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Abstract: A neutrosophic number (a + bI) is a significant mathematical tool to deal with 

indeterminate and incomplete information which exists generally in real-world problems, where a 

and bI denote the determinate component and indeterminate component, respectively. We define 

score functions and accuracy functions for ranking neutrosophic numbers. We then define a cosine 

function to determine the unknown weight of the criteria. We define the neutrosophic number 

harmonic mean operators and prove their basic properties. Then, we develop two novel 

multi-criteria group decision-making (MCGDM) strategies using the proposed aggregation 

operators. We solve a numerical example to demonstrate the feasibility, applicability, and 

effectiveness of the two proposed strategies. Sensitivity analysis with the variation of “I” on 

neutrosophic numbers is performed to demonstrate how the preference ranking order of 

alternatives is sensitive to the change of “I”. The efficiency of the developed strategies is 

ascertained by comparing the results obtained from the proposed strategies with the results 

obtained from the existing strategies in the literature. 

Keywords: neutrosophic number; neutrosophic number harmonic mean operator (NNHMO); 

neutrosophic number weighted harmonic mean operator (NNWHMO); cosine function; score 

function; multi-criteria group decision-making 

 

1. Introduction 

Multi-criteria decision-making (MCDM), and multi-criteria group decision-making (MCGDM) 

are significant branches of decision theories which have been commonly applied in many scientific 

fields. They have been developed in many directions, such as crisp environments [1,2], and 

uncertain environments, namely fuzzy environments [3–13], intuitionistic fuzzy environments 

[14–24], and neutrosophic set environments [25–45]. Smarandache [46,47] introduced another 

direction of uncertainty by defining neutrosophic numbers (NN), which represent indeterminate 

and incomplete information in a new way. A NN consists of a determinate component and an 

indeterminate component. Thus, the NNs are more applicable to deal with indeterminate and 

incomplete information in real world problems. The NN is expressed as the function N = p + qI in 

which p is the determinate component and qI is the indeterminate component. If N = qI, i.e., the 

indeterminate part reaches the maximum label, the worst situation occurs. If N = p, i.e., the 

indeterminate part does not appear, the best situation occurs. Thus, the application of NNs is more 
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appropriate to deal with the indeterminate and incomplete information in real-world 

decision-making situations. 

Information aggregation is an essential practice of accumulating relevant information from 

various sources. It is used to present aggregation between the min and max operators. The harmonic 

mean is usually used as a mathematical tool to accumulate the central tendency of information [48]. 

The harmonic mean (HM) is widely used in statistics to calculate the central tendency of a set of 

data. Park et al. [49] proposed multi-attribute group decision-making (MAGDM) strategy based on 

HM operators under uncertain linguistic environments. Wei [50] proposed a MAGDM strategy 

based on fuzzy-induced, ordered, weighted HM. In a fuzzy environment, Xu [48] studied a 

fuzzy-weighted HM operator, fuzzy ordered weighted HM operator, and a fuzzy hybrid HM 

operator, and employed them for MADM problems. Ye [51] proposed a multi-attribute 

decision-making (MADM) strategy based on harmonic averaging projection for a simplified 

neutrosophic sets (SNS) environment. 

In a NN environment, Ye [52] proposed a MAGDM using de-neutrosophication strategy and a 

possibility degree ranking strategy for neutrosophic numbers. Liu and Liu [53] proposed a NN 

generalized weighted power averaging operator for MAGDM. Zheng et al. [54] proposed a 

MAGDM strategy based on a NN generalized hybrid weighted averaging operator. Pramanik et al. 

[55] studied a teacher selection strategy based on projection and bidirectional projection measures in 

a NN environment. 

Only four [52–55] MCGDM strategies using NNs have been reported in the literature. 

Motivated from the works of Ye [52], Liu and Liu [53], Zheng et al. [54], and Pramanik et al. [55], we 

consider the proposed strategies to handle MCGDM problems in a NN environment.  

The strategies [52–55] cannot deal with the situation when larger values other than arithmetic 

mean, geometric mean, and harmonic mean are necessary for experimental purposes. To fill the 

research gap, we propose two MCGDM strategies. 

In this paper, we develop two new MCGDM strategies based on a NN harmonic mean operator 

(NNHMO) and a NN weighted harmonic mean operator (NNWHMO) to solve MCGDM problems. 

We define a cosine function to determine unknown weights of the criteria. To develop the proposed 

strategies, we define score and accuracy functions for ranking NNs for the first time in the literature. 

The rest of the paper is structured as follows: Section 2 presents some preliminaries of NNs and 

score and accuracy functions of NNs. Section 3 devotes NN harmonic mean operator (NNHMO) and 

NN weighted harmonic mean operator (NNWHMO). Section 4 defines the cosine function to 

determine unknown criteria weights. Section 5 presents two novel decision-making strategies based 

on NNHMO and NNWHMO. In Section 6, a numerical example is presented to illustrate the 

proposed MCGDM strategies and the results show the feasibility of the proposed MCGDM 

strategies. Section 7 compares the obtained results derived from the proposed strategies and the 

existing strategies in NN environment. Finally, Section 8 concludes the paper with some remarks 

and future scope of research. 

2. Preliminaries 

In this section, definition of harmonic and weighted harmonic mean of positive real numbers, 

concepts of NNs, operations on NNs, score and accuracy functions of NNs are outlined. 

2.1. Harmonic Mean and Weighted Harmonic Mean 

Harmonic mean is a traditional average, which is generally used to determine central tendency 

of data. The harmonic mean is commonly considered as a fusion method of numerical data. 

Definition 1. [48]: The harmonic mean H of the positive real numbers x1, x2, …, xn is defined as: 
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Definition 2. [49]: The weighted harmonic mean H of the positive real numbers x1, x2, …, xn is defined as 









n

i i

i

n

n

x

w

x

w

x

w

x

w

12

2

1

1

11
WH



; i = 1, 2, …, n. 

Here, .1
1




n

i
iw  

2.2. NNs 

A NN [46,47] consists of a determinate component x and an indeterminate component yI, and is 

mathematically expressed as z = x + yI for x, y   R, where I is indeterminacy interval and R is the set 

of real numbers. A NN z can be specified as a possible interval number, denoted by z = [x + yIL, x + 

yIU] for z   Z (Z is set of all NNs) and I   [IL, IU]. The interval I   [IL, IU] is considered as an 

indeterminate interval.  

• If yI = 0, then z is degenerated to the determinate component z = x 

• If x = 0, then z is degenerated to the indeterminate component z = yI 

• If IL = IU, then z is degenerated to a real number. 

Let two NNs be z1 = x1 + y1I and z2 = x2 + y2I for z1, z2   Z, and I   [IL, IU]. Some basic 

operational rules for z1 and z2 are presented as follows: 

(1) I2 = I 

(2) I.0 = 0 

(3) I/I = Undefined 

(4) z1 + z2 = x1 + x2 + (y1 + y2)I = [x1 + x2 + (y1 + y2)IL, x1 + x2 + (y1 + y2)IU] 

(5) z1 − z2 = x1 − x2 + (y1 − y2)I = [x1 − x2 + (y1 − y2)IL, x1 − x2 + (y1 − y2)IU] 

(6) z1   z2 = x1x2 + (x1y2 + x2y1)I + y1y2I2 = x1x2 + (x1y2 + x2y1 + y1y2)I 
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= x + yI = z. 

 

□ 

Definition 3. For any NN z = x + yI = [x + yIL, x + yIU], (x and y not both zeroes), its score and accuracy 

functions are defined, respectively, as follows: 
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)(exp1)( LU IIyxzAc   (2) 

Theorem 2. Both score function Sc(z) and accuracy function Ac(z) are bounded. 

Proof. 

x, y   R and I   [0, 1]  
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Since 0  Sc(z)   1, score function is bounded.  

Again: 
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Since 0  Ac(z)   1, accuracy function is bounded. □ 

Definition 4. Let two NNs be z1 = x1 + y1I = [x1 + y1IL, x1 + y1IU], and z2 = x2 + y2I = [x2 + y2IL, x2 + y2IU], then the 

following comparative relations hold: 

• If S(z1) > S(z2), then z1 > z2 

• If S(z1) = S(z2) and A(z1) < A(z2), then z1 < z2 

• If S(z1) = S(z2) and A(z1) = A(z2), then z1 = z2.  

Example 1. Let three NNs be z1 = 10 + 2I, z2 = 12 and z3 = 12 + 5I and I   [0, 0.2]. Then, 

S(z1) = 0.5099, S(z2) = 0.5, S(z3) = 0.5577, A(z1) = 0.999969, A(z2) = 0.999994, A(z3) = 0.999997.  

We see that, 
)()()( 321 zSzSzS 

, and 
)()( 23 zSzA 
. 

Using Definition 2, we conclude that, 231 zzz  . 

3. Harmonic Mean Operators for NNs 

In this section, we define harmonic mean operator and weighted harmonic mean operator for 

neutrosophic numbers. 

3.1. NN-Harmonic Mean Operator (NNHMO) 

Definition 5. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. Then the NNHMO is defined as follows: 
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Theorem 3. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. The aggregated value of the 

),,,NNHMO( 21 nzzz   operator is also a NN. 
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This shows that NNHMO is also a NN. □ 

3.2. NN-Weighted Harmonic Mean Operator (NNWHMO) 

Definition 6. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs and wi (i = 1, 2, …, n) is the weight of zi (i 

= 1, 2, …, n) and .1
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Theorem 4. Let zi = xi + yiI (i = 1, 2, …, n) be a collection of NNs. The aggregated value of the 
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This shows that NNWHMO is also a NN. □ 

Example 2. Let two NNs be z1 = 3 + 2I and z2 = 2 + I and I   [0, 0.2]. Then: 
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Example 3. Let two NNs be z1 = 3 + 2I and z2 = 2 + I, I   [0, 0.2] and w1 = 0.4, w2 = 0.6, then: 
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The NNHMO operator and the NNWHMO operator satisfy the following properties. 
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P2. Boundedness: Both the operators are bounded.  
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This proves the monotonicity of the functions ),,,NNHMO( 21 nzzz   and 

),,,NNWHMO( 21 nzzz  . □ 

P4. Commutativity: If ),,,( 21 zzz n
   be any permutation of ),,,( 21 nzzz   then, 
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4. Cosine Function for Determining Unknown Criteria Weights 

When criteria weights are completely unknown to decision-makers, the entropy measure [56] 

can be used to calculate criteria weights. Biswas et al. [57] employed entropy measure for MADM 

problems to determine completely unknown attribute weights of single valued neutrosophic sets 

(SVNSs). Literature review reflects that, strategy to determine unknown weights in the NN 

environment is yet to appear. In this paper, we propose a cosine function to determine unknown 

criteria weights.  

Definition 7. The cosine function of a NN P = xij + yijI = [xij + yijIL, xij + yijIU], (i = 1, 2, ..., m; j = 1, 2, ..., n) is 

defined as follows:  
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The weight structure is defined as follows: 
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The cosine function )(PCOS j  satisfies the following properties: 

P1. 1)( PCOS j , if 0and0  xy ijij  
 

P2. 0)( PCOS j , if .00  y
ijij andx  

P3. )()( QCOSPCOS jj  , if xij of P > xij of Q or yij of P < yij of Q or both. 

Proof. 

P1. 0yij
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P3. For, xij of P > xij of Q  

  Determinate part of P > Determinate part of Q 

  )()( PCOSQCOS jj  . 

For, yij of P < yij of Q 

  Indeterminacy part of P < Indeterminacy part of Q 

  )()( PCOSQCOS jj  . 

For, xij of P > xij of Q and yij of P < yij of Q 
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  (Real part of P > Real part of Q) & (Indeterminacy part of P < Indeterminacy part of Q) 

  )()( PCOSQCOS jj  .□ 

Example 4. Let two NNs be z1 = 3 + 2I, and z2 = 3 + 5I, then, 9066.0)( 1 zCOS , 7817.0)( 2 zCOS . 

Example 5. Let two NNs be z1 = 3 + I, and z2 = 7 + I, then, 9693.0)( 1 zCOS , 9938.0)( 2 zCOS . 

Example 6. Let two NNs be z1 = 10 + 2I, and z2 = 2 + 10I, then, 9882.0)( 1 zCOS , 7178.0)( 2 zCOS . 

5. Multi-Criteria Group Decision-Making Strategies Based on NNHMO and NNWHMO 

Two MCGDM strategies using the NNHMO and NNWHMO respectively are developed in this 

section. Suppose that A = {A1, A2, …, Am} is a set of alternatives, C = {C1, C2, …, Cn} is a set of criteria 

and DM = {DM1, DM2, …, DMk} is a set of decision-makers. Decision-makers’ assessment for each 

alternative Ai will be based on each criterion Cj. All the assessment values are expressed by NNs. 

Steps of decision making strategies based on proposed NNHMO and NNWHMO to solve MCGDM 

problems are presented below.  

5.1. MCGDM Strategy 1 (Based on NNHMO) 

Strategy 1 is presented (see Figure 1) using the following six steps: 

Step 1. Determine the relation between alternatives and criteria. 

Each decision-maker forms a NN decision matrix. The relation between the alternative Ai (i = 1, 

2, ..., m) and the criterion Cj (j = 1, 2, ..., n) is presented in Equation (7).  
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
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(7) 

Note 1: Here, kijij Iyx   represents the NN rating value of the alternative Ai with respect to the 

criterion Cj for the decision-maker DMk. 

Step 2. Using Equation (3), determine the aggregation values ( )( i

aggr

k ADM ), (i = 1, 2, …, n) for all 

decision matrices.  

Step 3. To fuse all the aggregation values ( )( i

aggr

k ADM ), corresponding to alternatives Ai, we define 

the averaging function as follows: 

 
1 1

 1,  2,  , ;  1( ) ( ( ,  2,  )); 1. ,
k k

aggr aggr

i t it t
t t

DM A DM A i n t kw w
 

     
 

(8) 

Here, wt (t = 1, 2, …, k) is the weight of the decision-maker DMt. 

Step 4. Determine the preference ranking order.  

Using Equation (1), determine the score values Sc(zi) (accuracy degrees Ac(zi), if necessary) (i = 

1, 2, …, m) of all alternatives Ai. All the score values are arranged in descending order. The 

alternative corresponding to the highest score value (accuracy values) reflects the best choice. 

Step 5. Select the best alternative from the preference ranking order. 

Step 6. End. 
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Figure 1. Steps of MCGDM Strategy 1 based on NNHMO. 
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Step 1. This step is similar to the first step of Strategy 1. 
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Here, wt (t = 1, 2, …, k) is the weight of the decision maker DMt. 

Step 5. Determine the ranking order. 

Using Equation (1), determine the score values S(zi) (accuracy degrees A(zi), if necessary) (i = 1, 

2, …, m) of all alternatives Ai. All the score values are arranged in descending order. The alternative 

corresponding to the highest score value (accuracy values) reflects the best choice. 

Step 6. Select the best alternative from the preference ranking order. 
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Figure 2. Steps of MCGDM strategy based on NNWHMO. 

6. Simulation Results 

We solve a numerical example studied by Zheng et al. [54]. An investment company desires to 

invest a sum of money in the best investment fund. There are four possible selection options to 

invest the money. Feasible selection options are namely, A1: Car company (CARC); A2: Food 

company (FOODC); A3: Computer company (COMC); A4: Arms company (ARMC). 

Decision-making must be based on the three criteria namely, risk analysis (C1), growth analysis (C2), 

environmental impact analysis (C3). The four possible selection options/alternatives are to be 

selected under the criteria by the NN assessments provided by the three decision-makers DM1, DM2, 

and DM3.  

6.1. Solution Using MCGDM Strategy 1 

Step 1. Determine the relation between alternatives and criteria. 

All assessment values are provided by the following three NN based decision matrices (shown 

in Equations (10)–(12). 
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Note 2: Here, ]|[1 CLDM , ]|[2 CLDM and ]|[3 CLDM are the decision matrices for the decision makers 

DM1, DM2 and DM3 respectively. 

Step 2. Determine the weighted aggregation values ( )( i

aggr

k ADM ). 

Start
Determine the relation between 

alternatives and criteria
Determine the 

criteria weights

Determine the 
weighted aggregation 

values 

Calculate the 
averaging functional 

value 

Determine the 
preference 

ranking order 

Select the best 
alternative

End



Axioms 2018, 7, 12 11 of 16 

Using Equation (3), we calculate the aggregation values ( )( i

aggr

k ADM ) as follows: 

1 1 1 2 1 3 1 4
( ) 3.829 0.785 ; ( ) 5.625; ( ) 4.285 0.214 ; ( ) 5.362 0.514 ;aggr aggr aggr aggrDM A I DM A DM A I DM A I          

2 1 2 2 2 3 2 4
( ) 4.285; ( ) 5.206 0.415 ; ( ) 4.196 0.532 ; ( ) 5.234 0.618 ;aggr aggr aggr aggrDM A DM A I DM A I DM A I          

3 1 3 2 3 3 3 4
( ) 4.019 0.605 ; ( ) 5.817 0.433 ; ( ) 4.876 0.387 ; ( ) 6.023 0.257 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I          

Step 3. Determine the averaging values. 

Using Equation (8), we calculate the averaging values (Considering equal importance of all the 

decision makers) to fuse all the aggregation values corresponding to the alternative Ai. 

1 2 3 4
( ) 4.044 0.463 ; ( ) 5.549 0.282 ; ( ) 4.452 0.378 ; ( ) 5.539 0.463 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I          

Step 4. Using Equation (1), we calculate the score values Sc(Ai) (i = 1, 2, 3, 4). Sensitivity analysis and 

ranking order of alternatives are shown in Table 1 for different values of I. 

Table 1. Sensitivity analysis and ranking order with variation of “I” on NNs for strategy 1. 

I Sc(Ai) Ranking Order 

I = [0, 0] S(A1) = 0.4988, S(A2) = 0.4993, S(A3) = 0.4982, S(A4) = 0.4983 A2 A1 A4 A3 

I   [0, 0.2] S(A1) = 0.5081, S(A2) = 0.5144, S(A3) = 0.5067, S(A4) = 0.5056 A2 A1 A3 A4 

I   [0, 0.4] S(A1) = 0.5182, S(A2) = 0.5195, S(A3) = 0.5151, S(A4) = 0.5249 A2 A1 A4 A3 

I   [0, 0.6] S(A1) = 0.5289, S(A2) = 0.5346, S(A3) = 0.5236, S(A4) = 0.5233 A2 A1 A3 A4 

I   [0, 0.8] S(A1) = 0.5396, S(A2) = 0.5497, S(A3) = 0.5320, S(A4) = 0.5316  A2 A1 A3 A4 

I   [0, 1] S(A1) = 0.5503, S(A2) = 0.5547, S(A3) = 0.5405, S(A4) = 0.5399 A2 A1 A3 A4 

Step 5. Food company (FOODC) is the best alternative for investment. 

Step 6. End. 

Note 3: In Figure 3, we represent ranking order of alternatives with variation of “I” based on 

strategy 1. Figure 3 reflects that various values of I, ranking order of alternatives are different. 

However, the best choice is the same.  

 

Figure 3. Ranking order with variation of ‘I’ based on strategy 1.  

6.2. Solution Using MCGDM Strategy 2 

Step 1. Determine the relation between alternatives and criteria. 

This step is similar to the first step of strategy 1. 

Step 2. Determine the criteria weights. 

Using Equations (5) and (6), criteria weights are calculated as follows:  
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[w1 = 0.3332, w2 = 0.3334, w3 = 0.3334] for DM2,  

[w1 = 0.3333, w2 = 0.3335, w3 = 0.3332] for DM3.  

Step 3. Determine the weighted aggregation values ( )( i
waggr

k ADM ). 

Using Equation (4), we calculate the aggregation values ( )( i
aggr

k ADM ) as follows: 

1 1 1 2 1 3 1 4
( ) 3.861 0.774 ; ( ) 6.006; ( ) 4.307 0.234 ; ( ) 5.399 0.541 ;aggr aggr aggr aggrDM A I DM A DM A I DM A I         

2 1 2 2 2 3 2 4
( ) 4.288; ( ) 5.219 0.429 ; ( ) 4.206 0.541 ; ( ) 5.251 0.629 ;aggr aggr aggr aggrDM A DM A I DM A I DM A I         

3 1 3 2 3 3 3 4
( ) 4.024 0.616 ; ( ) 5.824 0.445 ; ( ) 4.889 0.393 ; ( ) 6.029 0.265 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I          

Step 4. Determine the averaging values. 

Using Equation (9), we calculate the averaging (Considering equal importance of all the 

decision makers to fuse all the aggregation values corresponding to the alternative Ai. 

1 2 3 4
( ) 4.057 0.463 ; ( ) 5.568 0.291 ; ( ) 4.467 0.389 ; ( ) 5.559 0.478 .aggr aggr aggr aggrDM A I DM A I DM A I DM A I          

Step 5. Determine the ranking order. 

Using Equation (1), we calculate the score values Sc(Ai) (i = 1, 2, 3, 4). Since scores values are 

different, accuracy values are not required. Sensitivity analysis and ranking order of alternatives are 

shown in Table 2 for different values of I. 

Table 2. Sensitivity analysis and ranking order with variation of “I” on NNs for strategy 2. 

I Sc(Ai) Ranking Order 

I = 0 S(A1) = 0.4968, S(A2) = 0.4993, S(A3) = 0.4981, S(A4) = 0.4982 A2 A4 A3 A1 

I   [0, 0.2] S(A1) = 0.5081, S(A2) = 0.5095, S(A3) = 0.5068, S(A4) = 0.5067 A2 A1 A4 A3 

I   [0, 0.4] S(A1) = 0.5195, S(A2) = 0.5198, S(A3) = 0.5155, S(A4) = 0.5153 A2 A1 A3 A4 

I   [0, 0.6] S(A1) = 0.5308, S(A2) = 0.5350, S(A3) = 0.5241, S(A4) = 0.5239 A2 A1 A3 A4 

I   [0, 0.8] S(A1) = 0.5421, S(A2) = 0.5502, S(A3) = 0.5328, S(A4) = 0.5324 A2 A1 A3 A4 

I   [0, 1] S(A1) = 0.5535, S(A2) = 0.5654, S(A3) = 0.5415, S(A4) = 0.5410 A2 A1 A3 A4 

Step 6. Food company (FOODC) is the best alternative for investment.  

Step 7. End. 

Note 4: In Figure 4, we represent ranking order of alternatives with variation of “I” based on 

strategy 2. Figure 4 reflects that various values of I, ranking order of alternatives are different. 

However, the best choice is the same.  

 

Figure 4. Ranking order with variation of ‘I’ on NNs for Strategy 2.  
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7. Comparison Analysis and Contributions of the Proposed Approach 

7.1. Comparison Analysis 

In this subsection, a comparison analysis is conducted between the proposed MCGDM 

strategies and the other existing strategies in the literature in NN environment. Table 1 reflects that 

A2 is the best alternative for I = 0 and 0I  i.e., for all cases considered. Table 2 reflects that A2 is the 

best alternative for any values of I. Ranking order differs for different values of I. 

The ranking results obtained from the existing strategies [52–54] are furnished in Table 3. The 

ranking orders of Ye [52] and Zheng et al. [54] are similar for all values of I considered. When I lies in 

[0, 0], [0, 0.2], [0, 0.4], A2 is the best alternative for [52–54] and the proposed strategies. When I lies in 

[0, 0.6], [0, 0.8], [0, 1], A4 is the best alternative for [52,54], whereas A2 is the best alternative for [53], 

and the proposed strategies.  

Table 3. Comparison of ranking preference order with variation of ‘I’ on NNs for different strategies. 

I Ye [52] Zheng et al. [54] Liu and Liu [53] Proposed Strategy 1 Proposed Strategy 2 

[0, 0] A2 A4 A3 A1 A2 A4 A3 A1 A2 A4 A1 A3 A2 A1 A4 A3 A2 A4 A3 A1 

[0, 0.2] A2 A4 A3 A1 A2 A4 A3 A1 A2 A3 A1 A4 A2 A1 A3 A4 A2 A1 A4 A3 

[0, 0.4] A2 A4 A3 A1 A2 A4 A3 A1 A2 A3 A4 A1 A2 A1 A4 A3 A2 A1 A3 A4 

[0, 0.6] A4 A2 A3 A1 A4 A2 A3 A1 A2 A3 A4 A1 A2 A1 A3 A4 A2 A1 A3 A4 

[0, 0.8] A4 A2 A3 A1 A4 A2 A3 A1 A2 A3 A4 A1 A2 A1 A3 A4 A2 A1 A3 A4 

[0, 1] A4 A2 A3 A1 A4 A2 A3 A1 A2 A4 A3 A1 A2 A1 A3 A4 A2 A1 A3 A4 

In strategy [52], deneutrosophication process is analyzed. It does not recognize the importance 

of the aggregation information. MCGDM due to Liu and Liu [53] is based on NN generalized 

weighted power averaging operator. This strategy cannot deal the situation when larger value other 

than arithmetic mean, geometric mean, and harmonic mean is necessary for experimental purpose.  

The strategy proposed by Zheng et al. [54] cannot be used when few observations contribute 

disproportionate amount to the arithmetic mean. The proposed two MCGDM strategies are free 

from these shortcomings.  

7.2. Contributions of the Proposed Approach 

• NNHMO and NNWHMO in NN environment are firstly defined in the literature. We have also 

proved their basic properties. 

• We have proposed score and accuracy functions of NN numbers for ranking. If two score 

values are same, then accuracy function can be used for ranking purpose.  

• The proposed two strategies can also be used when observations/experiments contribute is 

disproportionate amount to the arithmetic mean. The harmonic mean is used when sample 

values contain fractions and/or extreme values (either too small or too big). 

• To calculate unknown weights structure of criteria in NN environment, we have proposed 

cosine function. 

• Steps and calculations of the proposed strategies are easy to use. 

• We have solved a numerical example to show the feasibility, applicability, and effectiveness of 

the proposed two strategies. 

8. Conclusions 

In the study, we have proposed NNHMO and NNWHMO. We have developed two strategies 

of ranking NNs based on proposed score and accuracy functions. We have proposed a cosine 

function to determine unknown weights of the criteria in a NN environment. We have developed 

two novel MCGDM strategies based on the proposed aggregation operators. We have solved a 

hypothetical case study and compared the obtained results with other existing strategies to 

demonstrate the effectiveness of the proposed MCGDM strategies. Sensitivity analysis for different 

values of I is also conducted to show the influence of I in preference ranking of the alternatives. The 
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proposed MCGDM strategies can be applied in supply selection, pattern recognition, cluster 

analysis, medical diagnosis, etc. 
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