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Abstract. This paper describes about relation between circuit complexity

and accept inputs structure in Hamming space by using almost all monotone

circuit that emulate deterministic Turing machine(DTM).

Circuit family that emulate DTM are almost all monotone circuit family

except some NOT-gate which connect input variables (like negation normal

form (NNF)). Therefore, we can analyze DTM limitation by using this NNF

Circuit family. NNF circuit family cannot compute sandwich structure effec-

tively. Sandwich structure is two accept inputs that sandwich reject inputs

in Hamming space. So NNF circuit have to use unique AND-gate to identify

each different vector of sandwich structure. That is, we can measure problem

complexity by counting different vectors.

Some dicision problem have caracteristic in sandwich structure. Different

vectors of Negate HornSAT problem are at most constant length because we

can delete constant part of each negative literal in Horn clauses by using defi-

nite clauses. Therefore, number of these different vector is at most polynomial

size. The other hand, special subset of Negate CNFSAT problem have differ-

ent vector which number is over polynomial size.

1. Introduction

In this paper, we consider the relation between circuit complexity and accept

inputs structure in Hamming space by using almost all monotone circuit that em-

ulate deterministic Turing machine(DTM), and confirm Negation HornSAT prob-

lem and Negation CNFSAT problem. In computational complexity, we use cir-

cuit family to analyze problem complexity, and we find out some result such as
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PARITY /∈ AC0 [Ajtai, Furst], CLIQUE /∈ mP monotone circuit family with

polynomial size [Razborov].

The purpose of this paper is to provide new approach to analyze problem com-

plexity by corresponding problem input structure in Hamming space and gate in

circuit family which emulate DTM.

2. NNF circuit family

First, we define NNF circuit family that is almost all monotone circuit. Ex-

plained in book [Sipser] Circuit Complexity section, Circuit family can emulate

DTM only using NOT-gate in changing input values {0, 1} to {01, 10}. This “al-

most all monotone circuit family” have simple structure like monotone circuit fam-

ily.

Definition 2.1. �

We will use the terms;

“NNF Circuit Family” as circuit family that have no NOT-gate except connecting

INPUT-gates directly (like negation normal form).

“Input variable pair” as output pair of INPUT-gate and NOT-gate {01, 10} that

correspond to an input variable {0, 1}.

Figure 2.1 is example of a NNF circuit.

Theorem 2.2. �

Let t : N −→ N be a function where t (n) ≥ n.

If A ∈ TIME (t (n)) then NNF circuit family can emulate DTM that compute

A with O
(
t2 (n)

)
gate.

Proof. This Proof is based on [Sipser] proof. See [Sipser] for detail.

NNF circuit family can emulate DTM by computing every step’s cell values (and

head state if head on the cell). Figure 2.2 shows part of a NNF circuit block diagram.

Input of this circuit is modified w1 · · ·wn to c1,1 · · · c1,n, and finally output result

at cout = ct(n),1 cell. This circuit emulate DTM behavior, so cu,v compute cell’s
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Figure 2.1. NNF circuit

state of step u from previous step cell cu−1,v and each side cells cu−1,v−1, cu−1,v+1

(because head affect at most side cells in each step).

Figure 2.3 shows example of cu,v sub circuit that transition function is “if state

is qk and tape value is 0, then move +1 and change state to qm”. This circuit shows

one of transition configuration which (cu−1,v−1, cu−1,v, cu−1,v+1) = (qk0, q−0, q−0).

q− means “no head on the cell”.

Each OR-gate ∨w,q in cu,v correspond to every step’s cell condition (cell value

w, and head status q if head exist on the cu,v cell), and output 1 if and only if cu,v

cell satisfy corresponding condition. Previous step’s ∨ output in cu−1,v−1, cu−1,v,

cu−1,v+1 are connected to next step’s AND-gate ∧δ in cu,v with transition wire.

Each ∧δ correspond to transition function δ, and each ∧δ output correspond to

each transition function’s result of cu,v. To simplify, NNF circuit include separate
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Figure 2.2. NNF circuit block diagram

three gates ∧δ,−1, ∧δ,0, ∧δ,+1 according to head exists position cu−1,v−1, cu−1,v,

cu−1,v+1, and special transition function δ− which correspond to no head transition

(keep current tape value). So ∧δ in cu,v output 1 if and only if previous step’s ∨

output in cu−1,v−1, cu−1,v, cu−1,v+1 satisfy transition function δ condition. Each

transition functions affect (or do not affect) next step’s condition, so ∧δ output is

connected to ∨w,qm in cu,v and decide cu,v condition. Because DTM have constant

number of transition functions, NNF can compute each step’s cell by using constant

number of AND-gates and OR-gates (without NOT-gate).

First step’s cells are handled in a special way. Input is {0, 1}∗ and above mono-

tone circuit cannot manage 0 value. So NNF circuit compute {0, 1}∗ −→ {01, 10}∗

by using NOT-gate.

�
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Figure 2.3. cu,v circuit

Corollary 2.3. �

NNF circuit family can compute P problem with polynomial number of gates of

input length.

Confirm NNF circuit family behavior. We define some term that decide relation

of inputs.

Definition 2.4. �

We will use the term;

“Neighbor input (pair)” as accept inputs pair that no accept inputs exists be-

tween these accept input in Hamming space.

“Boundary input (set) of neighbor input” as reject inputs that exist between

neighbor inputs in Hamming space.
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Figure 2.4. First step

“Different variables” as all difference part of values in neighbor input pair.

“Different vector” as vector and inverse vector pair which start and end point is

neighbor input pair in Hamming space. To simplify, we use 1 = −1.

“Neighbor distance” as different vector length.

“Sandwich structure” as connected graph which nodes are accept inputs in Ham-

ming space.

Figure 2.5 shows example of sandwich structure which neighbor input pair is

0000111110011000 and 0000000000000000. In this case, ◦ ◦ ◦ ◦ 11111 ◦ ◦11 ◦ ◦◦

and ◦ ◦ ◦ ◦ 00000 ◦ ◦00 ◦ ◦◦ are different variables, and (0000111110011000) and(
0000111110011000

)
are different vector, neighbor distance is 7.

“Effective circuit of accept input t” as one of minimal sub circuit in NNF circuit

that decide circuit output as 1 with accept input t. Effective circuit do not include
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Figure 2.5. Sandwich structure

gates which output 0, or even if gate change output 0 and effective circuit keep

output 1.

Figure 2.7 shows example of effective circuit which circuit is 2.1 and input is

{x1, x2, x3} = {1, 1, 0}. Dotted gates do not affect OUTPUT-gate even if the gate

negate output, so effective circuit do not include them.

Theorem 2.5. �

All input variable pair of different variables join at OR-gate in effective circuit.

Proof. Because all input variable pair is {01, 10} and do not include 11 in every

input. NNF circuit is almost monotone circuit, so effective circuit have to to join

another accept input {01, 10} at OR-gate to connect OUTPUT-gate. �

Figure 2.8 shows example of effective circuit which circuit is 2.1 and input are

{x1, x2, x3} = {1, 1, 0} , {0, 0, 1}. Effective circuit include one of input variable pair,
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Figure 2.6. Different vector

and other side of variable pair do not become 1 in same input. So AND-gate cannot

meet another effective circuit.

Theorem 2.6. �

NNF circuit have at least one unique AND-gate which correspond to different

vector to differentiate neighbor input and boundary input.

Proof. Mentioned above 2.5, all accept input variable pair of different variables join

at OR-gate. Because NNF circuit is almost all monotone circuit, there are a) b)

case to join effective circuits;

a) some partial different variables meet at AND-gate, and join at OR-gate these

AND-gate output, and meet at AND-gate all OR-gate output. (see 2.8)

b) all different variables meet at AND-gate, and join at OR-gate after meeting

AND-gate. (see 2.9)
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Figure 2.7. Effective circuit

Case a), because no boundary input become accept input, some OR-gate which

join different variables become 0 if input is boundary input. That is, effective

circuit become 0 if some of these OR-gate become 0, and become 1 if all of these

OR-gate become 1. Therefore, it is necessary that effective circuit include AND-

gate that meet all these OR-gate which join all different variables like 2.8. Such

AND-gate become 1 if and only if input include different variables of one side of

neighbor input pair. Each pair of different variables correspond to different vector,

so the AND-gate correspond to different vector.

Case b), some AND-gate become 1 if and only if input include one side of different

variables. Therefore, trunk of these AND-gate does not become 1 if input AND-gate

does not include these different variables. Each pair of different variables correspond

to different vector, so the AND-gate correspond to different vector.
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Figure 2.8. Different variable pair

Therefore, NNF circuit have at least one unique AND-gate that correspond to

different vector to differentiate neighbor input and boundary input. �

NNF circuit can emulate DTM in polynomial size, and NNF circuit include

unique AND-gate that correspond to different vector. Therefore, we can measure

problem complexity by counting different vector in problem’s sandwich structure.

3. Negation HornSAT

Consider different vector in actual problems. Let consider Negation HornSAT

problem HornSAT . HornSAT can delete som negative literal which correspond

definite clauses. This means that each HornSAT accept input are close each other

in Hamming space. In fact, we can close neighbor distance within constant distance

by devising HornSAT description.
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Figure 2.9. Example of b)

Definition 3.1. �

We will use the term HornSAT as problem if and only if Horn CNF is ⊥.

In HornSAT , we use special description as following;

xi : Variables in HornSAT . i in xi is variable code, and x in xi is constant

code. Negative literal x is constant code which length is same as x.

⊥i : Disabled Variables in HornSAT that ⊥i = ⊥. ⊥ in ⊥i is constant code

which length is same as x.

− : Ignored filler code in HornSAT .

All another symbol ∧ ∨ () are also constant length code which is same as x.

Theorem 3.2. �

In HornSAT , there is some sandwich structure which neighbor distance is atmost

constant size, and number of different vector is atmost polynomial size.
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Proof. Let t = xi ∧ (xi ∨ · · · ) ∧ · · · ∈ HornSAT . can reduce another t′ = xi ∧

(⊥i ∨ · · · ) ∧ · · · ∈ HornSAT because we can delete all literal xi by using definite

clauses xi. Neighbor distance between t, t′ is constant because difference between xi

and ⊥i is constant part of x,⊥. Because all ⊥i = ⊥, we can reduce all ⊥i → · · · →

⊥− → ⊥ by overwriting − at most constant size in each steps, and each neighbor

distance are at most constant. That is, we can reduce t′ to t′′ = xi∧(⊥ ∨ · · · )∧· · · ∈

HornSAT with overwriting constant distance.

The other hand, we can apply above steps all reduction of negative literals. When

some clauses have no variables like (⊥ ∨ · · · ∨ ⊥), we can overwrite any code in

formula because the formule is ⊥. Therefore, all of HornSAT have neighbor input

that distance is at most constant.

Consider number of HornSAT different vectors. Let different distance is con-

stant k. Because different distance is k, number of different vector is combination

of different variables

 n

k

 and conbination of variables pair in constant code 2k.

 n

k

× 2k = n!
k!×(n−k)! × 2k ≤ O

(
nk

)
Therefore we obtain theorem. �

4. Negation CNFSAT

Consider Negation CNFSAT problem CNFSAT . CNFSAT dose not have

definite clauses, so we cannot delete negative literal like HornSAT . However,

CNFSAT is symmetry that permutate truth value assignment, so CNFSAT is

symmetry that permutate all literal of one variables. We define special CNFSAT

by using this literal symmetry, and analyze lower limit of different vector number.

Definition 4.1. �

We will use the tenrm;

“CNFSAT” as problem if and only if CNF is ⊥.

CNFSAT = {f | f ∈ CNF, f = ⊥}
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Figure 4.1. Example of SSAT clauses

“MUC” (Minimal Unsatisfiable CNF) as subset of CNFSAT that any CNF

which delete some clauses does not become CNFSAT . That is;

MUC =
{
f | f ∈ CNFSAT, h ( f → h /∈ CNFSAT

}
“SSAT” as subset of f ∈ MUC that;

If variables x delete from f and f become two different MUC,

f \ x = g ∧ h | g, h ∈ MUC

then x appear periodically when clauses sort in dictionary order. This period

L (|f |) satisfy

2L(|f |) > O (|f |c) and |f |
L(|f |) > L (|f |)

(L (|f |) example is (log |f |)k, L (|f |) = dF e | FF = |f |)

Figure 4.1 shows example of f ∈ SSAT .
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We use special description CNFSAT like as HornSAT , and all of positive /

negative literal described with flag code. That is, we can change literal positive /

negative by overwriting constant code. To symplify, CNFSAT does not include

same clauses. We treat CNF as set of clauses, and also treat clause as set of literals.

“f

 x

y

” as permutate x to y in f .

“f

 x x

x x

” as permutate all literal x, x to x, x in f .

“f

 x x

x, x x, x

” as proper partical permutate x, x to x, x in f . (f

 x x

x, x x, x


do not decide specific permutation. So f

 x x

x, x x, x

 means several partical

permutation. )

“[f |x” as f

 >

>, x

 that add positive free literal x in some f clause(s).

“x |g]” as [g|x that add negative free literal x in some g clause(s).

“[f |x |g]” as [f |x ∧ x |g].

However, each variables in [f |x,x |g],[f |x |g] do not bind another variables, we

apply alpha equivalence at f, g.

“f (x = >)”, “f (x = ⊥)” as formula that apply x = >,⊥ in f .

Figure 4.2 shows example of [f |x |g] clauses.

Theorem 4.2. �

∀f ∈ CNFSAT, x ∈ f

f

 x x

x x

 ∈ CNFSAT


Proof. It is trivial because CNFSAT is symmetric with permutation of truth value

assignment. �

Theorem 4.3. �

[f |x (x = ⊥) = f , [f |x (x = >) ( f
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Figure 4.2. Example of connect clauses

x |g] (x = ⊥) ( g, x |g] (x = >) = g

Proof. It is trivial that binding relation of adding literal x, x in [f |x, x |g]. �

Theorem 4.4. �

∀f, g ∈ CNFSAT
(
[f |x |g] ∈ CNFSAT

)
∀f, g ∈ CNFSAT

[f |x |g]

 x x

x x

 ∈ CNFSAT


Proof. Mentioned above 4.3,

f ⊂ [f |x |g] (x = ⊥) ∈ CNFSAT

g ⊂ [f |x |g] (x = >) ∈ CNFSAT

Therefore [f |x |g] ∈ CNFSAT .

Mentioned above 4.2,
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∀ [f |x |g] ∈ CNFSAT

[f |x |g]

 x x

x x

 ∈ CNFSAT


Therefore we obtain theorem. �

Theorem 4.5. �

∀f, g ∈ MUC

[f |x |g]

 x x

y, y y, y

 /∈ CNFSAT



Proof. Mentioned above 4.1 4.2, (considering symmetry of y, y) [f |x |g]

 x x

y, y y, y


is 3 cases that;

[f |x

 x

y, y

 ∧ x |g]

 x

y, y


[f |x

 x

y, y


 ∧ x |g]

 x

y


[f |x

 x

y

 ∧

x |g]

 x

y, y




In [f |x

 x

y, y

 ∧ x |g]

 x

y, y

 case, if y = > then

[f |x

 x

y, y

 ∧ x |g]

 x

y, y


 (y = >)

= [f |x

 x

y, y

 (y = >) ∧ x |g]

 x

y, y

 (y = >)

Some clauses in [f |x

 x

y, y

 include literal y, then

[f |x

 x

y, y

 (y = >) ( f

So

f ′ = f \ [f |x

 x

y, y

 (y = >) 6= ∅

then



CIRCUIT COMPLEXITY AND PROBLEM STRUCTURE IN HAMMING SPACE 17

[f |x

 x

y, y

 (y = >) = f \ f ′ ( f

and also x |g]

 x

y, y

 (y = >)

x |g]

 x

y, y

 (y = >) = g \ g′ ( g

Because f, g ∈ MUC and f, g do not have same variables, there are some truth

value assignment t that;[f |x

 x

y, y

 ∧ x |g]

 x

y, y


 (y = >) (t)

= (f \ f ′ ∧ g \ g′) (t) = >

That is

[f |x

 x

y, y

 ∧ x |g]

 x

y, y

 /∈ CNFSAT

Another case[f |x

 x

y, y


 ∧ x |g]

 x

y


[f |x

 x

y

 ∧

x |g]

 x

y, y




also[f |x

 x

y, y


 ∧ x |g]

 x

y

 (y = ⊥)

[f |x

 x

y

 ∧

x |g]

 x

y, y


 (y = >)

and[f |x

 x

y, y


 ∧ x |g]

 x

y

 /∈ CNFSAT

[f |x

 x

y

 ∧

x |g]

 x

y, y


 /∈ CNFSAT

Therefore we obtain theorem. �



CIRCUIT COMPLEXITY AND PROBLEM STRUCTURE IN HAMMING SPACE 18

Theorem 4.6. �

If f, g ∈ MUC, then neighbor distance of [f |x |g] ∈ SSAT is at least O (log (|[f |x |g]|)).

Proof. Each of [f |x |g] is same code at f, g. [f |x |g] are different at x existence and

literal x, x. Therefore, different variables of [f |x |g] ∈ SSAT are permutation of

literal x, x, or existence of variables x.

Consider permutation of literal x, x. Mentioned above 4.4, if f, g ∈ CNFSAT

then [f |x |g]

 x x

x x

 ∈ CNFSAT . Mentioned above 4.5, if f, g ∈ MUC then

[f |x |g]

 x x

x, x x, x

 /∈ CNFSAT . Therefore, in case of permutation of literal

x, x, we have to permutate all literal x, x in [f |x |g]. Because [f |x |g] ∈ SSAT ,

literal x, x exists at least one of each period L (|[f |x |g]|). So number of literal x, x

is |[f |x|g]|
L(|[f |x|g]|) and this is neighbor distance between permutation of literal x, x.

Consider existence of variables x. Because [f |x |g] ∈ SSAT , then period of vari-

ables x existence is L (|[f |x |g]|) and repeat |[f |x|g]|
L(|[f |x|g]|) times. Therefore, neighbor

distance of changing one variables x is at least |[f |x|g]|
L(|[f |x|g]|) .

Because SSAT conditions,

2
|[f|x|g]|

L(|[f|x|g]|) > 2L(|[f |x|g]|) > O (|[f |x |g]|c)
|[f |x|g]|

L(|[f |x|g]|) > L (|[f |x |g]|) > O (log (|[f |x |g]|))

So neighbor distance of [f |x |g] ∈ SSAT is at least O (log (|[f |x |g]|)). Therefore

we obtain theorem. �

Theorem 4.7. �

In SSAT , there is some sandwich structure which number of different vector is

over polynomial size.

Proof. Mentioned above 4.6, We can make [f |x |g] ∈ SSAT that neighbor distance

is L (|[f |x |g]|) > O (log (|[f |x |g]|)) by using f, g ∈ MUC. Number of existence of

variable x in period L (|[f |x |g]|) > O (log (|[f |x |g]|)) is;

2L(|[f |x|g]|) > 2O(log(|[f |x|g]|)) = O (|[f |x |g]|c)
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Each size of different vector is at least O (log (|[f |x |g]|)), and we cannot resolve

these different vector to smaller vectors. Therefore, number of different vector in

[f |x |g] is over polynomial size, and we obtain theorem. �
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