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Abstract: In this paper the author gives an elementary mathematics method to solve Fermat's
Last Theorem (FLT), in which let this equation become an one unknown number equation, in
order to solve this equation the author invented a method called “Order reducing method for
equations”, where the second order root compares to one order root, and with some necessary
techniques the author successfully proved when X" +y™- 2" <= x"2+y"2. 7" there are no
positive solutions for this equation, and also proves with the increasing of x there are still no
positive integer solutions for this equation when x™*+y" - 2" <= x"2+y"2. 7" js not satisfied.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless they are stated to be not.

Theorem 1.1. In the equation of
Xn + yn — Zn
ged(x,y,z) =1 (1-1)
n>2
X,Y,Z meet
X#Y,
X+y>z,

and if
X>y

then
Z>X>Y.

Proof: Let
X=Y,

we have

n

2x"=1z
and

Q/EX=Z

Where”\/E is not an integer and X, Z are all positive integers, soX # Y .

Since

1,n-1

(X+y) =x"+CX" 'y +..+Cxy" " + y" > 2",



o we get
X+Yy> 2z

Since

so we have
2">x",z2">y"

and get
Z>X>Y

when
X>Y.

Theorem 1.2. In the equation of (1-1), X,Y,Z meet

ged(x, y) =ged(y, z) =ged(x,z) =1.
Proof: Since X" +y"=z", if gcd(x,y)>1 then we have (X1” + ynl)X[ng(X, y)I =2"
which causes gcd(x, Y, Z)>1 since the left side contains the factor of [gcd(x, y)]n then the

right side must also contains this factor but contradicts against (1-1) in which gcd(X,y,z) =1,

so we have gcd(x, y) =1. Using the same way we have gcd(X,z)=gcd(y,z)=1.

Theorem 1.3. If there is no positive integer solution for

when p > 2 isa prime number then there is also no positive integer solution for

Proof: Since X +Yy" =2z has no positive integer solution, so there still no positive integer

solution for

(P4l =F

which means there is also no positive integer solution for

bef+lyf =)

So we only need to prove there is no positive integer solution for equation (1-1) when n is a
prime number.

Theorem 1.4. There are no positive integer solutions for equation (1-1) when X or Yy isa



prime number .
Proof: When X isa prime number, since

Xn — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),
so we have
ged(z -y, x)=x,

which means
Z—-Yy =X,
we have
X+y<z,
that contradicts against Theorem 1.1 in which X+ Yy >z, soitiswith Yy, which means there
are no positive integer solutions for equation (1-1) when X or Yy isaprime number .

Theorem 1.5. There are no positive integer solutions for equation (1-1) when z is a prime
number .

Proof: When 2z is a prime number, from Theorem 1.3 we only consider the case of N> 2 is
a prime number, since

X"+ y"=2"=(x+ y)(x”‘1 Fot y”‘l),
S0 we have
ged(x+y,z)=1z,
from Theorem 1.1 we know X+ Y > Z, so we get

X+Yy>2z,

that contradicts against Theorem 1.1 in which z > X >y = X+ Yy <2z, which means there are

no positive integer solutions for equation (1-1) when 2z is a prime number .

Theorem 1.6. There are no positive integer solutions for
1"+y"=2".

Proof: Since
1=2"—y" = (z-y\2" + 2" 2y + .t 2y" 2 4y ?)

where

z-y=1
(2" + 2" 2y ok 2y 2y ) =1
that causes z, Y to be non positive integers, so there are no positive integer solutions for

1"+y"=2".



Theorem 1.7. There are no positive integer solutions for
2"+ y"=2".
Proof: Since

2n — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),

z-y=1
"ty zy" Pyt =2
then taking the least value for y =2,z =3, we have

M 2x3 24 42" 20

when N> 2 thatisimpossible. If
7—-y=2'

n-1

"y Yy iy =2

i+j=n
i>1

then z>2 and taking the least value of y =2,z =3, we get

I 42x3 442" > 2
with n>2 that is also impossible, so there are no positive integer solutions for
2"+y"=2".
Theorem 1.8. There are no positive integer solutions for equation (1-1) when n — oo and
X,Y,Z inequation (1-1) meet

z<WExx>Zy>Lz>&

Proof: Since X"+y"=2z",let x>V, we get

SRb

since
Z>X>Y,

so we have

Z<Q/§X,

and



Z n n
Iim(—} —(lj —o>1
nN—oo X X
which means there are no positive integer solutions for equation (1-1) when n — 0.

According to Theorem 1.6, 1.7 we have X>2,y>12>3.

Theorem 1.9. There are no positive integer solutions for equation (1-1) when X, Y,z <10°.

Proof: Using the method of which we prove Theorem 1.6, 1.7 we can prove when X,y < 10*,

there are no positive integer solutions for equation (1-1), since meanszZ > X >Y so when

2 <10* there are no positive integer solutions.

Theorem 1.10. In the equation of (1-1), X,Y,Z meet

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i

where
n>i>1.
This theorem holds true when X,Y,Z are positive real numbers but N must be a positive
integer.
Proof: From equation (1-1), since

Xn_i_yn:Zn,

from Theorem 1.1, since Z > X> Y, we have

n—i n—i (in n—i ( yjl n—i n—i
Xy s = X Sy =2
z z

NG yn+i < (Zixn—i n Ziyn—i _ Zn+i>,
so we have

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i
This theorem means given X, Y,z if equation (1-1) has one positive integer solution then this
solution is the only one.

Theorem 1.11. There are no positive integer solutions for equation (1-1) when

N yn—l _ gt

Xn—2 + yn—2 _ Zn—2 Sl'



And in order to have positive integer solutions for equation (1-1),

n-1

n-1, n-1
X Y 72 5 4000

X2 4 y“ _7

must be satisfied.
Proof: In equation (1-1), let

a= Xn—2
b — yn72
C= Zn—2

we have

ax® +by® =cz’
a0
a"?x+bn?y=c"?z

Since we reduce the order of equation so the method is called “Order reducing method for
equations”. Let X>Yy and

we have

[N =
an2x+b"2(x—f)=c

ax’ +b(x— f F =c(x+ef
n-1
=c"2(x+e)

and

(a+b—c)x® —2(bf +ce)x+(bf 2 —ce?)=0
n-1 n-1 n-1 ’
am2x+bm2(x—f)-c2(x+e)=0

the roots are

(bf +ce)x/(bf +ce)f —(a+b—c)bf? —ce?)
X= Xn—Z + yn—2 _ Zn—Z ! (1_2)

and

n-1 n-1

ch-2e+hn2 f bfy + cez
X= n-1 n-1 n-1 = n-1 n-1 n-1" (1_3)
X +Yy A

an? 4z _ g2

There are two cases for bf 2, ce? when bf 2 >ce® and bf? <ce?.

Case A: If bf > ce?, from (1-2) when



(bf +ce)++/(bf +ce)f —(a+b—c)bf? —ce?)
Xn—Z + yn—2 _ Zn—Z !

from Theorem 1.10 we know a+b—-c=x"?+y"?—-2"%>0, so we have

2(bf +ce)

X<
x"2 4 yn—2 _ "

2

also from Theorem 1.10 we have X"+ y"™" —z"" >0, compare to (1-3) we get

bfy+cez  _  2(bf +ce)
anl + yn—l _ anl - anz + yn72 _ Zn*

7

n-1 n-1

+y"t -z
— yH — <1, we have
X"ty t—z

When

bfy + cez < 2(bf +ce)

that is impossible since from Theorem 1.8 we know y>2 and z>3.

When
_ (bf +ce)—+/(bf +ce)t —(a+b—c)bf > —ce?)
- Xn—Z N yn—Z . Zn—Z :
we have
‘< bf +ce |

X2 4 y“*Z _ "2

compare to (1-3) we get

bfy + cez < bf +ce
anl + ynfl _ anl - Xn—2 + yn—2 _ an

7

n-1 n-1

+y"t -z

When — —
X"y -2

<1, we have
n-2

bfy + cez <bf +ce
that is impossible since from Theorem 1.8 we have already known y>2 and z>3.

Case B: If bf % <ce?, from (1-2) when



(bf +ce)++/(bf +cef +(a+b—c)ce’—bf?)
Xn—2 + yn—Z _ Zn—2 !

we can prove (bf +ce)’ >(a+b— C)(Ce2 —bf 2) since if not we have

(bf +ce)’ <(a+b—c)(ce’ —bf?)
and
[(2b+a)—c]bf 2 + 2bfce + [2c — (a+ b)|ce? < 0

that is impossible since a+b—-c>0 and c¢>a,c>b,2c— (a + b)> 0. So we have

(bf + ce)(1+ V2 )

X2 4 yn—z _ g2

X<

compare to (2-4) we get

bfy +cez_ (bf +ce)1+2)

Xn—l + yn—l _ Zn—l Xn—2 + yn—2 _ Zn—2 '
n-1 n-1 n-1
+y" -z
When —— yH — <1, we have
X"yt -z

bfy +cez < (bf + ce)(1+ \/E)< 2.5(bf +ce)
and

bf (x— f) +ce(x +e) < 2.5(bf +ce)
that leads to

2 2 2 2
§ 2.5(bf +ce)+bf > —ce o CE-bftl o
bf +ce bf +ce

where possible values for X are 1, 2 but according to Theorem 1.6, 1.7 we know there are no
positive integer solutions.

When

(bf +ce)—/(of +cef +(a+b—c)ce’—bf?)
Xn—Z + yn—2 _ Zn—Z

is not possible since X <0.

So we have the conclusion of there are no positive integer solutions for equation (1-1) when

N yn—l _ gt

Xn—2+yn—2_zn— Sl'

2



Obviously we have

-1

Xn—l + yn—l _ Zn
bfy + cez < 2.5 bf +ce),
fy [an + yH _ anz ]( )

from Theorem 1.9 we know X,Y,Z <10* there are no positive integer solutions for equation

(1-1), so we have

n-1

n-1, n-1
X Y Z2 5 4000,

X2 4 y” _7

which must be satisfied to have positive integer solutions for equation (1-1).

2. Proving Method

From Theorem 1.11 we know in order to have positive integer solutions for this equation,

n-1

X"ty yn—l 7
5 >1 must be satisfied. We give the graph of this equation as showed in

"2 4 y“ _7

n—

n-1 n-1_ n-1
X *y Zn72>1,where AB//CD'.

Figure 2-1 when = y”*Z —

n

X

N

1n-2 n-1 i

N yn—l _ gt

Xn—2 + yn—2 _ an >1

Figure 2-1 Graphof X" +y"=2z" when
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2.1. In Figure 2-1 we have
0 Zn - Zn_l l 0
ZCDE =360" —arctan 1 —arctan| ———— |-90",
77 -1

and
BD — Xn—l + yn—l _ Zn—l,
AC — Xn—2 + yn—Z _ Zn—2.
When E >1 we have
AC

/ABE - Z/CDE = «/D'CD + ZBED >0,
which means
/ABE > Z/CDE .

It is also very clear that if ZABE < ZCDE then i—[c) <1

From Theorem 1.9 we know if z<10* then there are no positive integer solutions for equation

(1-1), when n =3 (which is the worst case) we have

n_ ,n-1
/CDE = 270° —arctan| Z—% |~ arctan %
1 Zn 1 Zn 2

= 270° — arctan(10000° — 100007 ) arctan[ j >179.999999°

1
10000° —10000

and

Z/ABE > /CDE >179.999999°,
which means ZABE, /CDE —180°, so ABE,CDE are almost lines with z >10% n>3,
BD 1 . : . no
that leads to A_C_>§<1' which contradicts against BD > AC . So when z" is large

B X"y yn—l _ g1
enough then = <1, from Theorem 1.11 we know there are no positive
AC X" 24 ynfz _ "2

integer solutions for equation (1-1).

2.2. For function

n _ n-1
f (z) = £CDE =270° —arctan 277 | aretan| — 1
1 Zn—l _ Zn—2

3 2" -z 1
=— 7 —arctan| ——— |—arctan| ———
2 1 yAR A

we give the function plot for it in Figure 2-2.
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S

186

1 i i i 1 i i i 1 -

n n-1
Figure 2-2 Graphof f(z)=«CDE =270°— arctan[ . 12 J— arctan(ﬁj
AN

where we take 7 =3.1415926535897932

Obviously f(z)=~ZCDE is a “Monotonically increasing function” when z >3, and with the

increasing of z the value of f(z)=~ZCDE is close to 180°. It is very clear that
Z/ABE — ZCDE is decreasing with the increasing of Z, since
(£ABE - ZCDE = #D'CD + /BED)<180° - ZCDE,

where ZCDE is increasing. When n=3 since ~/CDE >179.999999°, so we have

(AD'CD + ABED)<1800 — /CDE <180° —179.999999° < 0.000001°,
which means

/BED, £D'CD < 0.000001°,

and when z" is large enough, we have

ZABE — ZCDE = (£/BED + ZD'CD)— 0,

which means BD < AC that contradicts against BD > AC . So when z" is large enough then

BD B Xn—l + yn—l _ Zn—l
AC Xn—Z + yn—2 _ Zn—Z

<1, from Theorem 1.11 we know there are no positive integer

solutions for equation (1-1).
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2.3. In Figure 2-1 we have

AB? + BE? — AE?
2x ABx BE

/ABE = arccos

( n—l+yn—l_ n—2_yn—2)2+1+(xn+yn_xn—l_yn—l +1
( +y" X"y 2)2 4

=arccos )
\/( —2_yn—2)2+1x\/(Xn+yn_xn—1_yn—l)2+1
( n-1 + yn—l g2 yn—z)2 +1+ (Zn _ Xn—l _ yn—1

= arccos _(Z yn 222 4

2><\/( +y"t—x" “‘2)2+1><\/(z“—x“‘1—y“‘1)2+1

and

CD?+DE*-CE?
2xCDxDE

/CDE =arccos

=arccos (ZH - Zn_z)z +1+ (Z" - Z”_l)2 +1- (Z" — z”—2)2 —4

2><\/(z“‘l—z”‘2)2 +1><\/(z” —z“‘l)2 +1

from (1-1) we have

1

y=(z"=x"),
we give the plot of f(z,xX)=ZABE - ZCDE using Excel VBA program that is showed

below:

Dim x As Long

Dim y As Double
Dim z As Long

Dim i As Long

Dim j As Long

Dim AB As Double
Dim BE As Double
Dim CD As Double
Dim DE As Double
Dim AE As Double
Dim CE As Double
Dim AB2 As Double
Dim BE2 As Double
Dim CD2 As Double

12



Dim DE2 As Double
Dim AE2 As Double
Dim CE2 As Double
Dim A_CDE As Double
Dim A_ABE As Double
Dim R As Double

n=3
j=1
For z = 3 To 10 ~ 7 Step 1
Forx=z/ @”@/n)Toz-1
y=@”™n-x2n)"@/7n
MB2=x"M-D+y"M-D)-x"M"-2)-y*"(nh-2)~2+1
AB = Sqr(AB2)
BE2 = "*"n-x"(h-1)-y*"(h-1)r2+1
BE = Sqr(BE2)
AE2 = (Z"*"n-x"(n-2)-y~*"(h-2))»2+14
AE = Sqr(AE2)
c2=@""M-1)-z~"(h-2)) "2+1
CD = Sqr(CD2)
DE2 = (Zz"*"n-z~"(h-1)r"2+1
DE = Sqr(DE2)
CE2 =("™*n-z~"(-2)) 2+ 14
CE = Sqr(CE2)
A_ABE = Application.Acos((AB2 + BE2 - AE2) / (2 * AB * BE))
A_CDE = Application.Acos((CD2 + DE2 - CE2) / (2 * CD * DE))
R = A ABE - A CDE
Cells(i, j) =R

i=1+1

Ifi 65535 Then j = j + 1: i =0
1T j = 99 Then End
Next X

Next z

Figure 2-3 shows f(z,x) = ZABE — ZCDE,n =3 is decreasing when z issmall, when Zz
is large enough then f(z, X) is between positive and negative at very small amplitude, which

means f (z,X) is close to 0.
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0.00002 -

0.000015 |-

0.00007 ==

f(z,x)

0.000005

-0.000005

2{3-3000)

Figure 2-3 Graphof f(z,x)=ZABE—-ZCDE,n=3

2.4. In Figure 2-1 we have
BD? = BE? + DE? — 2BE x DE x cos(/BED)
_(z” -~ z”‘l)2 +1+
(x” +y" X"t - y“‘l)2 +1
= - 2\/(2” - z“‘l)2 +1><\/(x" Lyt X oyt

1 1
cos[arctan( — j - afCtan(—n =) D
X"+y'=x"-y Z -z

AC? = AE? + CE? — 2 AE x CE x cos(ZAEC)
_(z" — z”‘z)2 +4+
(x” +y X" - y”’z)2 +4
= —2\/(2” - 2“‘2)2 +4 x\/(x“ +y" X" y”‘z)2 +4x

2 2
cos(arctan( — ] - afCtan(—n 2 ]J
X"+y' =X""-y Z -1

from (1-1) we have

and

1

yz(z”—x”)ﬁ.

BD
We give the plot of f(z,X) = A_C using Excel VBA program that is showed below:

Dim x As Long

Dim y As Double

14



Dim z As Long

Dim k As Long

Dim t1 As Double
Dim t2 As Double
Dim t3 As Double
Dim t4 As Double
Dim BD As Double
Dim AC As Double
Dim R As Double

Dim j As Long

n

3
k=1

For z = 10 ~ 1 To 10 ~ 9 Step 1
Forx =z /7 @7~ @ /n) Toz -1 Step 1
y=@”"™n-x2~n"™~@/7n
til=z~n-z"(n-1)
2=x*"n+y”*n-x~"(-1) -y~ ( -1)
t3=z~"n-z"(n -2)
t4A=x*"n+y”~*n-x"(M-2) -y~ -2)
BD = (1 "2+ 12722 +2 -2 *Sqr((tl A2 + 1) * (1222 + 1)) *
Cos(Application_Atan2(t2, 1) - Application.Atan2(tl, 1)))
AC= (3" 2+t4"2+8-2>sSqr((t3 22+ 4) * (t4 ~ 2 + 4)) *
Cos(Application.Atan2(t4, 2) - Application.Atan2(t3, 2)))
R=(BD /7 AC) ~ 0.5
Cells(, k) =R
i=i+1
If j = 65535 Then j = 0: k= k + 1
If kK = 100 then End
Next x

Next z

We give the plot of f(z,x):%,n:B when z:3~9999,x:i~ Z, it is showed in

v/2
. : , BD :
Figure 2-4. Obviously the maximum value of f(z,x)=A—C is about 4000 at which

z~9000 . If z increases, f(z,x)=i—2 will be smaller until f(z,x)=?<1 if

z>3x10", which can be showed in Figure 2-5 to Figure 2-11, from Theorem 1.9 we know

there are no positive integer solutions for equation (1-1) when n = 3. So we have the conclusion

of when z" > (3><107)3 then there are no positive integer solutions for equation (1-1), if n>3
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BD
then when E <1, zis of a value less than 3x10’.

4500

4000

B |.f\\_ ﬂnk__["ll"\\ |&.,-|.Ilg¢l \ o™ AN hl l.|||hﬂ ‘ﬂ;}jpll WI i|l| '!l"i .lw I“ "H"',"t" M \\ \"\ . “ ;.\

3000

1500

1000

500

O 1 1 O 0 1 0 0 O, 0

1000

500

z=1000~10310

Figure 2-5 Graphof f(z,X)= %, n=23,z=10000~ 10310
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Figure 2-6 Graphof f(z,x)= i—g, n=23,z=20000

700

600

400

300

200

Figure 2-7 Graphof f(z,x)= i—g, n =23,z =30000
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Figure 2-8 Graph of f(Z,X)=’Ii’\—l:c),n=3,z=105

20

Figure 2-9 Graph of f(Z,X)=i—2,n=3,z=lO6
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Figure 2-10 Graph of f(Z,X)=i—2,n=3,z=1O7

0.6

02 |easiisasnsnnsnsansinniisisasnahenssnsaasn

Figure 2-11 Graphof f(z,X) =i—2, n=32z=3x10’

If n=45,711 then from the results of this program we find the maximum values of

BD
f(z,x) =—— is less than 4000 which means there are no positive integer solutions for equation

(1-1).

3. Conclusion

In this paper we first prove there are no positive integer solutions for equation (1-1) when

N yn—l _ gt

n-2

<1, and then prove with the increasing of x the conclusion still holds when
X2 4 yH _ "

N yn—l _ gt

Xn—2 + yn—2 _ an

>1.
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