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Abstract

In 2014, McCulloch showed, in a new and interesting way, how to derive a gravity theory from Heisenberg’s uncertainty
principle that is equivalent to Newtonian gravity. McCulloch utilises the Planck mass in his derivation and obtains a gravitational
constant of h̄c

m2
p
. This is a composite constant, which is equivalent in value to Newton’s gravitational constant. However, McCul-

loch has pointed out that his approach requires an assumption on the value of G, and that this involves some circular reasoning.
This is in line with the view that the Planck mass is a derived constant from Newton’s gravitational constant, while big G is
a universal fundamental constant. Here we will show that we can go straight from the McCulloch derivation to measuring the
Planck mass without any knowledge of the gravitational constant. From this perspective, there are no circular problems with his
method. This means that we can measure the Planck mass without Newton’s gravitational constant, and shows that the McCul-
loch derivation is a theory of quantum gravity that stands on its own. This could be an important step towards the development
of a full theory of quantum gravity.
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McCulloch-Heisenberg Newton Equiva-
lent Gravity
In 2014, McCulloch [1] derived an equivalent gravity to that
of Newton [2] directly from the Heisenberg uncertainty prin-
ciple and gets the following equation for the gravity force (See
Appendix A.1 for a short review of his derivation.)

F =
h̄c
m2

p

Mm
r2 (1)

Where h̄c
m2

p
⇡ 6.67384⇥ 10�11m3 · kg�1 · s�2. That is basi-

cally identical to the empirically-measured gravitational con-
stant value, even if there is large uncertainty in Newton’s grav-
itational constant [3, 4, 5, 6, 7]; this is something we will re-
turn to later. Still, we cannot know its value without knowing
the speed of light, the Planck constant, and the Planck mass.
The speed of light is known and can be measured with no
knowledge of gravity (and is exact per definition), the Planck
constant can be found from the Watt balance (Kibble balance)
[8, 9, 10]. However, the Planck mass is unknown and it is gen-
erally assumed that we must know G in order to calculate the
Planck mass. This point is mentioned by McCulloch himself
in a follow-up paper [11]. In that paper he states

In the above gravitational derivation, the cor-
rect value for the gravitational constant G can only
be obtained when it is assumed that the gravi-
tational interaction occurs between whole multi-
ples of the Planck mass, but this last part of the
derivation involves some circular reasoning since
the Planck mass is defined using the value for G.

This is fully in line with modern physics’ view that the
only way to find the Planck mass is to derive it from big G.
The Planck mass, the Planck temperature (energy), the Planck
length, and the Planck time were introduced in 1899 by Max
Planck [12, 13] himself. Planck derived these units, which he
called natural units, from what he considered to be the most
fundamental universal constants: Newton’s gravitational con-
stant, the speed of light, and the Planck constant. Based on
this, we need to know Newton’s gravitational constant to find
the Planck mass from Planck’s formula, mp =

q
h̄c
G . However,

as we will see here, we can build on McCulloch’s derivation,
complete a few more derivations, and easily design a simple
experiment to measure the Planck mass independent of New-
ton’s gravitational constant, or knowledge of any other theo-
ries of gravity.

The Planck Mass Measured Directly
from McCulloch’s Derivation and a
Cavendish Apparatus
Newton did not measure the gravitational constant himself;
this was first done indirectly by Cavendish [14] in 1798. Us-

ing a Cavendish apparatus, we can measure the Planck mass
without any knowledge of Newton’s gravitational constant, or
any knowledge of Newtonian gravity. A Cavendish apparatus
consist of two small balls and two larger balls, all made of
lead, for example. The torque (moment of force) is given by

kq (2)

where k is the torsion coefficient of the suspending wire
and q is the deflection angle of the balance. We then have the
following well-known relationship

kq = LF (3)

where L is the length between the two small balls in the
apparatus. Further, F can be set equal to the gravitational
force given by McCulloch’s Heisenberg-derived formula

F =
h̄c
m2

p

Mm
r2 (4)

This means we must have

kt = L
h̄c
m2

p

Mm
r2 (5)

We also have that the natural resonant oscillation period of
a torsion balance is given by

T = 2p
r

I
k

(6)

Further, the moment of inertia I of the balance is given by

I = m
✓

L
2

◆2
+m

✓
L
2

◆2
= 2m

✓
L
2

2◆
(7)

this means we have

T = 2p
r

mL2

2k
(8)

and when solved with respect to k , this gives

T 2

22p2 =
mL2

2k

k =
mL2

2 T 2

22p2

k =
mL22p2

T 2 (9)

Next in equation 5 we are replacing k with this expression,
and solving with respect to the Planck mass
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mL22p2

T 2 q = L
h̄c
m2

p

Mm
r2

L22p2r2

h̄cLMT 2 q =
1

m2
p

m2
p =

h̄cMT 2

L2p2r2q

mp =

r
h̄cMT 2

L2p2r2q
(10)

The mass M is the mass of each of the two large lead balls
in the Cavendish apparatus, not the mass of the Earth. All we
need in order to find the mass of the large balls is an accurate
weight. The Planck constant can be found from the Watt bal-
ance. The angle q and the time T are what we measure with
the Cavendish apparatus. The length L is the distance between
the small lead balls and r is the distance between the large lead
ball’s center to the center of the small lead ball, when the arm
is in equilibrium position (mid position).

Today there even exists a small, ready-to-use, low budget
(a few thousand dollars) Cavendish apparatus, where the an-
gle of the arm (and the time) are measured very accurately by
fine electronics and plugged directly into a computer with a
USB cable; see Figure 1. Using this low budget apparatus we
can measure the Planck mass with about 5% inaccuracy on
our kitchen table without any knowledge of Newton’s gravi-
tational constant.

As soon as we know the Planck mass, we have the the com-
plete composite gravitational constant and the McCulloch for-
mula can then be applied to any standard gravitational predic-
tions, such as finding the mass of the Earth, or predicting the
orbital velocity of planets and satellites.

Haug [15] has, in a similar way, shown how the Planck
length can be found independent of big G, but his deriva-
tion did not start out with the McCulloch-Heisenberg Newton
equivalent gravity theory, so we think the derivation and dis-
cussion in this paper offer important additional insight. See
also Appendix A.2, on how we can extend the derivation
above using the McCulloch-Heisenberg gravity to find the
Planck length and Planck time “directly” from a Cavendish
apparatus.

Why Newton’s Gravitational Constant
Likely Is a Universal Composite Con-
stant
In our analysis, the first strong indication that the gravitational
constant is a composite constant is given by its output units,
which are m3 · kg�1 · s�2. It would be very strange if some-
thing concerning the fundamental nature of reality would be
meters cubed, divided by kg and seconds squared. The Planck
mass, on the other hand, is somewhat easier to relate to, even
if it is somewhat of a mystery at a deeper level. The speed

Figure 1: Low budget modern Cavendish apparatus combin-
ing old mechanics with modern electronics. It is remarkable
that with such an instrument we can measure the Planck mass
with only about 5% error from the kitchen table, or here from
the top of my grand piano.

of light is also something we can relate to logically; it is the
distance light travels in vacuum during a pre-specified time in-
terval. The Planck constant is more complex (and outside the
scope of this paper), but it is related to the view that energy
seems to come in quanta. In sum though, the Planck mass,
the speed of light, and the Planck constant seem to be more
intuitive than the gravitational constant.

In 2016, Haug [16] suggested that the gravitational constant

of the form G =
l2
pc3

h̄ , which is basically the same as the Mc-
Culloch 2014 constant h̄c

m2
p
. As the Planck mass can be written

as mp =
h̄
lp

1
c we have

G =
h̄c
m2

p
=

h̄c
⇣

h̄
lp

1
c

⌘2 =
l2
pc3

h̄
(11)

Haug has shown that assuming the gravitational constant is
a composite will help make all of the Planck units more in-
tuitive. For example, the Planck time is given by tp =

q
Gh̄
c5 ;

when rewritten based on the idea that the gravitational con-
stant is a composite, this simply gives the (known) tp =

lp
c .
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The latter form is also known from before, but the view that
the Newtonian gravitational constant is a composite renders
the form tp =

q
Gh̄
c5 unnecessary. We might then ask, what is

the intuition about c5 and G? The answer may not be so clear.
On the other hand, the intuition behind lp

c is very simple; it is
simply a very short distance divided by the speed of light, so
given a very short time interval, we can see that it is coming
directly out from the formula. Haug’s gravitational constant
composite formula has the same challenge in that one might
think we may end up with a circular problem, again, because
modern physics typically assumes that we need to know big
G before we can find the Planck units. However, as we have
shown in this paper this is not the case.

This does not mean big G is wrong; it is just likely to be a
composite universal constant rather than a fundamental con-
stant.

We find that many gravitational formulas may be seen in a
new perspective when rewritten based on the idea that New-
ton’s gravitational constant is a composite constant; we sum-
marise a selection of such gravitational formulas in Table 1.

aActually, Newton’s gravitational force has never been observed directly,
only indirectly though the predictions that come from mathematically rear-
ranging this formula to develop other predictions, such as orbital velocity.

bTo my knowledge the escape velocity has not been tested empirically.
cAt least not directly.
dAt least not directly.
dAt least not directly.
dNeeds further investigation and confirmation; see [17] for more details.
dNeeds further investigation and confirmation; see [17] for more details.

Relative Standard Uncertainty
Assume we have measured the Planck mass (with a standard
uncertainty of 1%) on the kitchen table with Cavendish appa-
ratus plugged into our computer. The relative uncertainty in
the gravitational constant must then be

∂G
∂mp

⇥
mp
100
G

=
2h̄c
m3

p
⇥

mp

G⇥100
=

1
50

= 2% (12)

That is to say, the standard uncertainty in the Newton grav-
itational constant will always be twice that of the standard
uncertainty in the Planck mass measurements. This is in line
with what is reported by NIST (2014) CODATA, which re-
ports a relative standard uncertainty for the gravitational con-
stant of 4.7⇥10�5 and 2.3⇥10�5 for the Planck mass.

Conclusion
We have shown that the Planck mass can be measured with
a Cavendish apparatus without any prior knowledge of grav-
ity except for the McCulloch gravity derived directly from
Heisenberg’s uncertainty principle. This no longer posits the
Planck mass as simply being a derived constant from big G,
but possibly makes it even more important than big G, since
the gravitational constant can be written as a composite con-
stant G = h̄c

mp
. This indicates that the Planck units are the truly

fundamental units and that the gravitational constant likely
is a composite constant. This also implies that the Planck
units play a very central role in gravity. After years of think-
ing about the problem, we have come up with this gravity
experiment to measure the Planck mass, the Planck length,
and Planck time. It is quite remarkable it has taken us about
119 years since Max Planck first suggested the natural Planck
units to discover a way to measure them totally independent
of any knowledge of Newton’s gravitational constant. This
could be an important step toward a theory of quantum grav-
ity that unites the quantum scale and the cosmological scale.



5

Table 1: The table of a series gravity formulas when using the standard Newton gravitational constant and the alternative
when arguing that Newton’s gravitational constant is a composite constant.

Standard form/way Planck form Observed
Gravitational constant G ⇡ 6.67⇥10�11 G = h̄c

m2
p
=

l2
pc3

h̄ ⇡ 6.67⇥10�11 Yes

Gravitational constant G =
q

c32l2
pp2Lr2q

h̄MT 2 Yes

Cavendish Planck mass Only derived from G mp =

r
h̄32p2Lr2q
l2
pMT 2c5 Easy to do

Newton gravity force F = G mM
r2 F = n1n2

h̄c
r2 ”Yes”1

Gravitational acceleration field g = GM
r2 g = N lp

r2 c2 Yes

Mass from acceleration field M = gr2

G M = gr2h̄
l2
pc3 Yes

Orbital velocity vo =
q

G M
r vo = c

q
N lp

r Yes

Escape velocity ve =
q

2G M
r ve = c

q
N2 lp

r No (?)2

Time dilation t2 = t1
q

1� 2GM
rc2 t2 = t1

q
1�N2 lp

r Yes

Newton gravitational bending of light d = 2GM
rc2 d = N2 lp

r Twice of that
GR gravitational bending of light d = 4GM

rc2 d = N4 lp
r Yes

Gravitational red-shift limr!+• z(r) = GM
r2 limr!+• z(r) = N lp

r Yes
Schwarzschild radius rs =

2GM
rc2 rs = N2lp No

Einstein field equation Rµv � 1
2 gµvR = 8pG

c4 Tµv Rµv � 1
2 gµvR =

8plp
mpc2 Tµv “Yes”

Einstein constant k = 8pG
c2 k =

8plp
mp

Yes

Einstein cosmological constant L = krvac L =
8plp
mp

rvac Yes

Hawking temperature c3

8pGM
h̄
kb

T = 1
N8p

mpc2

kb
No3

Hawking dissipation time tev =
15360pG2M3

h̄c4 T = 15360p lp
c No4

Bekenstein-Hawking luminosity P = h̄c6

15360pG2M2 P = 1
N215360

h̄c2

l2
p

No

McCulloch orbital mass M = v4Q
2Gc2(1+Z) M = 1

2(1+Z)mp
Q
lp

v4

c4 (?)

McCulloch galaxy velocity v4 = 2GMc2(1+Z)
Q v = c

⇣
2N lp

Q (1+Z)
⌘ 1

4 (?)
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Appendix A.1: Newton’s Gravity from
Heisenberg’s Uncertainty Principle
In 2014, McCulloch derived Newton’s gravitational force
from Heisenberg’s uncertainty principle; for a more in de-
tailed derivation see the McCulloch papers [1, 11]. Heisen-
berg’s uncertainty principle [18] is given by

DpDx � h̄ (13)

McCulloch goes on to say “ Now E = pc so” :

DEDx � h̄c (14)

This assumption only holds for the Planck momentum E =
pc = mpcc. It is implied indirectly in the McCulloch deriva-
tion that the Planck mass somehow plays an essential role in
gravity. Further, from equation 13, McCulloch goes on to
suggest that

F =
1

(Dx)2

n

Â
i

N

Â
j
(h̄c)i, j (15)

where Ân
i is the number of Planck masses in a smaller mass

m we are working with, and ÂN
i corresponds to the the num-

ber of Planck masses in the larger mass we are working with.
From this, McCulloch gets the equation

F =
h̄c
m2

p

mM
(Dx)2 (16)

McCulloch also replaces Dx with the radius, something we
think is sound, based on extensive analysis. Further, he cor-
rectly points out that

G =
h̄c
m2

p
(17)

which basically means his derivation is equivalent to the
Newtonian gravity formula

F = G
mM
r2 (18)

Appendix A.2: The Planck Time and the
Planck Length
We can also find the Planck time directly from McCulloch-
Heisenberg Newton equivalent gravity using a Cavendish ex-
periment by utilising the derivation below

mL22p2

T 2 q = L
h̄c
m2

p

Mm
r2

mL22p2

T 2 q = L
tpc5

h̄
Mm
r2

t2
p =

h̄L22p2r2

LMT 2c5 q

tp =

r
h̄L2p2r2q

MT 2c5 (19)

Similarly, we can also find the Planck length directly from
the McCulloch-Heisenberg Newton equivalent gravity, taking
into account that an elementary particle can be written as

m =
h̄
l̄

1
c

(20)

In this case, we know the mass is the Planck mass, so the
reduced Compton wavelength is related to the Planck length
that we can find directly using a Cavendish apparatus

mL22p2

T 2 q = L
h̄c
m2

p

Mm
r2

l2
p =

h̄L22p2r2q
LMT 2c3

lp =

r
h̄L2p2r2q

MT 2c3 (21)

In other words, all of the natural Planck units can be found
directly from a quantum-derived Newtonian equivalent grav-
ity theory.


