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Summary 

The relativistic nature of  matter has never been well understood.  Equations accurately model relativity without an 
explanation for why it occurs.  At relativistic speeds (closer to the speed of  light), an object’s mass increases 
significantly, but where does this energy come from?  Time slows for objects at relativistic speeds, but how is time 
related to matter and its speed?  An object shrinks in the direction of  motion, known as length contraction, but why 
does this happen? 

In wave structure of  matter theories, the energy of  particles is based on standing waves of  energy, as a combination 
of  in-waves being reflected at a particle’s core to generate out-waves.  The combination of  these waves create standing 
waves until the amplitude diminishes to return to traveling wave form.  A branch of  this work on the wave structure 
of  matter, Energy Wave Theory, has accurately modeled particle rest energy, photon energy and forces based on a 
fundamental energy equation based on wave properties.  However, the original equation, and its derivations, assumed 
a particle at rest.   

In this paper, particle motion is considered in the Energy Wave Theory equations.  The addition of  particle velocity 
into the equations derives and explains the nature of  relativity as a Doppler effect of  a particle’s mean wavelength 
change.  The addition of  a change in wave amplitude relates particle spin to magnetism and gravity.  These new 
additions to the equations are first described, and then proven to derive the existing Energy Wave Equations and 
calculations for particles at rest.  Next, they are shown to derive and prove relativistic energy.  Finally, the correct 
equation for kinetic energy is described from these equations and compared to the stored energy of  gluons in the 
proton.  

 

Energy Wave Equation Additions – Changes to Wavelength and Amplitude 

The equations for Energy Wave Theory originated from the principle of  longitudinal in-waves reflecting upon a wave 
center to become longitudinal out-waves, from Dr. Milo Wolff ’s work On the Spherical Wave Nature of  Matter and the 
Origin of  the Natural Laws.1  The combination of  these waves creates a standing wave to a defined perimeter known 
as a particle’s radius.  This principle was expanded to determine a method of  calculating the rest energy of  each 
particle based on a combination of  wave centers, found in Particle Energy and Interaction.2 Two key energy equations 
were created for longitudinal standing waves (particles) and for transverse waves (photons).  These energy equations 
were used to derive forces, constants and known equations in physics in the subsequent papers: Forces3, Fundamental 



 

 2 

Physical Constants4, Key Physics Equations and Experiments5and Atomic Orbitals6.  The equations, their notation and the 
constants are found in the Appendix of  this paper. 

The original equations did not assume particle motion, nor a slight change in amplitude as a result of  wave center 
motion.  The equations accurately calculate a particle’s energy, particularly the electron, when at rest.  When in motion, 
a particle’s energy changes, although it is not detectable until relativistic speeds are achieved.  In this paper, the 
additions for particle velocity (v) are added to account for relativistic speeds and its changes on energy and hence 
forces.   

In Fig. 1, a visual of  the in-waves that affect a particle are described.  A particle responds to spherical, longitudinal 
waves that travel as wavelets according to Huygen’s principle.7  These waves are reflected at wave centers, that 
combine to create particles, similar to protons in a nucleus that form an atom.  The number of  wave centers in 
combination affect the amount of  energy that is reflected and the standing wave radius.  The energy within the 
standing wave radius is stored energy – the rest mass and energy of  a particle.  Meanwhile, the wave centers at the 
core of  a particle constantly move to minimize wave amplitude – the fundamental rule of  motion and forces – 
causing individual wave center motion and the spin of  a particle.  The motion of  the particle affects the wavelength 
and amplitude of  the waves that are reflected.  However, energy is always conserved.  The in-wave energy (El(in)) is 
perfectly equal to the out-wave energy, which now takes two forms: a longitudinal out-wave (El(out)) and a new 
transverse wave due to the spin of  the particle (Em(out)). 

 

Fig 1 – Conservation of Energy: In-waves and Out-waves of a particle 

 

The conservation of  energy relative to the particle can be captured as: 

 (1) 

At the particle-level, an entire particle in motion affects the leading and trailing (lag) wavelengths.  This phenomenon 
is seen throughout wave mechanics and is modeled by Doppler principles.8  The leading wavelengths are shorter in 
the direction of  motion and longer in the trailing edge.  The changes to the leading wavelength (λl(lead)) and trailing 
wavelength (λl(lag)) for both the in-waves and out-waves are found in Fig. 2.  These additions account for spherical, 
longitudinal waves that have a maximum wave speed of  c (speed of  light) and the particle’s velocity (v).  

El in( ) El out( ) Em out( )+=
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Within the particle, wave centers are constantly in motion responding to in-waves and adjusting to the point of  
minimal amplitude.  Stable wave centers are at the node of  standing waves where amplitude is minimal.  Any wave 
center not at a standing wave node will have motion to move to the nearest node.  This causes the entire structure to 
spin.  It also affects the amplitude in the direction of  motion.  A wave center not at the node will use some of  the 
wave energy (amplitude) for motion.  It increases amplitude on the leading edge and decreases amplitude on the 
trailing edge as shown in Fig. 2.  

 

Fig 2 – Changes in Wavelength and Amplitude due to Motion 

 

The changes for wavelength are added to the in-wave of  the Longitudinal Energy Equation below in Eq. 3 and 
highlighted in red.  This accounts for particle velocity (v) whereas the original equation assumed a particle at rest.  
For the complete derivation of  the Longitudinal Energy Equation, see Particle Energy and Interaction. 

 

(3) 

Similarly, in Eq. 4, the changes to the out-wave of  the Longitudinal Energy Equation are also adjusted for the changes 
in wavelength and highlighted in red – in the denominator.  In the case of  the out-wave, it is now affected by the 
amplitude change found in Fig. 2.  It only affects the amplitude in the direction of  motion.  This change is also circled 
in red and is found in the numerator of  Eq. 4. 

 

(4) 
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Finally, a third equation is required for the conservation of  energy.  The energy lost to the changes in amplitude (Eq. 
4) are the cause of  particle spin and the particle’s magnetic moment.  Although the energy value is very slight, it must 
be accounted for in magnetism and also gravitational calculations.  Using the conservation of  energy, the particle 
spin energy (Em) is described in Eq. 5.  It accounts for the transfer of  energy of  amplitude as it creates a new spin 
(transverse) wave that is perpendicular to the motion of  the wave center.  

  

(5) 

These additions to the Energy Wave Equations are only required when determining relativistic energies (when 
particles travel at very high speeds closer to the speed of  light), and when considering very low energies for the 
calculations of  magnetism and gravity.  These equations are considered the complete form.   

 

Particle at Rest – Proof  of  Existing Equations 

The additions to the Energy Wave Equations are first tested for a particle at rest, and for magnetism and gravity, to 
ensure that these additions still derive existing equations and calculations found in previous papers.  In the following 
section, they are tested for a particle in motion to explain relativity. 

 
Electron Rest Energy and Mass 

To be consistent with the existing Longitudinal Energy Equation, hereafter called the short form of the equation, 
the long form of the equation needs to be able to calculate a particle’s rest energy and mass.  This is where velocity 
(v) is zero. 

The electron was found in Particle Energy and Interaction to contain 10 wave centers.  This constant is used through the 
equations as Ke (K=10).  The core of  the particle has the greatest amount of  energy (Ecore).  It is calculated at one 
wavelength from the particle where the first in-wave and out-wave combines for a standing wave.  This is represented 
mathematically by Eq. 6. 

 

Fig 3 – Electron (10 wave centers) 

 (6) 
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The number of  wave centers in a particle affects the radius and transition of  standing waves to traveling waves.  The 
number of  standing waves is proportional to wave centers to reach an amplitude where this breakdown occurs, thus 
the electron has ten standing waves.  Fig. 4 provides a visual of  the electron’s standing waves – it is stored energy (i.e. 
mass). 

 

Fig 4 – Electron Standing Waves (stored energy) 

 

The electron’s entire energy that is stored within its radius (classical electron radius) is standing wave energy.  By the 
property of  standing waves, it has the appearance of  not moving.  It is stored.  Yet, there are in-waves and out-waves 
creating this behavior.  Since amplitude diminishes from the core, the entire electron’s energy (Ee) is represented by 
Eq. 7, where the Oe is the factor that is applied to the core energy, showing the diminishing effect with each 
wavelength until it reaches the last wavelength at Ke.  The details of  this explanation can be found in the original 
derivation in Particle Energy and Interaction. 

 (7) 

 
(8) 

Now, to prove that the rest energy of  the electron still matches the original calculations, the long forms of  the 
Longitudinal Energy Equation (Eqs. 3 and 4) are used when velocity is zero (v=0).  Eq. 3 and 4 are inserted into Eq. 
7, where v=0.  This combination is found in Eq. 9 and simplified in Eq. 10.  At rest, the equations derive to the short 
form of  the Longitudinal Energy Equation and the electron’s rest energy, mass and units are calculated correctly.9 

 
(9) 

  
(10) 
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Calculated Value: 8.1871E-14 
Difference from CODATA: 0.000% 
Calculated Units: Joules (kg m2/s2) 

 

Electron rest mass is the same Longitudinal Energy Equation without c2 in the equation.  Mass is simply standing, 
longitudinal waves of energy.  This further validates that the long form equation matches electron rest mass. 

  

(11) 

Calculated Value: 9.1094E-31 
Difference from CODATA: 0.000% 
Calculated Units: kg   

 

Gravity and Magnetic Moment 

In the Forces paper, the spin of  a particle is described as a new transverse out-wave.  This wave is responsible for 
magnetism.  At rest, the energy of  magnetism is very small, but since it is a transverse wave, its energy is focused in 
a one-dimensional wave.  This energy needs to be accounted for using the conservation of  energy principle.  The 
loss of  amplitude due to the wave center’s motion, while creating spin, results in a reduction of  longitudinal out-wave 
energy.    

Although longitudinal in-waves are three-dimensional and spherical from all directions, a simple visual is found in 
Fig. 5.  Most of  the in-wave energy will be reflected back to become out-waves.  However, some of  this energy is 
used for the motion of  a wave center (marked in red).  As it moves, it changes the amplitude of  the out-wave, reducing 
it slightly.  This is noted in the figure with a smaller line relative to the in-wave. 

 

Fig 5 – Reduction in Out-Wave Amplitude Due to Spin 

 

Using Eqs. 3 and 4 from the long form of  the Longitudinal Energy Equation, the difference of  the energy from the 
in-wave to out-wave can be calculated.  When this difference is shown as a ratio relative to the in-wave energy, the 
calculated value is 2.4 x 10-43.  This is a very slight difference in energy, but it is the ratio that is known as the coupling 
constant of  gravity for the electron (relative to the electric force).  This calculation is consistent with the calculations 
of  gravity in the Forces paper, showing that the long form of  the equation does indeed match existing calculations.   
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(12) 

 

  
(13) 

 

Calculated Value: 2.400E-43 
Calculated Units: N/A (dimensionless) 

 

At rest, particles have a magnetic moment.  With particle motion, the spin energy changes and is found in 
electromagnetism.  Here, the spin energy is calculated when a particle is at rest and compared to the previous 
derivation of  the electron’s magnetic moment in the Forces paper.  From Fig. 1, the focus is the transfer of  energy 
from the in-wave to the transverse component of  the out-wave – responsible for the electron’s magnetic moment. 

 

Fig 6 – Transverse Out-Wave Responsible for Magnetism 

 

Rearranging Eq. 1, the magnetic energy is found to be: 

  (14) 

Using the long form of  the equation for the transverse wave (Eq. 5).  Note that it uses a volume of  the Planck length 
(lP), which can be derived in wave equation format (see Fundamental Physical Constants paper), but is kept in classical 
format here in this form of  the equation. 
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(15) 

The equation above can be re-written in a different form moving the terms (the value remains the same).  Eq. 16 
represents the out-wave.  The volume of  Planck length (cubed) is now separated to the three dimensions.   

  

(16) 

The circled term above is the root of  the Bohr magneton.  Four Bohr magnetons are found in the magnetic (spin) 
energy equation of  Eq. 16, as transverse waves originate from four vertices of  the tetrahedral particle as it spins.  
Thus, one Bohr magneton is ¼ of  the term on the right.  Its units are m3/s, which is the flow rate of  the volume of  
the transverse wave.  For details on the derivation, the units and the inclusion of  the g-factor, refer to the Fundamental 
Physical Constants paper (note that the paper has an expanded derivation after replacing Planck length in wave equation 
constants, but the value and units remain the same). 

  
(17) 

 

Calculated Value: 9.2740E-24 
Difference from CODATA: 0.000% 
Calculated Units: m3 / s 

 

For a particle at rest, the key derivations and calculations remain the same using the new long form of  the equation, 
as evidenced by the calculation of  the electron’s energy, mass, magnetic moment and gravitational coupling constant. 

 

Particle Motion – Relativity and Kinetic Energy 

Relativity  

When a particle is in motion, it increases its energy.  The increase is negligible until reaching significant speeds, relative 
to the speed of  light, so relativity is often ignored in many calculations.  The reason for relativity, including relativistic 
mass increase, time dilation and length contraction are all related to the same principle seen in wave mechanics with 
the Doppler effect.  A particle in motion changes the wavelength.   
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Fig 7 – Particle in Motion Affecting Wavelength – The Cause of Relativity 

 

The new wavelength (squared) is found when multiplying the leading and trailing wavelengths:  

  

(18) 

This is the Lorentz factor (𝛄):10 

  

(19) 

The complete derivation to find the Lorentz Factor is found when using the long form of  the Longitudinal Energy 
Equation for the in-wave (Eq. 3).  It is shown again in Eq. 20 and then simplified in Eq. 21.  The Lorentz factor can 
be now found in the energy equation when velocity is considered. 

  

(20) 

  

(21) 

The symbol for the Lorentz factor is used instead and the equation becomes: 
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(22) 

Similarly, the out-wave is simplified just like the in-wave (simplifying Eq. 4).  Using the same steps as the in-wave, the 
out-wave simplifies to: 

  

(23) 

Since the electron is a combination of  in-waves and out-waves that are added to become standing wave energy, found 
in Eq. 7 and replicated in Eq. 24.  Now, the difference between the rest mass of  the electron and the relativistic 
version is simply the addition of  the Lorentz contraction factor in the equation. 

  (24) 

  

(25) 

This is the relativistic version of  particle energy.11  The electron’s energy is the rest mass version (Ee0) and the 
Lorentz contraction factor.  

  
(26) 

 

Kinetic Energy - Correct Equation 

Kinetic energy is the energy related to motion.12  Since a particle has rest energy, the total energy is the sum of  the 
motion (kinetic) and rest energy.  Typically, kinetic energy is modeled in physics for objects much larger than a particle, 
but these objects are a collection of  particles and thus the kinetic energy for an object can be thought of  as a 
collection of  particles with mass in motion.  An object, such as a car, would have kinetic energy based on the sum 
of  each of  the protons, neutrons and electrons.  For the purpose of  understanding kinetic energy, it needs to be 
considered at the particle-level.  

Fig. 8 shows an electron particle in motion with a velocity (v).  This electron has kinetic energy.   
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Fig 8 – Electron in Motion: Kinetic Energy 

 

Kinetic energy (Ek) is correctly modeled in the next three equations as the difference between total energy and rest 
energy of  a particle.  Eq. 27 models the kinetic energy of  a single electron in terms of  energy wave constants.  Velocity 
(v) is included in the Lorentz factor (𝛄).  Eqs. 28 and 29 model the kinetic energy of  a single electron in more familiar 
terms (electron energy, electron mass).  All three equations represent the same thing: kinetic energy is total relativistic 
energy subtract the rest energy.  These are the true equations for calculating kinetic energy. 

  

(27) 

  
(28) 

  
(29) 

 

Kinetic Energy - Approximation 

The correct form of  equations for kinetic energy are more cumbersome and unnecessary when speeds are low.  An 
approximation using Taylor series expansion is often used for non-relativistic speeds of  objects, which is often the 
case unless one considers calculations of  rockets, planets or anything with significant velocity.13  The Taylor series 
explanation of  Eq. 29 is more commonly used.  It is: 

  
(30) 

Eq. 30 is the Taylor expansion with the first two terms.  Additional terms can be added for more accuracy with the 
Taylor expansion method, but often the first two terms are sufficient for approximation.  Fig. 9 shows the velocity 
of  a single electron and a comparison of  the correct equation (Relativity - Eq. 29) versus the commonly used kinetic 
energy equation (Kinetic En. – Eq. 30).  Until relativistic speeds, they are nearly equal.  Beyond 10,000,000 meters 
per second, the values calculated by each equation begin to diverge.  Also note that the correct equation (Relativity 
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Eq.) correctly shows that the electron is unable to surpass the speed of  light, whereas the Taylor series approximation 
fails to account for this.   

 

Fig 9 – Correct Equation vs Approximation Equation (Taylor Series) for Kinetic Energy 

 

Particle Stored Energy – Strong Force 

It was described in the earlier section on the derivation of  the electron’s rest energy that mass is stored energy from 
longitudinal standing waves.  The combination of  in-waves and out-waves causes the standing wave form, and by 
definition, these waves are not moving.  It is stored energy. 

A second method of  storing wave energy is possible with transverse waves.  The spin energy of  a particle can be 
stored with two particles in close approximation.  This was modeled in the Forces paper as the gluon, which is 
responsible for the strong force.  To store this energy, two electrons need sufficient kinetic energy to be placed at 
standing wave nodes, where they remain at a position of  minimal wave amplitude (and thus do not repel).  

Kinetic energy can be stored.  An example is a ball attached to a spring, where the motion of  the ball compresses the 
spring until the point where the spring is held (compressed).  This transfers kinetic energy to potential energy.  The 
same logic applies to two electrons, that normally repel each other with a Coulomb force, but with sufficient energy 
to overcome it to the point where they are within each other’s standing waves and find a node position of  minimal 
amplitude. 

This logic was the underlying assumption in the Forces paper for the derivation of  the strong force and its calculations.  
However, that paper did not calculate the required velocity of  each electron required to overcome the Coulomb force 
to store the energy.  Now, using the long form of  the Longitudinal Energy Equation, the velocity can be calculated. 
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Fig 10 – Two Electrons Moving Toward Each Other with Significant Kinetic Energy 

 

In Figure 10, two electrons travel at high speeds towards each other.  With sufficient energy, they overcome the 
Coulomb (repelling force) and reach a standing wave node and stop.  This kinetic energy is transferred to stored 
energy, referred to as a gluon.  It is a transverse wave as the particles continue to spin, but it requires significant 
energy now to spin (equal to the energy of  the gluon).  

 

Fig 11 – Two Electrons Locked at Standing Wave Node with Stored Energy (transferred from Kinetic) 

In the Forces paper, the energy was found to be 137 times stronger in the axial direction between two electrons.  This 
is the inverse of  the fine structure constant.  It was also found that four electrons need to be arranged – likely in a 
tetrahedron geometry – to remain stable.  With three-dimensional spherical waves, the two-configuration 
arrangement of  electrons (shown in Fig. 11) would likely not be stable.  Refer to the Forces paper for details. 

Using the equations for kinetic energy from this paper, the minimum velocity of  each electron can be determined.  
The total stored energy (Es) for the gluon would be the kinetic energy of  each electron (Ee1 and Ee2), as described in 
Eq. 31. 

 
(31) 

Although it is very possible each electron could have a different velocity and still reach the same result, for simplicity 
of  this calculation, assume that the velocity of  electron 1 and electron 2 are the same.  Therefore, v2 = v1.  This is 
expressed as 2 times the energy of  electron 1, using the long form of  the electron’s energy (Longitudinal Energy 
Equation).   

 

(32) 
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For the stored energy to be equal to the energy of  the gluon, the electron’s kinetic energy needs to be roughly 137 
times larger than the electron rest energy.  This is the value of  the fine structure constant and the reason that the 
relative strength of  the strong force compared to the electric force is 137 stronger.  This can be represented in Eq. 
33.  Solving for v1 in Eq. 32 when Es is 137 yields the velocity in Eq. 34 when both velocities are assumed to be equal. 

   
(33) 

   
(34) 

This result means that the velocity of  each electron must be at least 2.99761 x 108 meters per second to have a kinetic 
energy that will be stored as the gluon once the electrons reach the stable, standing node position.  When the position 
has been reached, kinetic energy becomes stored (potential) energy.  Now, the particles do not have a velocity, but 
the amplitude is modified.  Eq. 35 shows the change in amplitude highlighted in red (the square root of  the inverse 
fine structure constant). 

   

(35) 

Since the fine structure constant itself  is a constant that is derived in wave constant terms (refer to Fundamental Physical 
Constants), it can be substituted in Eq. 35 as shown in Eq. 36.   

   

(36) 

This is then simplified to a very simple form of  the energy of  a gluon in Eq. 37.  This energy value, shown in wave 
constant terms, matches the energy of  the gluon (strong force).   

   

(37) 

A velocity of  2.99761 x 108 meters per second is nearly the speed of  light.  The possibility of  two electrons colliding 
at this velocity may be nearly impossible today.  Furthermore, it is predicted in the Forces paper that it requires four 
electrons at tetrahedral vertices to form the proton, with each electron placed at an electron wavelength from each 
other at standing wave nodes, such as the illustration in Fig. 12.  A positron eventually in the center of  this 
configuration gives the proton its positive charge, and the eventual annihilation of  the positron and one of  the 
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electrons is the reason for the finding of  three quarks in most proton collisions and the pentaquark configuration (4 
quarks and an anti-quark) in recent high-energy proton collisions.  The extremely low possibility of  four electrons 
merging simultaneously, at velocities near the speed of  light, is likely the reason that protons are not formed today 
(at least on Earth in our current timeframe).   

 

Fig 12 – Four Electrons at Tetrahedral Vertices (the beginning of the proton’s formation) 

If  gluons are stored energy from the kinetic energy of  electrons, then it is possible to calculate kinetic energy without 
a velocity near the speed of  light.  For example, if  the universe is not uniform in density and is much denser 
somewhere, the required velocity changes significantly.  Similarly, if  the universe’s density property changed over 
time, and it was much denser in the beginning of  the universe, the required velocity would be much lower.  Fig. 13 
illustrates two electrons traveling at a lower velocity in a denser aether to achieve the kinetic energy stored in gluons. 

 

 

Fig 13 – As the Aether Density Increases, Required Velocity Decreases 

While there are many permutations to achieve the same gluon energy level shown in Eq. 37, the same stored energy 
can be achieved by an electron traveling only half  the speed of  light (Eq. 40) in a universe that is roughly 1000 times 
denser (Eq. 39).  Eq. 41 uses the kinetic energy of  a moving electron (1/2 mv2) where the electron mass in Eq. 38 
uses a higher density value (r0). The final calculated energy value in Eq. 41 is the same strong force stored energy 
from Eq. 37 above.  

   

(38) 

   (39) 
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(40) 

 
(41) 

Therefore, it is possible that protons could be created elsewhere in the universe with a higher density value, or perhaps 
early in the universe’s formation, without requiring velocities near the speed of  light.    
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Conclusion 

Relativity is a consequence of  particle motion and how it affects wavelength.  An increase in energy (relativistic mass), 
a change in frequency (time dilation) and the shortening of wavelengths to the orbitals where electrons reside (length 
contraction) are all explained by this change in the geometric mean wavelength of a particle responding to spherical 
waves.  In the original Longitudinal Energy Equation as a part of wave theory, particle motion was neglected.  In this 
paper, the equation is revisited to address a particle’s velocity and the equations for relativity become apparent.   

The true equation for kinetic energy can now be derived from the revised Longitudinal Energy Equation – referred 
to now as the long form of the equation as it is only necessary and required at relativistic speeds.  The kinetic energy 
value for an electron in motion was compared to the commonly used approximation method in this paper.  Finally, 
the kinetic energies of two electrons were estimated for the energy required to be stored in gluons, finding that 
electrons would need to be traveling near the speed of light to achieve this energy value.   

Relativity can now be explained logically as a change in particle wavelength and modeled correctly with supporting 
mathematics when one considers particles as a formation of standing waves.   
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Appendix: 
Energy Wave Constants and Variables 

 

Notation 

The energy wave equations include notation to simplify variations of energies and wavelengths of different particles, 
in addition to differentiating longitudinal and transverse waves.  

Notation Meaning 

Ke Particle wave center count (e – electron) 

λl  λt Wavelength (l – longitudinal wave, t – transverse wave) 

gλ  gA gp g-factor (λ – electron orbital g-factor, A – electron spin g-factor, p – proton g-factor)  

Fg, Fm Force (g - gravitational force, m – magnetic force) 

E(K) Energy (K – particle wave center count) 
Table A.1 – Energy Wave Equation Notation 

Constants and Variables 

The following are the wave constants and variables used in the energy wave equations: 

Symbol Definition Value (units) 

Wave Constants 

Al Amplitude (longitudinal) 9.215405708 x 10-19 (m) 

λl Wavelength (longitudinal) 2.854096501 x 10-17 (m) 

ρ Density (aether) 3.859764540 x 1022 (kg/m3) 

c Wave velocity (speed of  light) 299,792,458 (m/s) 

Variables 

δ Amplitude factor variable - dimensionless 

K Particle wave center count variable - dimensionless 

Q Particle count in a group variable - dimensionless 

Particle Constants 
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Ke Electron particle count 10 - dimensionless 

Oe Electron outer shell multiplier 2.138743820 – dimensionless 

gλ Electron orbital g-factor (revised) 0.9873318320 – dimensionless 

gA Electron spin g-factor (revised) 0.9826905018 – dimensionless 

gp Proton orbital g-factor (revised) 0.9898125300 – dimensionless 

Classical Constants 
 

lP Planck length 1.6162 x 10-35 (m) 

Table A.2 – Energy Wave Equation Constants and Variables 

 

Method for calculating the values of the constants 

The method used for deriving and calculating each of the constants is found in the Fundamental Physical Constants 
paper.  The values may continue to be refined, and if so, will be posted online at: 
http://energywavetheory.com/equations. 
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