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This article presents the generalized Lorentz transformations of
time, space, velocity and acceleration which can be applied in any
inertial or non-inertial ( non-rotating ) frame.

Introduction

If we consider a ( non-rotating ) frame S relative to another inertial frameΣ
then the time( t ), the position( r ), the velocity(v ) and the acceleration(a )
of a ( massive or non-massive ) particle relative to the frameΣ are given by:

t =
∫ t

O

γ dt − γ
~r ·V
c2

+ k

r = ~r +
γ2

γ + 1
(~r ·V) V

c2
− R − γ2

γ + 1
(R ·V) V

c2

v .=
dr
dt

a .=
dv
dt

where(t, ~r ) are the time and the position of the particle relative to the frame S
(R,V,A ) are the position, the velocity and the acceleration of the origin of
the frameΣ relative to the frame S,( k ) is a particular constant between the
framesΣ & S,( c ) is the speed of light in vacuum, andγ

.
= (1−V ·V/c2)−1/2
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• γ2

γ + 1
1
c2

=
γ − 1
V2

( V2 = V ·V )

• ~r +
γ2

γ + 1
(~r ·V) V

c2
= γ ~r +

γ2

γ + 1
(~r ×V)×V

c2

• R +
γ2

γ + 1
(R ·V) V

c2
= γ R +

γ2

γ + 1
(R×V)×V

c2

The frame S is inertial when( A = 0 )

The frame S is non-inertial ( rectilinear accelerated motion ) when( A 6= 0 )

and( A×V = 0 )

The frame S is non-inertial ( uniform circular motion ) when( A 6= 0 ) and
( A ·V = 0 )

If the frame S is inertial then the observer S must use a fixed origin O such that
( R×V = 0 )

If the frame S is non-inertial ( rectilinear accelerated motion ) then the observer
S must use a fixed origin O such that( R×V = 0 )

If the frame S is non-inertial ( uniform circular motion ) then the observer S
must use a fixed origin O such that( R ·V = 0 )

If the frame S is inertial then( A = 0 ) , (V = constant ) , ( γ = constant )

(
R t

O
γ dt = γ t ) , (R = V t + constant ) and( R×V = 0 )

If the frame S is non-inertial ( rectilinear accelerated motion ) then( A 6= 0 )

( A×V = 0 ) and( R×V = 0 )

If the frame S is non-inertial ( uniform circular motion ) then( A 6= 0 )

( A ·V = 0 ) , ( γ = constant ) , (
R t

O
γ dt = γ t ) and( R ·V = 0 )

If the frame S is inertial or non-inertial ( non-rotating ) then the observer S can
use test particles such that( ~r ×V = 0 or ~r ·V = 0 )

According to this article, the relative velocities of the origins between the
framesΣ & S are reciprocal.
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General Observations

It is known that in inertial frames the local geometry is Euclidean and that in
non-inertial frames the local geometry is in general non-Euclidean.

According to this article, the local line element in the frame S must be obtained
from the local line element of the frameΣ.

The local line element in the frameΣ ( in rectilinear coordinates ) is given by:

• ds2 = c2dt2 − dr2

The kinematic quantities( t, r,v,a ) are the proper kinematic quantities of the
frameΣ.

Therefore, the kinematic quantity( t ) is a tensor of rank 0 and the kinematic
quantities( r,v,a ) are tensors of rank 1.

According to this article, if the frame S is inertial or non-inertial ( rectilinear
accelerated motion ) or non-inertial ( uniform circular motion ) then:

• dr
dt

=
( dr
dt

+ w r + Ω× r
)( 1

dt / dt

)
, w

.=
γ2

γ + 1
( A · V )

c2

• dv
dt

=
( dv
dt

+ w v + Ω× v
)( 1

dt / dt

)
, Ω .=

γ2

γ + 1
(A×V)

c2

Finally, the velocity of light in vacuum is( c ) in the frameΣ and(~c ) in the
frame S and( c · c ) & (~c · ~c ) are constant in the framesΣ & S, respectively.
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