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Abstract

In this short paper we look at the Hawking temperature from a Newtonian perspective as well as a General
Relativity perspective. If we are considering the Hawking temperature, and simply replace the gravitational
field input in his 1974 formula with that of Newton, we will get a Hawking temperature of half of that of the
well-known Hawking temperature formula. This is very similar to the case where Newton’s theory predicts half
the light bending that GR does. Based on recent theoretical research on Newton’s gravitational constant, we
also rewrite the Hawking temperature to give a somewhat di↵erent perspective without changing the output of
the formula, that makes some of the Hawking formulas more intuitive.
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1 Hawking Temperature in the Newtonian Gravitational Field

versus General Relativity Theory

In 1974, Hawking [1] introduced the idea of black-hole radiation and a corresponding temperature at the black
hole’s surface, better known today as Hawking radiation and Hawking temperature. In this paper, we will look
at Hawking temperature from a Newtonian perspective, a general relativity perspective, and a newly-introduced
modified Newtonian gravitational field approach.

The Hawking temperature formula is known today as

T =
c3

8⇡GM
h̄
kb

(1)

where c is the speed of light, G is the Newton gravitational constant, M is the massh̄ is the reduced Planck
constant, and kb is the Boltzmann constant. The Hawking temperature was originally stated as

“one would expect if the black hole was a body with temperature of (/2⇡)(h̄/2kb)...”
– Stephen Hawking 1974

where  is the surface gravity of the black hole. If we assume, for simplicity’s sake, the Newton surface
gravity at the Schwarzschild radius, we have

 = g =
GM
r2s

(2)

Replacing the  in the Hawking temperature formula with this we get

T =

GM
r2s
c

2⇡
h̄
2kb

T =

GM✓
2GM
c2

◆2

c

2⇡
h̄
2kb

T =

GM
4G2M2

c4

c

2⇡
h̄
2kb

T =
c3

8⇡GM
h̄
2kb

(3)
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this is o↵ by a factor of 1
2 relative to the Hawking temperature formula. The main reason for the di↵erence

is that the Hawking temperature formula is derived from the Schwarzschild metric solution of general relativity
theory. The Newtonian gravitational field does not take into account the bending of space-time, which is known
to be di↵erent in strong gravitational fields than what was described by Newton.

We find it interesting, however, that the Hawking temperature derived from Newton’s gravitational field
inputs seems to be o↵ by 1

2 relative to the GR solution. This is very similar to Newton bending of light first
derived by Soldner [2, 3], which is also o↵ by a half, relative to GR predictions, which has basically been confirmed
experimentally.

2 Hawking Temperature from a Gravitation Composite Con-

stant Perspective

Recently, Haug [4, 5, 6] has given strong evidence for the concept that the Newton gravitational constant is a
composite constant of the form

G =
l2pc

3

h̄
(4)

where lp is the Planck length. The Planck length was introduced by Max Planck in 1899 in the form

lp =
q

Gh̄
c3

. One can solve Max Planck’s formula for the Planck length with respect to G and get the formula

4, or one can use dimensional analysis as shown by Haug [4]. In 2014, McCulloch [8] derived basically the same
gravitational constant from Heisenberg’s uncertainty principle; his formula was

G =
h̄c
m2

p
(5)

and because the Planck mass can be written as

mp =
h̄
lp

1
c

(6)

we can see that this is the same as the Haug formula

G =
h̄c

h̄
lp

1
c

h̄
lp

1
c

=
l2pc

3

h̄
(7)

It may seem that we are introducing a circular problem here without a solution. e.g. that to write the Newton
gravitaional constant in a composite form, we need to know the Planck length (or Planck mass), and to know the
Planck length we need to know the Newton gravitational constant, and that to write the gravitational constant
this way is just biting oneself in the tail. Haug [9] has however recently shown that the Planck length (and
thereby the Planck mass and Planck time) can be measured experimentally using a Cavendish [10] apparatus
totally independent of any knowledge of the Newtonian gravitational constant.

Returning to the Hawking temperature formula, the formula itself gives very little intuition, except we can
see that the temperature is inversely related to the mass. Interestingly, if we rewrite it in the view that Newton’s
gravitational formula is a composite, we get

T =
c3

8⇡GM
h̄
kb

T =
c3

8⇡
l2pc

3

h̄ Nmp

h̄
kb

T =
c3

8⇡
l2pc

3

h̄ N h̄
lp

1
c

h̄
kb

=
1

N8⇡

h̄
lp
c

kb
=

1
N8⇡

mpc
2

kb
(8)

where N is the number of Planck masses in the mass. The part
mpc

2

kb
is easily recognizable as the Planck

temperature. So, the Hawking temperature is basically a factor 1
N8⇡ multiplied by the Planck temperature

(known from before, but not derived in this way). We can also clearly see from the formula that the Hawking
temperature falls with the number of Planck masses in the gravitational mass. This way of writing the Hawking
temperature is more intuitive than its original form and we can see that after it is rewritten in this form we
no longer have c3, but rather c2, which is simply is connected to the well-known energy mass relationship of
Einstein [7].

Also related to Hawking radiation is the Hawking luminosity for a black hole; this is given by
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P =
h̄c6

15360⇡G2M2
(9)

Again, we can rewrite this based on the view the gravitational constant is a composite constant, and we get

P =
h̄c6

15360⇡
⇣

l2pc
3

h̄ N h̄
lp

1
c

⌘2

P =
h̄c6

15360⇡l2pc4N2

P =
1

N215360
h̄c2

l2p
(10)

According to Hawking, the time it takes for a black hole to dissipate is

tev =
15360⇡G2M3

h̄c4

Rewritten based on the view that the gravitational constant is a composite constant, we get

tev =

15360⇡

✓
l2pc

3

h̄

◆2 ⇣
N h̄

lp
1
c

⌘3

h̄c4

tev =
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l4pc
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h̄2 N3 h̄3

l3p

1
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3N3h̄
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tev = 15360⇡
lp
c

= 15360⇡tp (11)

that is the time it takes for a black hole to dissipate is the constant 15360⇡ times the Planck time. This
formula is already known and one can write the Hawking dissipate time as

tev = 15360⇡

r
Gh̄
c5

(12)

where
q

Gh̄
c5

is the well-known Planck time as first described by Planck in 1899. In Table 1 we show the

traditional form of writing the Hawking dissipation time and luminosity, as well as the deeper form shown here.
This is presented from a somewhat di↵erent perspective, as we do not need to know G to measure the Max
Planck natural units, all we need is a Cavendish apparatus, according to recent work by Haug.

Original form Deeper form

Hawking temperature
c3

8⇡GM
h̄
kb

T =
1

N8⇡
mpc

2

kb

Hawking dissipation time tev =
15360⇡G2M3

h̄c4 T = 15360⇡ lp
c = 15360⇡tp

Bekenstein?Hawking luminosity P =
h̄c6

15360⇡G2M2 P =
1

N215360
h̄c2

l2p

Table 1: The table of a series of measurements that actually can be observed/measured in relation to gravity, and

also the gravitational force that we cannot observe and measure.

3 Conclusion

In this short paper, we have shown that by simply replacing the gravitational field in the Hawking temperature
with that of Newton we get a Hawking temperature of just half of that predicted by Hawking. This seems
natural as the gravitational field in GR and Newton are di↵erent. By viewing the gravitational constant as a
composite, we can rewrite the Hawking temperature without changing its output; this may be a more intuitive
way of studying this temperature. This alternative way of writing these formulas has existed for some time, but
it was assumed that we needed to know G in order to calculate the Planck mass, the Planck length, and the
Planck time. Based on new work, we find that this is not the case, since this calculation can be done with no
knowledge of big G, by using results from a Cavendish apparatus, as recently shown by Haug.
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