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Abstract – In 2014, McCulloch showed, in a new and interesting way, how to derive a gravity
theory from Heisenberg’s uncertainty principle that is equivalent to Newtonian gravity. McCul-
loch utilizes the Planck mass in his derivation and obtains a gravitational constant of h̄c

m2
p
. This is

a composite constant, which is equivalent in value to Newton’s gravitational constant. However,
McCulloch has pointed out that his approach requires an assumption on the value of G, and that
this involves some circular reasoning. This is in line with the view that the Planck mass is a
derived constant from Newton’s gravitational constant, while big G is a universal fundamental
constant. Here we will show that we can go straight from the McCulloch derivation to measur-
ing the Planck mass without any knowledge of the gravitational constant. From this perspective,
there are no circular problems with his method. This means that we can measure the Planck mass
without Newton’s gravitational constant, and shows that the McCulloch derivation is a theory of
quantum gravity that stands on its own. And further we show that we can easily measure the
Schwarzschild radius of a mass without knowing its mass, or Newton’s gravitational constant, or
the Planck constant. The very essence of gravity is linked to the Planck length and the speed of
light, but here we will claim that we do not need to know the Planck length itself. Our conclusion
is that Newton’s gravitational constant is a universal constant, but it is a composite constant of

the form G =
l2pc

3

h̄ where the Planck length and the speed of light are the keys to gravity. This
could be an important step towards the development of a full theory of quantum gravity.
Key words: Heisenberg, Planck mass, McCulloch gravity, Newton, gravitational constant,
Cavendish apparatus.

McCulloch-Heisenberg Newton Equivalent
Gravity. – In 2014, McCulloch [1] derived an equiv-
alent gravity to that of Newton [2] directly from the
Heisenberg uncertainty principle and gets the following
equation for the gravity force (See Appendix A.1 for a
short review of his derivation.)

F =
h̄c

m2
p

Mm

r2
(1)

Where h̄c
m2

p
⇡ 6.67384 ⇥ 10�11m3 · kg�1 · s�2. That

is basically identical to the empirically-measured gravita-
tional constant value, even if there is large uncertainty in
Newton’s gravitational constant [3–7]; this is something
we will return to later. Still, we cannot know its value
without knowing the speed of light, the Planck constant,
and the Planck mass. The speed of light is known and
can be measured with no knowledge of gravity (and is ex-
act per definition), and the Planck constant can be found

from the Watt balance (Kibble balance) [8–10]. However,
the Planck mass is unknown and it is generally assumed
that we must know G in order to calculate the Planck
mass. This point is mentioned by McCulloch himself in a
follow-up paper [11]. In that paper he states

In the above gravitational derivation, the cor-
rect value for the gravitational constant G can
only be obtained when it is assumed that the grav-
itational interaction occurs between whole multi-
ples of the Planck mass, but this last part of the
derivation involves some circular reasoning since
the Planck mass is defined using the value for G.

This is fully in line with modern physics’ view that the
only way to find the Planck mass is to derive it from big
G. The Planck mass, the Planck temperature (energy),
the Planck length, and the Planck time were introduced in
1899 by Max Planck [12, 13] himself. Planck derived these
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units, which he called natural units, from what he con-
sidered to be the most fundamental universal constants:
Newton’s gravitational constant, the speed of light, and
the Planck constant. Based on this, we need to know
Newton’s gravitational constant to find the Planck mass

from Planck’s formula, mp =
q

h̄c
G . However, as we will

see here, we can build on McCulloch’s derivation, complete
a few more derivations, and easily design a simple experi-
ment to measure the Planck mass independent of Newton’s
gravitational constant, or knowledge of any other theories
of gravity.

The Planck Mass Measured Directly from Mc-
Culloch’s Derivation and a Cavendish Apparatus.
– Newton did not measure the gravitational constant
himself; this was first done indirectly by Cavendish [14] in
1798. Using a Cavendish apparatus, we can measure the
Planck mass without any knowledge of Newton’s gravita-
tional constant, or any knowledge of Newtonian gravity.
A Cavendish apparatus consist of two small balls and two
larger balls, all made of lead, for example. The torque
(moment of force) is given by

✓ (2)

where  is the torsion coe�cient of the suspending wire
and ✓ is the deflection angle of the balance. We then have
the following well-known relationship

✓ = LF (3)

where L is the length between the two small balls in the
apparatus. Further, F can be set equal to the gravitational
force given by McCulloch’s Heisenberg-derived formula

F =
h̄c

m2
p

Mm

r2
(4)

This means we must have

✓ = L
h̄c

m2
p

Mm

r2
(5)

We also have that the natural resonant oscillation period
of a torsion balance is given by

T = 2⇡

r
I


(6)

Further, the moment of inertia I of the balance is given
by

I = m

✓
L

2

◆2

+m

✓
L

2

◆2

= 2m

✓
L

2

◆2

=
mL2

2
(7)

this means we have

T = 2⇡

r
mL2

2
(8)

and when solved with respect to , this gives

T 2

22⇡2
=

mL2

2

 =
mL2

2 T 2

22⇡2

 =
mL22⇡2

T 2
(9)

Next in equation 5 we are replacing  with this expres-
sion, and solving with respect to the Planck mass

mL22⇡2

T 2
✓ = L

h̄c

m2
p

Mm

r2

L22⇡2r2

h̄cLMT 2
✓ =

1

m2
p

m2
p =

h̄cMT 2

L2⇡2r2✓

mp =

r
h̄cMT 2

L2⇡2r2✓
(10)

The mass M is the mass of each of the two large lead
balls in the Cavendish apparatus, not the mass of the
Earth. All we need in order to find the mass of the large
balls is an accurate weight. The Planck constant can be
found from the Watt balance. The angle ✓ and the os-
cillation time period T are what we measure with the
Cavendish apparatus. The length L is the distance be-
tween the small lead balls and r is the distance between
the large lead ball’s center to the center of the small lead
ball, when the arm is in equilibrium position (mid posi-
tion).

Today there even exists a small, ready-to-use, low bud-
get (a few thousand dollars) Cavendish apparatus, where
the angle of the arm (and the time) are measured very
accurately by fine electronics and plugged directly into a
computer with a USB cable; see Figure 1. Using this low
budget apparatus, we can measure the Planck mass with
about 5% inaccuracy on our kitchen table without any
knowledge of Newton’s gravitational constant.

As soon as we know the Planck mass, we have the the
complete composite gravitational constant and the McCul-
loch formula can then be applied to any standard gravita-
tional predictions, such as finding the mass of the Earth,
or predicting the orbital velocity of planets and satellites.

Haug [15] has, in a similar way, shown how the Planck
length can be found independent of big G, but his deriva-
tion did not start out with the McCulloch-Heisenberg
Newton equivalent gravity theory, so we think the deriva-
tion and discussion in this paper o↵er important additional
insight. See also Appendix A.2, on how we can extend the
derivation above using the McCulloch-Heisenberg gravity
to find the Planck length and Planck time “directly” from
a Cavendish apparatus.

p-2



Planck Mass Measured Totally Independent of Big G

Figure 1 Low budget modern Cavendish apparatus
combining old mechanics with modern electronics. It is
remarkable that with such an instrument we can measure
the Planck mass with only about 5% error from the
kitchen table, or here from the top of my grand piano.

Why Newton’s Gravitational Constant Likely Is
a Universal Composite Constant. – In our analysis,
the first strong indication that the gravitational constant
is a composite constant is given by its output units, which
are m3 · kg�1 · s�2. It would be very strange if some-
thing concerning the fundamental nature of reality would
be meters cubed, divided by kg and seconds squared. The
Planck mass, on the other hand, is somewhat easier to
relate to, even if it is somewhat of a mystery at a deeper
level. The speed of light is also something we can relate to
logically; it is the distance light travels in vacuum during
a pre-specified time interval. The Planck constant is more
complex (and outside the scope of this paper), but it is
related to the view that energy seems to come in quanta.
In sum though, the Planck mass, the speed of light, and
the Planck constant seem to be more intuitive than the
gravitational constant.

In 2016, Haug [16] suggested that the gravitational con-

stant of the form G =
l2pc

3

h̄ , which is basically the same
as the McCulloch 2014 constant h̄c

m2
p
. Because the Planck

mass can be written as mp = h̄
lp

1
c we have

G =
h̄c

m2
p

=
h̄c

⇣
h̄
lp

1
c

⌘2 =
l2pc

3

h̄
(11)

Haug has shown that assuming the gravitational con-
stant is a composite will help make all of the Planck units
more intuitive. For example, the Planck time is given by

tp =
q

Gh̄
c5 ; when rewritten based on the idea that the

gravitational constant is a composite, this simply gives
the (known) tp = lp

c . The latter form is also known from
before, but the view that the Newtonian gravitational con-

stant is a composite renders the form tp =
q

Gh̄
c5 unneces-

sary. We might then ask, what is the intuition about c5

and G? The answer may not be so clear. On the other
hand, the intuition behind lp

c is very simple; it is simply a
very short distance divided by the speed of light, so given
a very short time interval, we can see that it is coming
directly out from the formula. Haug’s gravitational con-
stant composite formula has the same challenge in that
one might think we may end up with a circular problem,
again, because modern physics typically assumes that we
need to know big G before we can find the Planck units.
However, as we have shown in this paper this is not the
case.

This does not mean big G is wrong; it is just likely to be
a composite universal constant rather than a fundamental
constant.

We find that many gravitational formulas may be seen
in a new perspective when rewritten based on the idea that
Newton’s gravitational constant is a composite constant;
we summarize a selection of such gravitational formulas in
Table 1.

aActually, Newton’s gravitational force has never been observed
directly, only indirectly though the predictions that come from math-
ematically rearranging this formula to develop other predictions, such
as orbital velocity.

bTo my knowledge the escape velocity has not been tested empir-
ically.

cAt least not directly.
dAt least not directly.
eAt least not directly.
fNeeds further investigation and confirmation; see [17] for more

details.
gNeeds further investigation and confirmation; see [17] for more

details.

7Needs further investigation and confirmation; see [17] for more
details.
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Table 1: The table of a series gravity formulas when using the standard Newton gravitational constant and the alternative
when arguing that Newton’s gravitational constant is a composite constant. Note that N is the number of Planck masses in
the gravitational object, this can be found for example by measuring indirectly the Planck mass first.

Standard form/way Planck form Observed

Gravitational constant G ⇡ 6.67⇥ 10�11 G = h̄c
m2

p
=

l2pc
3

h̄ ⇡ 6.67⇥ 10�11 Yes

Cavendish: Gravitational constant G = L2⇡2r2✓
MT 2 Yes

Cavendish: Planck mass Only derived from G mp =
q

h̄cMT 2

L2⇡2r2✓ Easy to do

Cavendish: Planck lenght Only derived from G lp =
q

h̄L2⇡2r2✓
MT 2c3 Easy to do

Cavendish: Planck time Only derived from G tp =
q

h̄L2⇡2r2✓
MT 2c5 Easy to do

Cavendish: Schwarzschild radius Normally dependent on G rs =
L4⇡2r2✓
c2T 2 Easy to do

Newton gravity force F = GmM
r2 F = n1n2

h̄c
r2 ”Yes”1

Gravitational acceleration field g = GM
r2 g = N lp

r2 c
2 Yes

Mass from acceleration field M = gr2

G M = gr2h̄
l2pc

3 Yes

Orbital velocity vo =
q

GM
r vo = c

q
N lp

r Yes

Escape velocity ve =
q
2GM

r ve = c
q

N2 lp
r No (?)2

Time dilation t2 = t1
q

1� 2GM
rc2 t2 = t1

q
1�N2 lp

r Yes

Newton gravitational bending of light � = 2GM
rc2 � = N2 lp

r Twice of that

GR gravitational bending of light � = 4GM
rc2 � = N4 lp

r Yes

Gravitational red-shift limr!+1 z(r) = GM
r2 limr!+1 z(r) = N lp

r Yes
Schwarzschild radius rs =

2GM
rc2 rs = N2lp No

Einstein field equation Rµv � 1
2gµvR = 8⇡G

c4 Tµv Rµv � 1
2gµvR = 8⇡lp

mpc2
Tµv “Yes”

Einstein constant  = 8⇡G
c2  = 8⇡lp

mp
Yes

Einstein cosmological constant ⇤ = ⇢vac ⇤ = 8⇡lp
mp

⇢vac Yes

Hawking temperature c3

8⇡GM
h̄
kb

T = 1
N8⇡

mpc
2

kb
No3

Hawking dissipation time tev = 15360⇡G2M3

h̄c4 T = 15360⇡ lp
c No4

Bekenstein-Hawking luminosity P = h̄c6

15360⇡G2M2 P = 1
N215360⇡

h̄c2

l2p
No5

McCulloch orbital mass M = v4⇥
2Gc2(1+Z) M = 1

2(1+Z)mp
⇥
lp

v4

c4 (?)6

McCulloch galaxy velocity v4 = 2GMc2(1+Z)
⇥ v = c

⇣
2N lp

⇥ (1 + Z)
⌘ 1

4
(?)7

Relative Standard Uncertainty. – Assume we
have measured the Planck mass (with a standard uncer-
tainty of 1%) on the kitchen table with Cavendish appara-
tus plugged into our computer. The relative uncertainty
in the gravitational constant must then be

@G

@mp
⇥

mp

100

G
=

2h̄c

m3
p

⇥ mp

G⇥ 100
=

1

50
= 2% (12)

That is to say, the standard uncertainty in the New-
ton gravitational constant will always be twice that of the
standard uncertainty in the Planck mass measurements.
This is in line with what is reported by NIST (2014) CO-
DATA, which reports a relative standard uncertainty for
the gravitational constant of 4.7⇥10�5 and 2.3⇥10�5 for
the Planck mass.

Measuring the Schwarzschild Radius without
Knowledge of the Mass of the Object or New-
ton’s Gravitational Constant. – In the section above
we had to know the weight of the lead balls to find the
Planck mass and we had to know the Planck constant, but
without any knowledge of Newtonian gravity or Newton’s
gravitational constant. This alone we think is remark-
able, as it indicates that the Planck mass is very essen-
tial. Next, we will show something even more remarkable.
From the Schwarzschild metric [18, 19] solution of the Ein-
stein field equation [20], we get a radius today known as
the Schwarzschild radius that mathematically is given by
modern physics as

rs =
2GM

c2
(13)

In this case we need to know the Newton gravitational
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constant, the mass of the object, and the speed of light
to measure the Schwarzschild radius. We will show that
we remarkably do not need to know the mass or the grav-
itational constant to find the Schwarzschild radius of an
object.

From the derivations above based on McCulloch Heisen-
berg equivalent Newton gravity in combination with a
Cavendish apparatus, we had that

✓ = LF
mL22⇡2

T 2
✓ = L

h̄c

m2
p

Mm

r2
(14)

Dividing by the small mass on each side we have

L2⇡2

T 2
✓ =

h̄c

m2
p

M

r2
(15)

The large massM we can again write as a fraction of the
mass mp, that is M = M

mp
mp = Nmp, where we assume

the size of M as well as N and mp are unknowns.

L2⇡2

T 2
✓ =

h̄c

m2
p

Nmp

r2

L2⇡2

T 2
✓ =

h̄c

mp

N

r2

mp

N
=

h̄cT 2

r2L2⇡2✓
(16)

And we can write any elementary particle mass as

m =
h̄

�̄

1

c
(17)

The Planck mass has a reduced Compton wavelength
of �̄ = lp, but we do not need to know this, nor do we
need knowledge of the size of the Planck mass, as soon
will become very clear. We now have the reduced Planck
constant on both sides of the equation. So we can divide
by the reduced Planck constant on both sides and get rid
of it

h̄
�

1
c

N
=

h̄cT 2

r2L2⇡2✓
1

N �̄
=

c2T 2

L2⇡2r2✓

2N �̄ =
L4⇡2r2✓

c2T 2
(18)

The measurement we get out 2N �̄ is actually the
Schwarzschild radius of the large lead ball in the Cavendish
apparatus. We encourage other researchers to check this
out experimentally, even if it is quite “obvious” after one
has studied this for a period of time. That is, to find
the Schwarzschild radius of the large lead balls in the

Cavendish apparatus we only need to know the distance
between the small lead balls L, the radius between the
large and small lead balls r, the resonant oscillation pe-
riod of a torsion balance T , the deflection angle of the
balance ✓ that our built-in microchip sensor reads o↵, and
the well-known speed of light. On a somewhat humorous
note, one might say, “Eureka”. It is quite remarkable that
we can measure the Schwarzschild radius of the large lead
balls with a measurement error of roughly about ±5%, us-
ing a small low budget Cavendish apparatus as shown in
this paper. What we find is that the number of an essen-
tial mass times its reduced Compton wavelength is what
is hidden in the Schwarzschild radius, and we can discover
this without any knowledge of Newton or Einstein gravity,
but instead we find it based on the Heisenberg uncertainty
principle and the idea that there is one unique mass, which
is the Planck mass, and the entire analysis can be done
even without knowing the mass of the lead ball, the mass
of the Earth, the gravitational constant, the Planck mass,
or the Planck constant.

In our view, this gives strong evidence that the Planck
length and the speed of light are the essential fundamental
constants for gravity and not the Newtonian gravitational
constant, something that also several of the Planck equiv-
alent gravity formulas in Table 1 clearly indicate. This
clearly points towards that the gravitational constant not
is a fundamental constant. It is the Planck length, the
Planck constant, and the speed of light that are essential,
and the gravitational constant is a composite constant of

the form G = h̄c
m2

p
=

l2pc
3

h̄ . Again, we are not saying that

the Newton gravitational constant not is universal; we sim-
ply claim it is a universal composite constant, and that it
is the Planck length, together with the speed of light, that
is truly essential for gravity.

That the Planck length is so essential in gravity should
also be of great importance for development of quantum
gravity theories. This confirms what has long been ex-
pected, that gravity indeed is linked to the Planck length.
Here we show that this not is only the case at the sub-
atomic scale, but also for macroscopic measurements. The
Schwarzschild radius is quantized and comes in Planck
length units. We could be closer to a unified theory be-
tween the quantum scale and the cosmic scale than we
might anticipate, based on research up until now.

Conclusion. – We have shown that the Planck mass
can be measured with a Cavendish apparatus without any
prior knowledge of gravity except for the McCulloch grav-
ity derived directly from Heisenberg’s uncertainty princi-
ple. This no longer posits the Planck mass as simply be-
ing a derived constant from big G, but possibly makes
it even more important than big G, since the gravita-
tional constant can be written as a composite constant

G = h̄c
m2

p
=

l2pc
3

h̄ . Further, we have demonstrated that the

Schwarzschild radius of an object can be measured with
no knowledge of Newton’s gravitational constant and also
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no knowledge of the size of the mass. This indicates that
the Planck units are the truly fundamental units and that
the gravitational constant likely is a composite constant.
This also implies that the Planck units play a very central
role in gravity. After years of thinking about the problem,
we have come up with this gravity experiment to measure
the Planck mass, the Planck length, and Planck time. It
is quite remarkable it has taken us about 119 years since
Max Planck first suggested the natural Planck units to dis-
cover a way to measure them totally independent of any
knowledge of Newton’s gravitational constant. This could
be an important step toward a theory of quantum gravity
that unites the quantum scale and the cosmological scale.

⇤ ⇤ ⇤

Thanks to Victoria Terces for helping me edit this
manuscript.
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Wärmestrahlung. Leipzig: J.A. Barth, p. 163. See
also the English translation “The Theory of Radia-
tion” (1959) Dover, 1906.

[14] H. Cavendish. Experiments to determine the density
of the Earth. Philosophical Transactions of the Royal
Society of London, (part II), 88, 1798.

[15] E. G. Haug. Can the Planck length be found inde-
pendent of big G ? Applied Physics Research, 9(6),
2017.

[16] E. G. Haug. The gravitational constant and the
Planck units. A simplification of the quantum realm.
Physics Essays Vol. 29, No. 4, 2016.

[17] M. E. McCulloch. Galaxy rotations from quantised
inertia and visible matter only. Astrophysics and Space
Science, 362, 2017.

[18] K. Schwarzschild. Über das gravitationsfeld
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�p�x � h̄ (19)

McCulloch goes on to say “ Now E = pc so” :

�E�x � h̄c (20)

This assumption only holds for the Planck momentum
E = pc = mpcc. It is implied indirectly in the McCulloch
derivation that the Planck mass somehow plays an essen-
tial role in gravity. Further, from equation 20, McCulloch
goes on to suggest that

F =
1

(�x)2

nX

i

NX

j

(h̄c)i,j (21)

where
Pn

i is the number of Planck masses in a smaller

mass m we are working with, and
PN

i corresponds to the
the number of Planck masses in the larger mass we are
working with. From this, McCulloch gets the equation

F =
h̄c

m2
p

mM

(�x)2
(22)

McCulloch also replaces �x with the radius, something
we think is sound, based on extensive analysis. Further,
he correctly points out that

G =
h̄c

m2
p

(23)

which basically means his derivation is equivalent to the
Newtonian gravity formula

F = G
mM

r2
(24)

Appendix A.2: The Planck Time and the Planck
Length. – We can also find the Planck time directly
from McCulloch-Heisenberg Newton equivalent gravity us-
ing a Cavendish experiment by utilizing the derivation be-
low

✓ = LF
mL22⇡2

T 2
✓ = L

h̄c

m2
p

Mm

r2

mL22⇡2

T 2
✓ = L

h̄c
⇣

h̄
lp

1
c

⌘2

Mm

r2

mL22⇡2

T 2
✓ = L

tpc5

h̄

Mm

r2

t2p =
h̄L22⇡2r2

LMT 2c5
✓

tp =

r
h̄L2⇡2r2✓

MT 2c5
(25)

Similarly, we can also find the Planck length directly
from the McCulloch-Heisenberg Newton equivalent grav-
ity, taking into account that an elementary particle can be
written as

m =
h̄

�̄

1

c
(26)

In this case, we know the mass is the Planck mass, so
the reduced Compton wavelength is related to the Planck
length that we can find directly using a Cavendish appa-
ratus

✓ = LF
mL22⇡2

T 2
✓ = L

h̄c

m2
p

Mm

r2

mL22⇡2

T 2
✓ = L

h̄c
⇣

h̄
lp

1
c

⌘2

Mm

r2

l2p =
h̄L22⇡2r2✓

LMT 2c3

lp =

r
h̄L2⇡2r2✓

MT 2c3
(27)

In other words, all of the natural Planck units can be
found directly from a quantum-derived Newtonian equiv-
alent gravity theory.
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