof, but it passes the smell test. Note that the expression for 
DT is only approximate because even if D0 were known exactly (which is 
generally intractable), there are other intractably complicated combinatorial 
effects to account for. Nevertheless, in that experiment, its geometric mean 
was correct to one part in 1000.

4.4. Anomaly Detection with Multiple Distinct Generators

What if we assume that each scalar of a vector originates from a distinct 
generator? In this case, given some fixed Q and Z, we can still make 
meaningful comparisons among the implied mask lists. We just need to train 
on a separate snapshot for each index. Doing so by default could actually 
result in increased sensitivity if in fact we would otherwise have mistakenly 
assumed generator commonality. After conversion to interval indexes, the 
process of ranking by dyspoissonism still applies, as does the computation of 
DT, with one notable exception.

Because each vector index is associated with a distinct snapshot, biases at 
different indexes will manifest as preferences for different mask subsets. So 
for example, in the presence of a wideband anomaly, 3 and 8 might be very 
common at index zero; whereas 1, 7, and 9 might be very common at index 



one. In the aggregate, over all Q vector indexes, we might fail to see any bias 
at all.

While there is no surefire fix to this problem, reassigning interval indexes by 
length will improve sensitivity. In other words, within each training snapshot,
interval zero is made the shortest, one the next shortest, and so on, such that 
the infinite antiinterval becomes index (Z-1). The reason is that if there is a 
sudden disagreement between the generator used for training and some future
generator assigned to the same vector index, then this is likely to manifest by 
new measurements falling disproportionately within the longer intervals 
defined by the training measurements. Put another way, different generators 
are not likely to share precisely overlapping spikes, all else being equal.

By the way, in this case, it’s even more important to preprocess the snapshot 
so as to make it more uniform in distribution. For example, if the 
measurements are expected to be lognormal, then take their logs first. 
Otherwise the spikes will tend to overlap.

The net effect of all this is that anomalous measurements will preferentially 
map to higher interval indexes, and quite possibly the highest ones in the case
of essentially orthogonal generators. Now we have some crudely consistent 
behavior among all the vector indexes involved in the production of 
anomalous measurements. This bias should manifest as a deficit in expected 
dyspoissonism.

4.5. A Thought Experiment in Radio Astronomy

Imagine that we have a snapshot of the magnitudes of each of Q frequencies. 
Each magnitude is a measure of the average power received from its 
corresponding carrier frequency within the same given time window. We 
expect, absent any other information, that the magnitudes will vary 
lognormally over time. Therefore we measure them as their logs in order to 
create a more uniform distribution. But because we have no further 



knowledge of what to expect, we proceed to train on a billion separate 
snapshots of Q measurements each.

We decide to create 1000 different slices, so each slice contains a million 
sorted measurements, all of which but the extrema being discarded for the 
sake of speed. We then sort them by length as described above, ending the list
with the compulsory infinite antiinterval as a “catchall” for unprecedented 
extreme values. Thus when each subsequent vector arrives during future 
observation, each of its Q components will be mapped to a value on [0, 999] 
by virtue of its respective snapshot residue. (It’s a “residue” because it’s what
remains after discarding the measurements other than the extrema which 
define the intervals.) To be clear, each residue consists of 1000 interval 
boundary points, and there are Q such residues.

Now, by taking the dyspoissonism of each resulting mask list, we can rank 
entire spectra by how anomalous they are with respect to the entire set of Q 
residues. Due to the very nature of dyspoissonism, it’s most likely that high-
ranking anomalies will feature unusual behavior spread across many 
components (frequencies) rather than just one, and perhaps without any of 
them being anomalously loud in isolation. This isn’t a problem in practice 
because finding anomalies in a single component is generally 
straightforward, for example, by comparing the power to some particular 
threshold.

5. Remarks

When informed by a sufficiently large history of measurements of a chaotic 
oscillator, the outputs of which being determined by a hidden constant 
generator, it’s possible to accurately reconstruct that generator. Having done 
so, any vector of future measurements can be converted into a set of whole 
numbers representing respective generator slices. Multiple such vectors can 
then be ranked according to their dyspoissonism in order to detect wideband 
anomalies, subject to some loss of sensitivity due to a pair of serialized 



Poisson jitter processes. If each vector index is associated with its own 
sufficiently distinct generator, then the same process applied to each index 
may well yield a more accurate comparison. For maximum accuracy, the 
training snapshots should be as large as possible, but in any event their 
residues employed for the sake of vector translation during subsequent 
observations should have at most as many components as the vectors 
themselves. Otherwise all dyspoissonisms will appear to be minimal, on 
account of maximum entropy.
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