On The Proving Method of Fermat's Last Theorem

Haofeng Zhang
Beijing, China

Abstract: In this paper the author gives an elementary mathematics method to solve Fermat's
Last Theorem (FLT), in which let this equation become an one unknown number equation, in
order to solve this equation the author invented a method called “Order reducing method for
equations”, where the second order root compares to one order root, and with some necessary
techniques the author successfully proved when x*(n-1)+y~(n-1)- z(n-1) <= x\(n-2)+y*(n-2)-
z"\(n-2) there are no positive solutions for this equation, and also proves with the increasing of x
there are still no positive integer solutions for this equation when x*(n-1)+y(n-1)- z3(n-1)<=
x™(n-2)+y™(n-2)- z(n-2) is not satisfied.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless they are stated to be not.

Theorem 1.1. In the equation of
Xn + yn — Zn
ged(x,y,z) =1 (1-1)
n>2
X,Y,Z meet
X#Y,
X+y>z,

and if
X>y

then
Z>X>Y.

Proof: Let
X=Y,

we have
2x"=7"
and

Q/EX=Z

Where”\/E is not an integer and X, z are all positive integers, soX # Y .

Since
(X+y) =x"+CX" 'y +..+CI )y + y" > 2",
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o we get
X+Yy> 2z

Since

so we have
2">x",z2">y"

and get
Z>X>Y

when
X>Y.

Theorem 1.2. In the equation of (1-1), X,Y,Z meet

ged(x, y) =ged(y, z) =ged(x,z) =1.
Proof: Since X" +y"=z", if gcd(x,y)>1 then we have (X1” + ynl)X[ng(X, y)I =2"
which causes gcd(x, Y, Z)>1 since the left side contains the factor of [gcd(x, y)]n then the

right side must also contains this factor but contradicts against (1-1) in which gcd(X,y,z) =1,

so we have gcd(x, y) =1. Using the same way we have gcd(X,z)=gcd(y,z)=1.

Theorem 1.3. If there is no positive integer solution for

when p > 2 isa prime number then there is also no positive integer solution for

Proof: Since X +Yy" =2z has no positive integer solution, so there still no positive integer

solution for

(P4l =F

which means there is also no positive integer solution for

bef+lyf =)

So we only need to prove there is no positive integer solution for equation (1-1) when n is a
prime number.

Theorem 1.4. There are no positive integer solutions for equation (1-1) when X or Yy isa



prime number .
Proof: When X isa prime number, since

Xn — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),
so we have
ged(z -y, x)=x,

which means
Z—-Yy =X,
we have
X+y<z,
that contradicts against Theorem 1.1 in which X+ Yy >z, soitiswith Yy, which means there
are no positive integer solutions for equation (1-1) when X or Yy isaprime number .

Theorem 1.5. There are no positive integer solutions for equation (1-1) when z is a prime
number .

Proof: When 2z is a prime number, from Theorem 1.12 we only consider the case of N> 2 is
a prime number, since

X"+ y"=2"=(x+ y)(x”‘1 Fot y”‘l),
S0 we have
ged(x+y,z)=1z,
from Theorem 1.1 we know X+ Y > Z, so we get

X+Yy>2z,

that contradicts against Theorem 1.1 in which z > X >y = X+ Yy <2z, which means there are

no positive integer solutions for equation (1-1) when 2z is a prime number .

Theorem 1.6. There are no positive integer solutions for
1"+y"=2".

Proof: Since
1=2"—y" = (z-y\2" + 2" 2y + .t 2y" 2 4y ?)

where

z-y=1
(2" + 2" 2y ok 2y 2y ) =1
that causes z, Y to be non positive integers, so there are no positive integer solutions for

1"+y"=2".



Theorem 1.7. There are no positive integer solutions for
2"+ y"=2".
Proof: Since

2n — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),

z-y=1
"ty zy" Pyt =2
then taking the least value for y =2,z =3, we have

M 2x3 24 42" 20

when N> 2 thatisimpossible. If
7—-y=2'

n-1

"y Yy iy =2

i+j=n
i>1

then z>2 and taking the least value of y =2,z =3, we get

I 42x3 442" > 2
with n>2 that is also impossible, so there are no positive integer solutions for
2"+y"=2".
Theorem 1.8. There are no positive integer solutions for equation (1-1) when n — oo and
X,Y,Z inequation (1-1) meet

z<WExx>Zy>Lz>&

Proof: Since X"+y"=2z",let x>V, we get

SRb

since
Z>X>Y,

so we have

Z<Q/§X,

and



Z n n
Iim(—j —(lj —o>1
nN—oo X X
which means there are no positive integer solutions for equation (1-1) when n — 0.

According to Theorem 1.6, 1.7 we have X>2,y>12>3.

Theorem 1.9. There are no positive integer solutions for equation (1-1) when X, Y,z <100.

Proof: From Theorem1.8, we know 7 < Q/EX , SO we have

100
82
when n =3, we have the smallest values for X, so we get

(%< xj:(79<x),

from Theorem 1.4, 1.5 we know X, Y, Z are all not prime numbers. There are below

<X,

combinations of X, Y,z when X,Yy,z<100:

(x=80~99)" +(y=4~(x-1)) =(z=81~100)"
X+y>z

X2 +y?>7°

x)+yl >z

j<n

Here we take 7" +9" =10" for example to explain how to prove. We plot the graph for this

equation as showed in Figure 1-1.

()

f)=7"+9" 10"

Figure 1-1 Graphof f(n)=7"+9"-10"



Obviously for equation f(n)=7"+9"-10" in Figure 1-1, we have 3<n<4 isnotan

integer so there are no positive integer solutions, using this method we have the conclusion of
there are no positive integer solutions for equation (1-1) when z <100.

Using the method of which we prove Theorem 1.6, 1.7 we can prove when X,y <100, there are

no positive integer solutions for equation (1-1).

Theorem 1.10. In the equation of (1-1), X,Y,Z meet

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i

where
n>i>1.
This theorem holds true when X,Y,Z are positive real numbers but N must be a positive
integer.
Proof: From equation (1-1), since

Xn+yn:Zn’

from Theorem 1.1, since Z > X> Y, we have

n—i n—i (in n—i [yjl n—i n—i
Xy s = X Sy =2
z z

NG yn+i < (Zixn—i + Ziyn—i _ Zn+i>,
so we have

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i
This theorem means given X, Y,z if equation (1-1) has one positive integer solution then this
solution is the only one.

Theorem 1.11. There are no positive integer solutions for equation (1-1) when

X1y yn—l _ gt

Xn—2 + yn—z _ an

<1,

And in order to have positive integer solutions for equation (1-1),

N yn—l _ gt

Xn—2 + yn—z _ an

> 40
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must be satisfied.
Proof: In equation (1-1), let

a= Xn—2
b — yn72
c=2""

ax® +by® =cz’
Al ol
a"?x+bn?y=c"?z

Since we reduce the order of equation so the method is called “Order reducing method for

equations”. Let X>Yy and

y=x—f
Z=X+e
we have
ax’ +b(x— f F =c(x+ef
n-1 n-1 n-1

am2x+b"2(x—f)=c"2(x+e)

and

(a+b—c)x® —2(bf +ce)x+(bf 2~ ce?)=0
n-1 n-1 n-1
am2x+bm2(x—f)-c2(x+e)=0

the roots are

(bf +ce)+/(bf +ce)f —(a+b—c)bf > —ce?)
Xn—Z + yn—2 _ Zn—Z

and
a1 o
c?e+b"2f  Dbfy+cez
n-1 n-1 n-1 — _n-1 n-1 n—
an? pprz_cn2 * tY 12

1

There are two cases for bf 2, ce? when bf 2 >ce® and bf? <ce?.

Case A: If bf > ce?, from (1-2) when

(bf +ce)++/(bf +ce)f —(a+b—c)bf? —ce?)
Xn—Z + yn—2 _ Zn—Z

from Theorem 1.10 we know a+b—-c=x"?+y"?—-2"%>0, so we have

(1-2)

(1-3)



2(bf +ce)
Xn*Z + yn—2 _ Zn*

2

also from Theorem 1.10 we have X"+ y"™" —z"" >0, compare to (1-3) we get

bfy+cez  _  2(bf +ce)
anl + yn—l _ anl - anz + yn72 _ Zn*

7

n-1 n-1

+y"t -z

When — —
X"y -2

<1, we have
n-2

bfy + cez < 2(bf +ce)

that is impossible since from Theorem 1.8 we know y>2 and z>3.

When

(bf +ce)—+/(of +ce) —(a+b—c)bf > —ce?)
Xn—Z + yn—Z _ Zn—Z !

we have

bf +ce
Xn—2 + yn—2 _ an

2

compare to (1-3) we get

bfy + cez < bf +ce
anl + ynfl _ anl - Xn—2 + yn—2 _ an

7

n-1 n-1

+y"t -z
— yH — <1, we have
X"ty t—z

When

bfy + cez <bf +ce
that is impossible since from Theorem 1.8 we have already known y>2 and z>3.

Case B: If bf % <ce?, from (1-2) when

(bf +ce)++/(bf +cef +(a+b—c)ce’—bf?)
Xn—2 + yn—Z _ Zn—2 !

we can prove (bf +ce)’ >(a+b— C)(Ce2 —bf 2) since if not we have

(bf +ce)’ <(a+b—c)(ce’ —bf?)



and

[(2b+a)—c]bf 2 + 2bfce + [2c — (a + b)|ce? < 0
that is impossible since a+b—-c>0 and c¢>a,c>b,2c— (a + b)> 0. Sowe have

(bf + ce)(1+ V2 )

X<
X2 4 yn—z _ g2

compare to (2-4) we get

bfy +cez_ (bf +ce)1+2)

Xn—l + yn—l _ Zn—l Xn—2 + yn—2 _ Zn—2 '

n-1 n-1

+y"t -z
X2 4 ynfz _5

When <1, we have

n-2 =

bfy +cez < (bf + ce)(1+ \/E)< 2.5(bf +ce)
and

bf (x— f)+ce(x +e) < 2.5(bf +ce)
that leads to

2 2 2 2
_| 2:50f +ce)+bf® —ce? ,  ce’—bf }2.5

bf +ce 77 bf +ce

where possible values for X are 1, 2 but according to Theorem 1.6, 1.7 we know there are no
positive integer solutions.

When

(bf +ce)—/(of +cef +(a+b—c)ce’—bf?)
Xn—Z + yn—2 _ Zn—Z

is not possible since X <0.

So we have the conclusion of there are no positive integer solutions for equation (1-1) when

N yn—l _ gt

Xn—2+yn—2_zn— Sl'

2

Obviously we have

-1

Xn—l + yn—l _ Zn
bfy + cez < 2.5 bf +ce),
fy [an + yH _ anz ]( )

from Theorem 1.9 we know X, Y,z <100 there are no positive integer solutions for equation



(1-1), so we have

N yn—l _ gt

Xn—2 + yn—2 _ an

> 40,

2

which must be satisfied to have positive integer solutions for equation (1-1).

Theorem 1.12. Function f(x)=A"and g(x)=A* +B* are all monotonically increasing

“Convex functions”, where A, B are all positive real numbers and X is a real number.

Proof: Since monotonically increasing “Convex functions” meets

f=3 o
dx

frp= 9100 g
dx

for f (xX) = A%and g(x)=A* +B*, we have
f'(x)=A*InA>0,
f'(x)=A"In* A>0,
g'(xX)=A"InA+B*InB>0,
g"(x)=A"In> A+B* In?B >0,

so f(x)=A%and g(x)=A" +B* are all monotonically increasing “Convex functions”.

This theorem means that functions g(n)=Xx"+y", f(n) =z" are all monotonically increasing

“Convex functions”.

2. Proving Method

From Theorem 1.11 we know in order to have positive integer solutions for this equation,

N yn—l _ gt

"2 4 y“ _7

— >1 must be satisfied. We give the graph of this equation as showed in

n-1

n-1 n—1_
X _*Y . —>1,where AB//CD".

Xn—2 + yn—2 _ Zn

Figure 2-1 when
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N

1n-2 n-1 i

N yn—l _ gt

Xn—2 + yn—2 _ an >1

Figure 2-1 Graphof X" +y"=2" when

2

1. In Figure 2-1 we have
0 Zn - Zn_l 1 0
ZCDE =360" —arctan T —arctan T 7 -90°,
77 -1

and
BD — Xn—l + yn—l _ Zn—l

AC=x"2+y"2-z"2

When E >1 we have
AC

/ABE - Z/CDE = /D'CD + ZBED >0,
which means
/ABE > Z/CDE .

It is also very clear that if ZABE < ZCDE then i—[c) <1

From Theorem 1.9 we know if zZ <100 then there are no positive integer solutions for equation
(1-1), when n =3 (which is the worst case) we have
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n_ ,n-1
/CDE = 270° —arctan| =—%— |~ arctan %
1 Zn 1 Zn 2

= 270° — arctan(100° ~100% )~ arctan[ j >179.99°

100% =100

and

Z/ABE > /CDE >179.99°,
which means ZABE, /CDE —180°, so ABE,CDE are almost lines with z >100,n >3,
BD 1 . . . .
that leads to A—C—>§<1, which contradicts against BD > AC. So when z,n is large

B x4 yn—l _ g1
enough then = <1, from Theorem 1.11 we know there are no positive
AC X" 24 ynfz _ "2

integer solutions for equation (1-1).

2. For function

n _ n-1
f (z) = ZCDE = 270° —arctan 272 ) arctan| —
1 Zn—l _ Zn—2

3 " — "t 1
=— —arctan —arctan B E——
2 1 2" —27"

we give the function plot for it in Figure 2-2.

S

186

1 i i i 1 i i i 1 -

n _ n-1
Figure 2-2 Graphof f(z)=«CDE =270° - arctan[ . 12 J— arctan(ﬁj
2" -2
where we take 7 =3.1415926535897932
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Obviously f(z)=~ZCDE is a “Monotonically increasing function” when z >3, and with the

increasing of z the value of f(z)=~ZCDE is close to 180°. It is very clear that
Z/ABE — ZCDE is decreasing with the increasing of Z, since
(£ABE — ZCDE = #D'CD + /BED)<180° - ZCDE,

where /CDE is increasing. When n=3 since ~/CDE >179.99°, so we have

(«D'CD + ZBED)<180° — ZCDE <180° -179.99° < 0.01°,
which means
/BED, ZD'CD <0.01°,
andwhen z or n is large enough, we have
ZABE — ZCDE = (£/BED + ZD'CD)— 0,
which means BD < AC that contradicts against BD > AC . So when zZ or n is large

B X"y yn—l _ g1
enough then = <1, from Theorem 1.11 we know there are no positive
AC X" 24 ynfz _ "2

integer solutions for equation (1-1).

3. In Figure 2-1 we have

n n n-1 n-1
ZABE = §7z - arctan[ X+y —X y J - arctan( 1 ol : n-2_ . n-2 j '
2 Xty -y

1

n n-1
LCDEzgﬂ—arctan £-z —arctan % .
2 1 Zn _Zn
SO

ZABE - ZCDE =

Zn _ Zn—l 1 Xn + n _ Xn—l _ n-1
arctan| ———— |+ arctan{ﬁj —arctan y y
1 7" -1 1

1
- arCtan( n-1 n-1 n-2 n—2j
X"y X" -y

From (1-1) we have
1

z:(x”+y”ﬁ

we get
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ZABE - ZCDE =

i n-1
X"+y"=x"+y")n 1
arctan y ( y r +arctan -

. by ) ey

X" 4y _x" L ynt 1
—arctan y y —arctan n-1 n-1 n-2 n-2
. 1 X +y =X "-y

We give the plot of f(X,Yy)=ZABE — ZCDE using Excel VBA program that showed below:

n=3
For x = 1 To 10 ~ 5 Step 1
For y =1 To x - 1 Step 1

z="™n+y”~n~@/n)
tl=z~n-2z"( -1)
t2=1/E"*"M-1) -z~ (M - 2))
B="n+y”*n-x*"M-1D+y”®-1))
t4=1/""M-1D)D+y*"(M-1))-x"(M-2) -y~ -2)
CDE = Application_Atan2(tl, 1) - Application.Atan2(t2, 1)
ABE = Application.Atan2(t3, 2) - Application.Atan2(t4, 2)
R = CDE - ABE
Cells(i, 1) = "z=" & z

Cells(i, 2) Ux=" & X

Cells(i, 3)

y=" &y
Cells(i, 4) =R
i=i+1
IT i > 65536 Then End

Next y

Next x
Figure 2-3 shows the results, obviously f (X, y)=ZABE — ZCDE,n=3 is decreasing.

0.00007

0.00008

0.00005

0.00004

f(x,y,2)

0.00003

0.00002

0.00001

2501 5001 7501 10001 12501 15001 17501 20001 22501 25001 27501 3000
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Figure 2-3 Graphof f(x,y)=ZABE—-~ZCDE,n=3

4. In Figure 2-1 we have
BD? = BE? + DE? — 2BE x DE x cos(/BED)
_(z” -~ z”‘l)2 +1+
(x” +y" X"t - y“‘l)2 +1

= —2\/(2” - z”‘l)2 +1><\/(x“ +y"—x"t - y”‘l)z +1x

1 1
cos(arctan( — j - afCta”(—n =) ]J
X"+y'=x"-y Z -z

AC? = AE? + CE? — 2 AE x CE x cos(ZAEC)
_(z“ — z”‘z)2 +4+
(Xn Ly xR ynfz)2 44

= —2\/(2” —z“‘2)2 +4><\/(x” +y"—x"? - y”‘z)2 +4x

2 2
cos(arctan( — ) - afCtan(—n 2 ]J
X"+y' =Xx""—y Z -1

from (1-1) we have

and

1

y= (z” —X" )F :
. BD
We give the plot of f(z,X) = A_C using Excel VBA program that showed below:

n=3
For z = 10 ~ 7 To 10 ~ 9 Step 1
Forx =z /7 @7~ @ /n) Toz -1 Step 1

y=@”"™n-x2~n"™~@/7n

tl=z~n-z"(n-1)

2=x*"n+y”~*n-x~"(M-1) -y~ ( -1)

t3=z~"n-z"(n -2)

tA=x*"n+y”~*n-x"(M-2) -y~ -2)

BD=(tl "2+ t272"2+2-2*Sqr((tl ~2 + 1) * (t2 ~ 2 + 1)) * Cos(Application.Atan2(t2,
1) - Application.Atan2(tl, 1)))

AC=(t3"2+t47"2+8-2*Sgr((t3 "2+ 4) * (t4 ~ 2 + 4)) * Cos(Application.Atan2(t4,
2) - Application.Atan2(t3, 2)))

R=(BD /7 AC) ~ 0.5

Cells(, 1) = "z=" & z

Cells(, 2) = "x=" & x

Cells(, 3) = "y="& vy
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Cells(, 4) =R

i=iva

If j > 65536 Then End
Next x

Next z

BD z
We give the plot of f(Z,X)=E,n=3 when z=10",x=——=~2, n=3, itis showed in

v/2

Figure 2-4.

45

{z, x)

|
| unm«l'ﬁ

i
|

|

i
mMunhmﬂmhhmhh il

I
A

1 3001 6001 8001 12001 15001 18001 21001 24001 27001 30001

‘M

v, 2

BD
Figure 2-4 Graphof f(z,X)=——,n=3
g p (z,%) AC

. . . BD .
With the increasing of z,n the value of f(z,X) =A_C will be smaller, and we are sure of
when z,n — oo or get larger, the conclusion holds. In fact even z =106, we can still have a

result of f(z,X) =E <40.
AC

5. In Figure 2-1 let S, S be the areas of triangles ACDE, AABE , we have

CD x DE xsin(£CDE)
Scoe = 2

\/(z“ — 7™ +1><\/(z“‘1 —22f +1x

) 3 Zn _ anl 1
sin| — —arctan —arctan| ————
2 1 2" -1z

B 2
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\/(“ ”1)2+1><\/ - ”2)2+1><

- 1
cos| arctanf ——— |+ arctan a2
-7

2

AB x BE xsin(£ABE)
Spee = 2

\/(Xn Lyt X" yn—l)z +1X\/(anl Lymtoxn yH)Z +1x

n n _ n-1 _ n-1
sin §7r arctan| X FY =X Y |arctan - - L - )
2 1 Xn _I_ yn _ Xn _ yn

2
\/(Xn + yn _ Xn—l _ yn—l)2 +1X\/(Xn_1 + yn—l _ Xn—2 _ yn—z)2 +1x

_ n n_n-1_n-1
cos(arctan(x Ty X y j+ arctan[ 1 nd ! n2 n-2 J]
1 XTT4+Yy T=X""—-y

2

BH BH
=4 —
2 2

from (1-1) we have
1

yz(z”—x”)ﬁ.

BH
We give the plot of f(z,X) = oI using Excel VBA program that showed below:

= BH,

n=17
For z = 3 To 10 ~ 7 Step 1
Forx=z/@~”@/n)Toz-1

y=@”™n-x2n)"@/7n
IFfy>xTheny =x -1
tl1=z"~n-z"(n-1)
t12=z~"(M-1) -z~ - 2)
CDE = Application.Atan2(1, t11) + Application_Atan2(t12, 1)
scde = -Sgr(tl1 ~ 2 + 1) * Sqr(tl2 ~ 2 + 1) * Cos(CDE) 7/ 2
21 =x*n+y”~*n-x~"(M-1) -y~ ( -1)
2 =x""M-D+y*"M-1) -x*("-2) -y~ -2)
ABE = Application.Atan2(1, t21) + Application.Atan2(t22, 1)
sabe = -Sqr(t21 ~ 2 + 1) * Sqr(t22 ~ 2 + 1) * Cos(ABE) 7/ 2

R = scde / sabe
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Cells(i, j) =R
i=i1+1
Ifi=6535Then j=j+1:i=0
If j = 10 Then End

Next x

Next z

The result of this program shows that when n2>7, the values of S.c,S,sz are all negative

that contradicts against Theorem 1.12 (since /CDE, ZABE <180°, s0 Sy, S ase Must be

positive values), which means there are no positive integer solutions for equation (1-1). In fact the
results of this program include the possible positive integer solutions, so if there is a contradiction

then (1-1) can not have positive integer solutions. Obviously the larger of z" then ABE,CDE

are almost lines, but for positive integers that could lead to negative values of S.pz, S ge - FOr

f(z,x) =%, the program shows that f (z, X) =%—>l, which means Eel when

n>3.

3. Conclusion

In this paper we first prove there are no positive integer solutions for equation (1-1) when

1

Xn—l + yn—l _ Zn—
> <1, and then prove with the increasing of x the conclusion still holds when

Xn—2 + yn—z _ an

1

Xn—l + yn—l _ Zn—
> >1 under the assumption of z < 10°,n=3.Andwhen n>7 there are no

Xn—2 + yn—2 _ an

positive integer solutions for equation (1-1).
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