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On single valued neutrosophic refined
rough set model and its application
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Abstract. Neutrosophic set (NS) theory was originally established by Smarandache for handling indeterminate and incon-
sistent information. In this paper, we introduce single valued neutrosophic refined rough sets by combining single valued
neutrosophic refined sets with rough sets and further study the hybrid model from two perspectives—constructive viewpoint
and axiomatic viewpoint. We also give single valued neutrosophic refined rough sets on two universes and an available
algorithm for handling multi-attribute decision making problem based on single valued neutrosophic refined rough sets on
two universes. In addition, we illustrate the validity of the single valued neutrosophic refined rough set model by an example.
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1. Introduction

To resolve indeterminate and inconsistent infor-
mation, Smarandache [1, 2] initiated neutrosophic
sets (NSs) by combining non-standard analysis and
tri-component sets. A neutrosophic set consists of
three membership functions (truth-membership func-
tion T , indeterminacy-membership function I and
falsity-membership function F ) whose range is the
nonstandard unit interval ]0−, 1+[. In a neutrosophic
set, indeterminacy is expressed explicitly, and the
three membership functions are independent of each
other.

Since the neutrosophic set theory established,
many scholars have flung themselves into its develop-
ment [3–10]. Rivieccio [11] proposed neutrosophic
logics by introducing neutrosophic idea to logic. Neu-
trosophic vague soft expert sets as well as their basic
operations were defined by Al-Quran and Hassan
[12]. Deli and Broumi [13] presented neutrosophic
soft matrix and its operators in a novel neutrosophic
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soft set theory. In order to conveniently employ neu-
trosophic sets in real problems, Wang et al. [14] put
forward interval neutrosophic sets (INSs) by sim-
plying neutrosophic sets. Zhang et al. [15] studied
properties of INSs and their application in multicri-
teria decision making problems. Ye [16] proposed
correlation coefficient of INSs and further applied it
to interval neutrosophic decision-making problems.
Subsequently, Wang et al. [17] raised single valued
neutrosophic sets (SVNSs). Yang et al. [18] dis-
cussed single valued neutrosophic relations (SVNRs)
and explored their properties in detail. In order to
describe more accurate information, Ye [19] intro-
duced single valued neutrosophic refined sets in
which the three neutrosophic components T, I, F are
refined (divided) into T1, T2 · · · , Tp, I1, I2 · · · , Ip

and F1, F2 · · · , Fp, respectively. Later on, Ye et al.
[20] presented distance and similarity measure of sin-
gle valued neutrosophic refined sets and applied the
measure to medical diagnosis problems. Until now,
the research about single valued neutrosophic refined
sets is still insufficient.

To deal with imprecise information, Pawlak
[21, 22] initiated rough set theory which has been suc-
cessfully applied to many fields. Since established,
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the theory has attracted the attention of many
researchers [23–27]. Yao [28] proposed arbitrary
binary relation-based rough sets by extending equiva-
lence relations to arbitrary binary relations. Zakowski
[29] put forward concept covering-based rough sets.
Later on, Dubois and Prade [30] combined rough
sets with fuzzy sets and further proposed fuzzy
rough sets and rough fuzzy sets. Cornelis et al. [31]
studied intuitionistic fuzzy rough sets. Yao [32] sys-
tematically investigated axiomatic characterizations
of crisp rough sets. The axiomatic characterizations
of fuzzy rough sets were studied by Mi and Zhang
[33]. Wu et al. [34] explored axiomatic charac-
terizations of (S, T )-fuzzy rough sets based on a
triangular norm T and a conorm S. Zhou and Hu [35]
studied axiomatic characterizations of rough approxi-
mation operators on complete completely distributive
lattices.

Both neutrosophic sets and rough sets play impor-
tant role in handling imprecise information. In the
past few years, many researchers have focused their
attention on combining neutrosophic sets with rough
sets. Salama and Broumi [36] investigated the rough-
ness of neutrosophic sets. Broumi and Smarandache
put forward rough neutrosophic sets [37] as well as
interval neutrosophic rough sets [38]. Yang et al.
[39] proposed single valued neutrosophic rough sets
which is a hybrid model of single valued neutrosophic
sets and rough sets. So far, the study on single valued
neutrosophic refined rough sets is still vacant. In this
paper, we will introduce single valued neutrosophic
refined rough sets and explore the model from both
constructive and axiomatic approaches. Furthermore,
We will apply this novel model to multi-attribute deci-
sion making problems.

The paper proceeds as follows. In Section 2,
we briefly recall some basic definitions and oper-
ations related to single valued neutrosophic refined
sets. In Section 3, we propose single valued neutro-
sophic refined rough sets and study its properties in
detail. Moreover, we investigate connections between
special single valued neutrosophic refined rela-
tions and single valued neutrosophic refined lower
(upper) approximation operators. In Section 4, the
axiomatic characterizations of the proposed single
valued neutrosophic refined approximation opera-
tors are systematically explored. In Section 5, we
introduce single valued neutrosophic refined rough
sets on two universes as well as an algorithm for
handling multi-attribute decision making problem.
Furthermore, we demonstrate the feasibility of the
single valued neutrosophic refined rough set model

with a medical diagnosis example. The last section
draws the conclusion of the paper.

2. Preliminaries

In this section, we briefly retrospect some basic
definitions which will be used in the paper.

2.1. SVNSs and SVNRSs

Definition 2.1. [17] Let U be a space of points
(objects), with a generic element in U denoted by x. A
SVNS A in U is characterized by a truth-membership
function TA, an indeterminacy-membership func-
tion IA, and a falsity-membership function FA,
where ∀x ∈ U, TA(x), IA(x), FA(x) ∈ [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. A SVNS A can
be expressed as A = {〈x, TA(x), IA(x), FA(x)|x ∈
U} or A = (TA, IA, FA). ∀x ∈ U, A(x) = (TA(x),
IA(x), FA(x)).

Definition 2.2. [19] Let U be a space of points
(objects), with a generic element in U denoted by x.
A single valued neutrosophic refined set (SVNRS) A

in U is characterized by three membership functions:
a truth-membership function TA, an indeterminacy-
membership function IA, and a falsity-membership
function FA as follows:

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ U},
where TA(x) = {T1A(x), T2A(x), · · · , TpA(x)}, IA(x)
= {I1A(x), I2A(x), · · · , IpA(x)}, FA(x) = {F1A(x),
F2A(x), · · · , FpA(x)}, p is a positive integer,
TiA(x), IiA(x), FiA(x) ∈ [0, 1] and 0 ≤ TiA(x) +
IiA(x) + FiA(x) ≤ 3 for i = 1, 2, · · · , p. Also,
p is referred to as the dimension of A and
〈TA(x), IA(x), FA(x)〉 is termed as a single valued
neutrosophic refined element of A.

Remark 2.1. (1) In [19], Ye called the above neu-
trosophic set as a single valued neutrosophic multiset
rather than the single valued neutrosophic refined set.
In accordance with [40], we call it the single valued
neutrosophic refined set in the present paper.

(2) A SVNRS is a generalization of set single
valued neutrosophic set. In fact, when p = 1 in a
SVNRS, then the SVNRS will degenerate into a
SVNS.

Let U be a space of points (objects), then the fam-
ily of all single valued neutrosophic refined sets in U

is denoted by SVNRS(U). For convenience, we take
SVNRSp to represent a p-dimension single valued
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neutrosophic refined set and SVNRSp(U) to repre-
sent the family of all SVNRSp in U. Moreover, ∀A ∈
SVNRSp(U),

• A is referred to as an empty single valued neutro-
sophic refined set if and only if TiA(x) = 0, IiA(x) =
FiA(x) = 1 (i = 1, 2, · · · , p) for all x ∈ U, the
p-dimension empty single valued neutrosophic
refined set is denoted by ∅p.

• A is referred to as a full single valued neutro-
sophic refined set if and only if TiA(x) = 1, IiA(x) =
FiA(x) = 0 (i = 1, 2, · · · , p) for all x ∈ U, the
p-dimension full single valued neutrosophic refined
set is denoted by Up.

• A is referred to as a p-dimension constant
single valued neutrosophic refined set if TiA(x) =
ai, IiA(x) = bi, FiA(x) = ci (i = 1, 2, · · · , p) for
all x ∈ U. Let α = {a1, a2, · · · , ap}, β = {b1,

b2, · · · , bp}, γ = {c1, c2, · · · , cp}, then the constant
single valued neutrosophic refined set is denoted
by \α, β, γ . Obviously, both ∅p and Up are special
p-dimension constant single valued neutrosophic
refined sets.

Definition 2.3. [19] Let U be a space of points
(objects). ∀A, B ∈ SVNRSp(U), then

(1) The complement of A is denoted by Ac and
defined as:

Ac = {〈x, TAc (x), IAc (x), FAc (x)〉|x ∈ U},
where

TAc (x) = FA(x) = {F1A(x), F2A(x), · · · , FpA(x)},
IAc (x) =∼ IA(x) = {1 − I1A(x), 1 − I2A(x),

· · · , 1 − IpA(x)},
FAc (x) = TA(x) = {T1A(x), T2A(x), · · · , TpA(x)},

(2) The intersection of A and B is denoted by A 
 B

and defined as:

A 
 B = {〈x, TA
B(x), IA
B(x), FA
B(x)〉|x ∈ U},
where

TA
B(x) = TA(x)∧̃TB(x) = {T1A(x) ∧ T1B(x),

T2A(x) ∧ T2B(x), · · · , TpA(x) ∧ TpB(x)},
IA
B(x) = IA(x)∨̃IB(x) = {I1A(x) ∨ I1B(x),

I2A(x) ∨ I2B(x), · · · , IpA(x) ∨ IpB(x)},
FA
B(x) = FA(x)∨̃FB(x) = {F1A(x) ∨ F1B(x),

F2A(x) ∨ F2B(x), · · · , FpA(x) ∨ FpB(x)},

(3) The union of A and B is denoted by A 
 B and
defined as:

A 
 B = {〈x, TA
B(x), IA
B(x), FA
B(x)〉|x ∈ U},

where

TA
B(x) = TA(x)∨̃TB(x),

IA
B(x) = IA(x)∧̃IB(x),

FA
B(x) = FA(x)∧̃FB(x).

For any y ∈ U, a SVNRSp 1y and its complement
1U−{y} are given as follows: ∀x ∈ U,

T1y (x) =
{

{1, 1, · · · , 1}, x = y

{0, 0, · · · , 0}, x /= y
,

I1y (x) = F1y (x) =
{

{0, 0, · · · , 0}, x = y

{1, 1, · · · , 1}, x /= y
;

T1U−{y} (x) =
{

{0, 0, · · · , 0}, x = y

{1, 1, · · · , 1}, x /= y
,

I1U−{y} (x) = F1U−{y} (x) =
{

{1, 1, · · · , 1}, x = y

{0, 0, · · · , 0}, x /= y
.

Definition 2.4. [19] Let A, B be two p-dimension
SVNRSs in U. If for any x ∈ U, TA(x) ≺
TB(x), IB(x) ≺ IA(x), FB(x) ≺ FA(x), i.e. TiA(x) ≤
TiB(x), IiB ≤ IiA(x), FiB(x) ≤ FiA(x) for all i =
1, 2, · · · , p, then we say A is contained in B, denoted
by A � B.

Proposition 2.1. Let A and B be two p-dimension
SVNRSs in U, the following properties can be
obtained:

(1) Idempotency: A 
 A = A, A 
 A = A;
(2) Commutativity: A 
 B = B 
 A, A 
 B =

B 
 A;
(3) Associativity: A 
 (B 
 C) = (A 
 B) 
 C,

A 
 (B 
 C) = (A 
 B) 
 C;
(4) Distributivity: A 
 (B 
 C) = (A 
 B) 
 (A 


C), A 
 (B 
 C) = (A 
 B) 
 (A 
 C);
(5) De Morgan’s laws: (A 
 B)c = Ac 
 Bc,

(A 
 B)c = Ac 
 Bc;
(6) Double negation law: (Ac)c = A.

Proof. The results are straightforward from
Definition 2.3. �
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2.2. Pawlak rough sets and single valued
neutrosophic rough sets

Definition 2.5. [21, 22] Let R be an equivalence rela-
tion on a non-empty finite universe U. Then the pair
(U, R) is referred to as a Pawlak approximation space.
∀X ⊆ U, the lower and upper approximations of X

with respect to (U, R) are defined as follows:

R(X) = {x ∈ U | [x]R ⊆ X},
R(X) = {x ∈ U | [x]R ∩ X /= ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}. The pair
(R(X), R(X)) is called a Pawlak rough set. R and R
are called lower and upper approximation operators,
respectively.

A SVNS R in U × U is referred to as a single val-
ued neutrosophic relation (SVNR) in U, denoted by
R = {〈(x, y), TR(x, y), IR(x, y), FR(x, y)〉 | (x, y)
∈ U × U}, where TR : U × U −→ [0, 1], IR :
U × U −→ [0, 1] and FR : U × U −→ [0, 1]
represent the truth-membership function, indeter-
minacy-membership function and falsity-member-
ship function of R, respectively.

Based on a SVNR, Yang et al. [39] gave the notion
of single valued neutrosophic rough set as follows.

Definition 2.6. [39] Let R be a SVNR in U, the
tuple (U, R) is called a single valued neutrosophic
approximation space. ∀A ∈ SVNS(U), the lower and
upper approximations of A with respect to (U, R),
denoted by R(A) and R(A), are two SVNSs whose
membership functions are defined as: ∀x ∈ U,

TR(A)(x) =
∧
y∈U

(FR(x, y) ∨ TA(y)),

IR(A)(x) =
∨
y∈U

((1 − IR(x, y)) ∧ IA(y)),

FR(A)(x) =
∨
y∈U

(TR(x, y) ∧ FA(y));

TR(A)(x) =
∨
y∈U

(TR(x, y) ∧ TA(y)),

IR(A)(x) =
∧
y∈U

(IR(x, y) ∨ IA(y)),

FR(A)(x) =
∧
y∈U

(FR(x, y) ∨ FA(y)).

The pair (R(A), R(A)) is called a single valued
neutrosophic rough set of A with respect to (U, R).
R and R are referred to as single valued neutro-

sophic lower and upper approximation operators,
respectively.

3. The constructive approach of single valued
neutrosophic refined rough sets

3.1. The notion of single valued neutrosophic
refined rough sets

Ye [19] presented single valued neutrosophic
refined sets as a generalization of single valued neu-
trosophic sets. In this subsection, we will introduce
single valued neutrosophic refined relations and sin-
gle valued neutrosophic refined rough sets to extend
the notions and results in [18, 39].

Definition 3.1. A SVNRSp R in U × U is termed as a
p-dimension single valued neutrosophic refined rela-
tion (SVNRRp) in U, which is characterized by three
membership functions: a truth-membership function
TR, an indeterminacy-membership function IR, and
a falsity-membership function FR as follows:

R = {〈(x, y), TR(x, y), IR(x, y), FR(x, y)〉 |
(x, y) ∈ U × U},

where

TR(x, y) = {T1R(x, y), T2R(x, y), · · · , TpR(x, y)},
IR(x, y) = {I1R(x, y), I2R(x, y), · · · , IpR(x, y)},
FR(x, y) = {F1R(x, y), F2R(x, y), · · · , FpR(x, y)},
p is a positive integer, TiR(x, y), IiR(x, y),
FiR(x, y) ∈ [0, 1] for i = 1, 2, · · · , p.

Let R be a SVNRRp in U. If TiR(x, x) = 1
and IiR(x, x) = FiR(x, x) = 0 (i = 1, 2, · · · , p)
for all x ∈ U, then we say R is reflexive. If
TiR(x, y) = TiR(y, x), IiR(x, y) = IiR(y, x) and
FiR(x, y) = FiR(y, x) (i = 1, 2, · · · , p) for all x, y

∈ U, then we say R is symmetric. If
∨̃

y∈UTR(x, y) =
{1, 1, · · · , 1} and

∧̃
y∈UIR(x, y) = ∧̃

y∈UFR(x, y) =
{0, 0, · · · , 0} for all x ∈ U, then we say R is serial.
If

∨̃
y∈U (TR(x, y)∧̃TR(y, z)) ≺ TR(x, z), IR(x, z) ≺∧̃

y∈U (IR(x, y)∨̃TR(y, z)) and FR(x, z) ≺ ∧̃
y∈U

(FR(x, y)∨̃FR(y, z)) for all x, y, z ∈ U, then we say
R is transitive.

Definition 3.2. Let R be a SVNRRp in U, the
tuple (U, R) is termed as a p-dimension single val-
ued neutrosophic refined approximation space. ∀A ∈
SVNRSp(U), the lower and upper approximations
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Table 1
A 2-dimension single valued neutrosophic refined relation R

R x1 x2

x1 〈{0.2, 0.5}, {0.3, 0.2}, {0.8, 0.9}〉 〈{0.2, 0.7}, {0.2, 0.1}, {0.9, 0.8}〉
x2 〈{0.4, 0.6}, {0.3, 0.4}, {0.2, 0.4}〉 〈{0.8, 0.9}, {0.2, 0.3}, {0, 0.1}〉
x3 〈{0.8, 0.9}, {0.1, 0.2}, {0.1, 0.3}〉 〈{0.7, 0.9}, {0.3, 0.5}, {0.2, 0.2}〉
x4 〈{0.5, 0.8}, {0.3, 0.4}, {0.2, 0.3}〉 〈{0, 0.1}, {0, 0.2}, {0.8, 1}〉
R x3 x4

x1 〈{0.8, 1}, {0.2, 0.4}, {0, 0.1}〉 〈{0.1, 0.3}, {0.3, 0.4}, {0.8, 1}〉
x2 〈{0.9, 1}, {0.5, 0.8}, {0, 0.1}〉 〈{0, 0.1}, {0.2, 0.3}, {0.9, 1}〉
x3 〈{0.5, 0.8}, {0.8, 0.5}, {0.3, 0.5}〉 〈{0.9, 1}, {0.4, 0.6}, {0.1, 0.3}〉
x4 〈{0, 0.1}, {0.3, 0.4}, {0.8, 0.9}〉 〈{0, 0.1}, {0.1, 0.2}, {0.7, 0.9}〉

of A with respect to (U, R) are two p-dimension
SVNRSs, denoted by R(A) and R(A), whose mem-
bership functions are defined as follows: ∀x ∈ U,

TR(A)(x) =
∧̃
y∈U

(FR(x, y)∨̃TA(y)),

IR(A)(x) =
∨̃
y∈U

((∼ IR(x, y))∧̃IA(y)),

FR(A)(x) =
∨̃
y∈U

(TR(x, y)∧̃FA(y));

TR(A)(x) =
∨̃
y∈U

(TR(x, y)∧̃TA(y)),

IR(A)(x) =
∧̃
y∈U

(IR(x, y)∨̃IA(y)),

FR(A)(x) =
∧̃
y∈U

(FR(x, y)∨̃FA(y)).

The pair (R(A), R(A)) is termed as the single val-
ued neutrosophic refined rough set of A with respect
to (U, R). R and R are termed as single valued
neutrosophic refined lower and upper approximation
operators, respectively.

Example 3.1. Let U = {x1, x2, x3, x4}. R ∈
SVNRS2(U × U) is a SVNRR2 given in Table 1.
Assume A ∈ SVNRS2(U) is given as follows:

A = {〈x1, {0.5, 0.8}, {0.2, 0.4}, {0.1, 0.3}〉,
〈x2, {0.7, 0.9}, {0.2, 0.4}, {0.5, 0.6}〉,
〈x3, {0.2, 0.4}, {0.6, 0.3}, {0.7, 0.5}〉,
〈x4, {0.2, 0.6}, {0.3, 0.5}, {0.1, 0.4}〉}.

By Definition 3.2, we can obtain the lower and
upper approximations of A with respect to (U, R) as
follows:

R(A)(x1) = 〈{0.2, 0.4}, {0.6, 0.5}, {0.7, 0.6}〉,
R(A)(x1) = 〈{0.2, 0.7}, {0.2, 0.4}, {0.7, 0.5}〉,
R(A)(x2) = 〈{0.2, 0.4}, {0.5, 0.5}, {0.7, 0.6}〉,
R(A)(x2) = 〈{0.7, 0.9}, {0.2, 0.4}, {0.2, 0.4}〉,
R(A)(x3) = 〈{0.2, 0.5}, {0.3, 0.4}, {0.5, 0.6}〉,
R(A)(x3) = 〈{0.7, 0.9}, {0.2, 0.4}, {0.1, 0.3}〉,
R(A)(x4) = 〈{0.5, 0.8}, {0.6, 0.5}, {0.1, 0.3}〉,
R(A)(x4) = 〈{0.5, 0.8}, {0.2, 0.4}, {0.2, 0.3}〉.

Remark 3.1. If R in Definition 3.2 is a single val-
ued neutrosophic relation and A is a single valued
neutrosophic set, then Definition 3.2 is consistent to
the notion of single valued neutrosophic rough sets
proposed in [39], which means that single valued neu-
trosophic rough sets proposed in [39] is a special case
of single valued neutrosophic refined rough sets.

3.2. The properties of single valued neutrosophic
refined approximation operators

This subsection is devoted to the properties of
single valued neutrosophic refined lower and upper
approximation operators.

Theorem 3.1. Let (U, R) be a p-dimension single
valued neutrosophic refined approximation space.
The single valued neutrosophic refined lower and
upper approximation operators defined in Definition
3.2 have the following properties: ∀A, B, \α, β, γ ∈
SVNRSp(U),

(1) R(U) = U, R(∅) = ∅;
(2) If A � B, then R(A) � R(B) and R(A) �

R(B);
(3) R(A 
 B)=R(A) 
 R(B), R(A 
 B)=R(A)


 R(B);



1240 Y.-L. Bao and H.-L. Yang / On single valued neutrosophic refined rough set model and its application

(4) R(A) 
 R(B) � R(A 
 B), R(A 
 B) �
R(A) 
 R(B);

(5) R(Ac) = (R(A))c, R(Ac) = (R(A))c;
(6) R(A 
 \α, β, γ) = R(A) 
 \α, β, γ, R(A 


\α, β, γ) = R(A) 
 \α, β, γ;
(7) R(∅p) = ∅p ⇐⇒ R( \α, β, γ) = \α, β, γ,

R(Up) = Up ⇐⇒ R( \α, β, γ) = \α, β, γ.

Proof. All claims are immediate results of the corre-
sponding definitions. �

Theorem 3.2. Let R1 and R2 be two p-dimension
SVNRRs in U. ∀A ∈ SVNRSp(U), we have

(1) R1 
 R2(A) = R1(A) 
 R2(A);
(2) R1 
 R2(A) = R1(A) 
 R2(A).

Proof. (1) According to Definitions 2.3 and 3.2, the
result can be easily proved.

(2) According to Proposition 2.1 (5) and Theo-
rem 3.1 (5), the result can be directly obtained. �

Theorem 3.3. Let R1 and R2 be two p-dimension
SVNRRs in U. ∀A ∈ SVNRSp(U), we have

(1) R1(A) 
 R2(A) � R1(A) 
 R2(A)
� R1 
 R2(A);

(2) R1 
 R2(A) � R1(A) 
 R2(A) � R1(A)

 R2(A).

Proof. (1) According to Definition 3.2, ∀x ∈ U,

TR1
R2(A)(x) =
∧̃
y∈U

(FR1
R2 (x, y)∨̃TA(y))

=
∧̃
y∈U

((FR1 (x, y)∨̃TA(y))∨̃

(FR2 (x, y)∨̃TA(y)))

≥
⎛⎝ ∧̃

y∈U

(FR1 (x, y)∨̃TA(y))

⎞⎠
∨̃

⎛⎝ ∧̃
y∈U

(FR2 (x, y)∨̃TA(y))

⎞⎠
= TR1(A)(x)∨̃TR2(A)(x)

= TR1(A)
R2(A)(x),

IR1
R2(A)(x) =
∨̃
y∈U

((∼ IR1
R2 (x, y))∧̃IA(y))

=
∨̃
y∈U

((∼ IR1 (x, y))∧̃(∼ IR2 (x, y))

∧̃IA(y))

=
∨̃
y∈U

(((∼ IR1 (x, y))∧̃IA(y))

∧̃((∼ IR2 (x, y))∧̃IA(y)))

≤
⎛⎝ ∨̃

y∈U

((∼ IR1 (x, y))∧̃IA(y))

⎞⎠
∧̃

⎛⎝ ∨̃
y∈U

((∼ IR2 (x, y))∧̃IA(y))

⎞⎠
= IR1(A)(x)∧̃IR2(A)(x)

= IR1(A)
R2(A)(x),

Similarly, we can show

FR1
R2(A)(x) ≤ FR1(A)
R2(A)(x).

It is obvious R1(A) 
 R2(A) � R1(A) 
 R2(A).
Hence, we get that R1(A) 
 R2(A) � R1(A) 

R2(A) � R1 
 R2(A).

(2) According to (1) and Theorem 3.1 (5), we have

R1 
 R2(A) = (R1 
 R2(Ac))c

� (R1(Ac) 
 R2(Ac))c

= (R1(Ac))c 
 (R2(Ac))c

= R1(A) 
 R2(A).

Consequently, R1 
 R2(A) � R1(A) 
 R2(A) �
R1(A) 
 R2(A). �

Remark 3.2. Let R1 and R2 be two p-dimension
SVNRRs in U. ∀A ∈ SVNRSp(U). If R1 � R2, then

R2(A) � R1(A) and R1(A) � R2(A).

Proof. According to Theorem 3.3, the result is
obvious. �

Next, we study the connections between special
SVNRRs and single valued neutrosophic refined
approximation operators.

Theorem 3.4. Let (U, R) be ap-dimension single val-
ued neutrosophic refined approximation space.Rand
R are the lower and upper approximation operators
defined in Definition 3.2, then we have the following
results:
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(1) R is serial ⇐⇒ R( \α, β, γ) = \α, β, γ,

∀ \α, β, γ ∈ SVNRSp(U),

⇐⇒ R(∅p) = ∅p,

⇐⇒ R( \α, β, γ) = \α, β, γ,

∀ \α, β, γ ∈ SVNRSp(U),

⇐⇒ R(Up) = Up;

(2) R is reflexive ⇐⇒ R(A) � A,

∀A ∈ SVNRSp(U),

⇐⇒ A � R(A),

∀A ∈ SVNRSp(U);

(3) R is symmetric ⇐⇒ R(1U−{x})(y)

= R(1U−{y})(x), ∀x, y ∈ U,

⇐⇒ R(1x)(y)

= R(1y)(x), ∀x, y ∈ U;

(4) R is transitive ⇐⇒ R(A) � R(R(A)),

∀A ∈ SVNRSp(U),

⇐⇒ R(R(A)) � R(A),

∀A ∈ SVNRSp(U).

Proof. According to Theorem 3.1 (5), we can know
that R and R is a pair of dual operators. Thus, we
only need to consider the properties of the lower
approximation operator.

(1) By Theorem 3.1 (7), it suffices to verify that
R is serial⇐⇒ R( \α, β, γ) = \α, β, γ, ∀ \α, β, γ ∈

SVNRSp(U).
“=⇒” If R is serial, then for any x ∈

U,
∨̃

y∈UTR(x, y) = {1, 1, · · · , 1} and
∧̃

y∈UIR
(x, y) = ∧̃

y∈UFR(x, y) = {0, 0, · · · , 0}. ∀ \α, β, γ ∈
SVNRSp (U), ∀x ∈ U, by Definition 3.2, we can
conclude

TR( [α,β,γ)(x) = α, IR( [α,β,γ)(x) = β,

FR( [α,β,γ)(x) = γ.

“⇐=” If R( \α, β, γ) = \α, β, γ for any \α, β, γ ∈
SVNRSp(U). Take α = {0, 0, · · · , 0}, β = γ =
{1, 1, · · · , 1}, then we have∨̃

y∈U

TR(x, y) = {1, 1, · · · , 1},

∼
∧̃
y∈U

IR(x, y) = {1, 1, · · · , 1},

which implies that∧̃
y∈U

IR(x, y) = {0, 0, · · · , 0},

∧̃
y∈U

FR(x, y) = {0, 0, · · · , 0}.

Thus, R is serial.
(2) “=⇒” If R is reflexive, then TR(x, x) =

{1, 1, · · · , 1} and IR(x, x) = FR(x, x) = {0, 0,

· · · , 0} for any x ∈ U. By Definition 3.2, ∀A ∈
SVNRSp(U), ∀x ∈ U,

TR(A)(x) =
∧̃
y∈U

(FR(x, y)∨̃TA(y))

≺ FR(x, x)∨̃TA(x)

= TA(x),

Similarly, IR(A)(x) � IA(x), FR(A)(x) � FA(x).
Therefore,R(A) � A.

“⇐=” IfR(A) � A for anyA ∈SVNRSp(U), then
∀x ∈ U, by taking A = 1U−{x}, we have

TR(x, x) = (TR(x, x)∧̃{1, 1, · · · , 1})∨̃{0, 0, · · · , 0}
= (TR(x, x)∧̃F1U−{x} (x))∨̃

(
∨̃

y∈U−{x}
(TR(x, y)∧̃F1U−{x} (y)))

=
∨̃
y∈U

(TR(x, y)∧̃F1U−{x} (y))

= FR(1U−{x})(x)

� F1U−{x} (x)

= {1, 1, · · · , 1},
which means TR(x, x) = {1, 1, · · · , 1}.

Similarly, we have ∼ IR(x, x) � {1, 1, · · · , 1},
i.e. IR(x, x) = {0, 0, · · · , 0}, and FR(x, x) ≺
{0, 0, · · · , 0}, i.e. FR(x, x) = {0, 0, · · · , 0}.

Thus, R is reflexive.
(3) According to Definition 3.2, ∀x, y ∈ U, it fol-

lows that

TR(1U−{x})(y) =
∧̃
z∈U

(FR(y, z)∨̃T1U−{x} (z))

= (FR(y, x)∨̃T1U−{x} (x))∧̃
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∧̃
z∈U−{x}

(FR(y, z)∨̃T1U−{x} (z))

= FR(y, x),

Similarly, we can conclude that

TR(1U−{y})(x) = FR(x, y),

IR(1U−{x})(y) = ∼IR(y, x),

IR(1U−{y})(x) = ∼IR(x, y),

FR(1U−{x})(y) = TR(y, x),

FR(1U−{y})(x) = TR(x, y),

Therefore, R is symmetric iff ∀x, y ∈
U, R(1U−{x})(y) = R(1U−{y})(x).

(4) “=⇒” If R is transitive, then for all x, y, z ∈ U,∨̃
y∈U

(TR(x, y)∧̃TR(y, z)) ≺ TR(x, z),

IR(x, z) ≺
∧̃

y∈U
(IR(x, y)∨̃IR(y, z)),

FR(x, z) ≺
∧̃

y∈U
(FR(x, y)∨̃FR(y, z)).

According to Definition 3.2, ∀x ∈ U, we have

TR(R(A))(x) =
∧̃
y∈U

(FR(x, y)∨̃TR(A)(y))

=
∧̃
z∈U

∧̃
y∈U

(FR(x, y)∨̃FR(y, z)∨̃TA(z))

=
∧̃
z∈U

⎛⎝ ∧̃
y∈U

(FR(x, y)∨̃FR(y, z)

∨̃TA(z))

)
�

∧̃
z∈U

(FR(x, z)∨̃TA(z))

= TR(A)(x),

Similarly, we can obtain IR(R(A))(x) ≺ IR(A)(x),
FR(R(A))(x) ≺ FR(A)(x).

Therefore, R(A) � R(R(A)).
“⇐=” Assume R(A) � R(R(A)) for all A ∈

SVNRSp(U). ∀x, y, z ∈ U, let A = 1U−{z}, from the
proving process of (3), we have

TR(x, z) = FR(1U−{z})(x)

� FR(R(1U−{z}))(x)

=
∨̃
y∈U

(TR(x, y)∧̃TR(y, z)),

Similarly, IR(x, z) ≺ ∧̃
y∈U

(IR(x, y)∨̃IR(y, z)),

FR(x, z) ≺
∧̃
y∈U

(FR(x, y)∨̃FR(y, z)).

Therefore, R is transitive. �

4. Axiomatic characterizations of single
valued neutrosophic refined
approximation operators

In this section, we will study the axiomatic char-
acterizations of single valued neutrosophic refined
lower and upper approximation operators by restrict-
ing a pair of abstract single valued neutrosophic
refined set operators.

Theorem 4.1. Let L: SVNRSp(U) −→ SVNRSp(U)
be a p-dimension single valued neutrosophic
refined set operator. Then, there exists a p-
dimension SVNRR R in U such that L(A) =
R(A) for all A ∈ SVNRSp(U) iff L satisfies
the following axioms (SVNRSL1) and (SVNRSL2):
∀A, B, \α, β, γ ∈ SVNRS p(U),

(SVNRSL1) L(A 
 \α, β, γ) = L(A) 
 \α, β, γ;
(SVNRSL2) L(A 
 B) = L(A) 
 L(B).

Proof. “=⇒” It is straightforward from Theorem 3.1.
“⇐=” Suppose L satisfies axioms (SVNRSL1)

and (SVNRSL2). By using L, we define a
p-dimension SVNRR R = {〈(x, y), TR(x, y),
IR(x, y), FR(x, y)〉} as follows:

TR(x, y) = FL(1U−{y})(x), IR(x, y) =∼ IL(1U−{y})
(x), FR(x, y) = TL(1U−{y})(x) for any x, y ∈ U.

Moreover, we can obtain that for all A ∈
SVNRSp(U),

A = 

y∈U

(1U−{y} 
 Â(y)),

where A(y) = 〈TA(y), IA(y), FA(y)〉.
In fact, for all x ∈ U, we have

T 

y∈U

(1U−{y}
Â(y))
(x)

=
∧̃
y∈U

T
(1U−{y}
Â(y))

(x)

= T1U−{x} (x)∨̃T
Â(x)

(x)∧̃
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∧̃
y∈U−{x}

(T1U−{y} (x)∨̃T
Â(y)

(x))

= TA(x),

Similarly,

I 

y∈U

(1U−{y}
Â(y))
(x) = IA(x),

F 

y∈U

(1U−{y}
Â(y))
(x) = FA(x),

By Definition 3.2, (SVNRSL1) and (SVNRSL2),
we have

TR(A)(x) =
∧̃
y∈U

(FR(x, y)∨̃TA(y))

=
∧̃
y∈U

(TL(1U−{y}
Â(y))
(x))

= T 

y∈U

(L(1U−{y}
Â(y)))
(x)

= TL( 

y∈U

(1U−{y}
Â(y)))
(x)

= TL(A)(x),

Similarly, IR(A)(x) = IL(A)(x), FR(A)(x) =
FL(A)(x).

Thus, R(A) = L(A). �

Theorem 4.2. Let H: SVNRSp(U) −→ SVNRSp(U)
be a p-dimension single valued neutrosophic
refined set operator. Then, there exists a p-
dimension SVNRR R in U such that H(A) =
R(A) for all A ∈ SVNRSp(U) iff H satisfies the
following axioms (SVNRSH1) and (SVNRSH2):
∀A, B, \α, β, γ ∈ SVNRS p(U),

(SVNRSH1) H(A 
 \α, β, γ) = H(A) 
 \α, β, γ;
(SVNRSH2) H(A 
 B) = H(A) 
 H(B).

Proof. “=⇒” It is straightforward from Theorem 3.1.
“⇐=” Suppose H satisfies axioms (SVNRSH1)

and (SVNRSH2). By using H, we define a
p-dimension SVNRR R = {〈(x, y), TR(x, y),
IR(x, y), FR(x, y)〉} as follows:

TR(x, y) = TH(1y)(x), IR(x, y) = IH(1y)(x),

FR(x, y) = FH(1y)(x) for any x, y ∈ U

Moreover, we can obtain that for all A ∈
SVNRSp(U),

A = 

y∈U

(1y 
 Â(y)).

In fact, for all x ∈ U, we have

T 

y∈U

(1y
Â(y))
(x) =

∨̃
y∈U

T
1y
Â(y)

(x)

= (T1x (x)∧̃T
Â(x)

(x))∨̃⎛⎝ ∨̃
y∈U−{x}

(T1y (x)∧̃T
Â(y)

(x))

⎞⎠
= TA(x),

Similarly,

I 

y∈U

(1y
Â(y))
(x) = IA(x),

F 

y∈U

(1y
Â(y))
(x) = FA(x).

By Definition 3.2, (SVNRSH1) and (SVNRSH2),
we have

TR(A)(x) =
∨̃
y∈U

(TR(x, y)∧̃TA(y))

=
∨̃
y∈U

(TH(1y)(x)∧̃TA(y))

=
∨̃
y∈U

(TH(1y)
Â(y)
(x))

= T 

y∈U

(H(1y
Â(y)))
(x)

= TH( 

y∈U

(1y
Â(y)))
(x)

= TH(A)(x),

Similarly,

IR(A)(x) = IH(A)(x),

FR(A)(x) = FH(A)(x).

Thus, R(A) = H(A). �

Remark 4.1. If L, H : SVNRSp(U) −→
SVNRSp(U) satisfy (SVNRSL1), (SVNRSL2)
and (SVNRSU1), (SVNRSU2), respectively. Then,
L(A) = (H(Ac))c and H(A) = (L(Ac))c. In this
case, L and H are called a pair of dual opera-
tors. Furthermore, if L and H are dual operators,
then (SVNRSL1), (SVNRSL2) are equivalent to
(SVNRSU1), (SVNRSU2).

Proof. It follows immediately from Theorem 3.1.
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Next, we investigate axiomatic characterizations
of other special single valued neutrosophic refined
approximation operators. �

Theorem 4.3. Let L, H : SVNRSp(U) −→
SVNRSp(U) be a pair of p-dimension single
valued neutrosophic refined set operators, then
there exists a serial p-dimension SVNRR R in U

such that L(A) = R(A), H(A) = R(A) for all
A ∈ SVNRSp(U) iff L satisfies axioms (SVNRSL1),
(SVNRSL2) and one of the following equiva-
lent axioms about L, or equivalently H satisfies
(SVNRSU1), (SVNRSU2) and one of the following
equivalent axioms about H:

(SVNRSL3) L(∅p) = ∅p;
(SVNRSU3) H(Up) = Up;

(SVNRSL4) L( \α, β, γ) = \α, β, γ for all \α, β, γ ∈
SVNRSp(U);

(SVNRSU4) H( \α, β, γ) = \α, β, γ for all \α, β, γ ∈
SVNRSp(U).

Proof. It follows immediately from Theorems 3.4 (1),
4.1 and 4.2. �

Theorem 4.4. Let L, H : SVNRSp(U) −→
SVNRSp(U) be a pair of p-dimension single
valued neutrosophic refined set operators, then
there exists a reflexive p-dimension SVNRR R in
U such that L(A) = R(A), H(A) = R(A) for all
A ∈ SVNRSp(U) iff L satisfies axioms (SVNRSL1),
(SVNRSL2) and (SVNRSL5), or equivalently H
satisfies (SVNRSU1), (SVNRSU2) and (SVNRSU5):

(SVNRSL5) L(A) � A;
(SVNRSU5) A � H(A).

Proof. It follows immediately from Theorems 3.4 (2),
4.1 and 4.2. �

Theorem 4.5. Let L, H : SVNRSp(U) −→
SVNRSp(U) be a pair of p-dimension single
valued neutrosophic refined set operators, then
there exists a symmetric p-dimension SVNRR R in
U such that L(A) = R(A), H(A) = R(A) for all
A ∈ SVNRS(U) iff L satisfies axioms (SVNRSL1),
(SVNRSL2) and (SVNRSL6), or equivalently H
satisfies (SVNRSU1), (SVNRSU2) and (SVNRSU6):

(SVNRSL6) L(1U−{y})(x) = L(1U−{x})(y), ∀
x, y ∈ U;
(SVNRSU6) H(1y)(x) = H(1x)(y), ∀x, y ∈ U.

Proof. It follows immediately from Theorems 3.4 (3),
4.1 and 4.2. �

Theorem 4.6. Let L, H : SVNRSp(U) −→
SVNRSp(U) be a pair of dual p-dimension sin-
gle valued neutrosophic refined set operators, then
there exists a transitive p-dimension SVNRR R in
U such that L(A) = R(A), H(A) = R(A) for all
A ∈ SVNRSp(U) iff L satisfies axioms (SVNRSL1),
(SVNRSL2) and (SVNRSL7), or equivalently H
satisfies (SVNRSU1), (SVNRSU2) and (SVNRSU7):

(SVNRSL7) L(A) � L(L(A)), ∀A ∈
SVNRSp(U);
(SVNRSU7) H(H(A)) � H(A), ∀A ∈
SVNRSp(U).

Proof. It follows immediately from Theorems 3.4 (4),
4.1 and 4.2. �

5. An application of single valued
neutrosophic refined rough sets
in multi-attribute decision making

5.1. An algorithm for medical diagnosis based
on single valued neutrosophic refined
rough sets

In real life, decision making problems always
involve at least two universes of discourse such as
symptoms set and diseases set in medical diagno-
sis. So it is necessary to introduce single valued
neutrosophic refined rough sets on two universes of
discourse.

Let U, V be two spaces of points (objects).
A SVNRSp R in U × V is termed as a p-
dimension single valued neutrosophic refined
relation (SVNRRp) from U to V , denoted by
R = {〈(x, y), TR(x, y), IR(x, y), FR(x, y) 〉 | (x, y)
∈ U × V }, where

TR(x, y) = {T1R(x, y), T2R(x, y), · · · , TpR(x, y)},
IR(x, y) = {I1R(x, y), I2R(x, y), · · · , IpR(x, y)},
FR(x, y) = {F1R(x, y), F2R(x, y), · · · , FpR(x, y)}.
Definition 5.1. Let R be a SVNRRp from U to
V , the tuple (U, V, R) is termed as a single valued
neutrosophic refined approximation space on two
universes. ∀A ∈ SVNRSp(V ), the lower and upper
approximations of A with respect to (U, V, R) are
two p-dimension SVNRSs in U, denoted by R(A)
and R(A), where ∀x ∈ U:
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TR(A)(x) =
∧̃
y∈V

(FR(x, y)∨̃TA(y)),

IR(A)(x) =
∨̃
y∈V

((∼ IR(x, y))∧̃IA(y)),

FR(A)(x) =
∨̃
y∈V

(TR(x, y)∧̃FA(y));

TR(A)(x) =
∨̃
y∈V

(TR(x, y)∧̃TA(y),

IR(A)(x) =
∧̃
y∈V

(IR(x, y)∨̃IA(y)),

FR(A)(x) =
∧̃
y∈V

(FR(x, y)∨̃FA(y)).

The pair (R(A), R(A)) is termed as the single val-
ued neutrosophic refined rough set of A with respect
to (U, V, R).

Zhang et al. [15] introduced a novel approach
to define the operations of interval neutrosophic
numbers based on t-norm and t-conorm. Similarly,
we introduce the sum of two single valued neutro-
sophic refined elements by t-norm and t-conorm as
follows:

Definition 5.2. Let A and B be two p-dimension sin-
gle valued neutrosophic refined sets in U. The sum of
A and B is a p-dimension single valued neutrosophic
refined set, denoted by A � B, defined based on the
Archimedean t-norm and t-conorm as follows:

A � B = {x, A(x) ⊕ B(x)|x ∈ U},
where A(x) ⊕ B(x) = 〈{l−1(l(T1A(x)) + l(T1B(x))),
l−1(l(T2A(x)) + l(T2B(x))), · · · , l−1 (l(TpA(x)) + l

(TpB(x)))}, {k−1(k(I1A(x)) + k(I1B(x))), k−1(k(I2A

(x)) + k(I2B(x))), · · · , k−1(k(IpA(x))+ k(IpB(x)))},
{k−1(k(F1A(x))+k(F1B(x))), k−1(k(F2A(x))+k(F2B

(x))), · · · , k−1(k(FpA(x)) + k(FpB(x)))}〉.
In [41], Ye introduced the cosine similarity

between two single valued neutrosophic numbers
for ranking single valued neutrosophic numbers in
decision-making procedure. Analogously, we can
define the cosine similarity between two single valued
neutrosophic refined elements as follows:

Definition 5.3. Let A be a p-dimension sin-
gle valued neutrosophic refined set in U and
α = 〈TA(xi), IA(xi), FA(xi)〉, β = 〈TA(xj), IA(xj),
FA(xj)〉 be its two p-dimension single valued

neutrosophic refined elements. The cosine similarity
between α and β is defined as follows:

S(α, β) =

p∑
k=1

Ak(xi) · Ak(xj)√
p∑

k=1
A2

k(xi)) ·
√

p∑
k=1

A2
k(xj)

,

where Ak(xi) · Ak(xj)=TkA(xi) · TkA(xj) +IkA(xi) ·
IkA(xj) + FkA(xi) · FkA(xj), A2

k(xi) = T 2
kA(xi) +

I2
kA(xi) + F2

kA(xi).
From Definition 5.3, it can be observed that the big-

ger the similarity measure S, the closer the two single
valued neutrosophic refined elements. By comparing
the cosine similarity measures between every single
valued neutrosophic refined element and an ideal sin-
gle valued neutrosophic refined element, the rank of
all single valued neutrosophic refined elements can
be acquired.

In what follows, we will consider medical diag-
nosis problems based on single valued neutrosophic
refined rough sets on two universes. Suppose that
the universe U = {x1, x2, · · · , xm} represents a set of
diseases, and the universe V = {y1, y2, · · · , yn} rep-
resents a set of symptoms. Let R ∈ SVNRRp(U × V )
be a single valued neutrosophic refined relation from
U to V , where ∀(x, y) ∈ U × V , R(x, y) represents
the degree that the disease x (x ∈ U) shows the symp-
tom y (y ∈ V ). Given a patient A who has some
symptoms in V , and the symptoms of the patient (also
denoted by A) are illustrated by a SVNRS A in the
universe V . In the following, we propose an algo-
rithm to diagnose which kind of disease the patient
A is suffering from.

Algorithm Diagnosing which kind of disease a patient is
suffering from

Input: A diseases set U, a symptoms set V and a p-dimension
single valued neutrosophic refined relation from U to V , the
symptoms of a patient A.

Output:
RES(A)// the disease patient A is suffering from
1: Computing the lower and upper approximation of A, i.e. R(A)

and R(A);
2: Computing R(A) � R(A);

3: Computing I = 〈 ∨̃
xi∈U

TR(A)�R(A)(xi),
∧̃

xi∈U

IR(A)�R(A)(xi),∧̃
xi∈U

FR(A)�R(A)(xi)〉;

4: Computing S((R(A) � R(A))(xi), I) for each xi ∈ U;
5: RES(A) = {xk|S((R(A) � R(A))(xk), I) ≥ S((R(A) �

R(A))(xi), I), xi ∈ U};
6: Return RES(A).
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Table 2
The 3-dimension single valued neutrosophic refined relation R from U to V

R x1 x2

y1 〈{0.4, 0.5, 0.2}, {0.2, 0.3, 0.8}, {0.3, 0.4, 0.2}〉 〈{0.8, 0.9, 0.9}, {0.1, 0.2, 0.2}, {0, 0.1, 0.1}〉
y2 〈{0.5, 0.6, 0.6}, {0.3, 0.4, 0.2}, {0.2, 0.3, 0.1}〉 〈{0.8, 0.9, 0.8}, {0.2, 0.3, 0.2}, {0, 0.1, 0.1}〉
y3 〈{0, 0.1, 0}, {0.1, 0.2, 0.2}, {0.8, 0.9, 0.8}〉 〈{0, 0.2, 0.1}, {0.1, 0.3, 0.2}, {0.7, 0.9, 0.8}〉
y4 〈{0.7, 0.8, 0.8}, {0.3, 0.4, 0.3}, {0.2, 0.3, 0.1}〉 〈{0, 0.1, 0.1}, {0, 0.2, 0.1}, {0.8, 1, 0.9}〉
y5 〈{0.4, 0.5, 0.4}, {0.5, 0.6, 0.6}, {0.6, 0.7, 0.8}〉 〈{0, 0.1, 0.2}, {0.1, 0.2, 0.3}, {0.9, 1, 0.8}〉
R x3 x4

y1 〈{0.8, 1, 0.9}, {0.2, 0.4, 0.3}, {0, 0.1, 0.1}〉 〈{0.1, 0.3, 0.2}, {0.3, 0.4, 0.1}, {0.8, 1, 0.9}〉
y2 〈{0.9, 1, 1}, {0.1, 0.3, 0.1}, {0, 0.1, 0}〉 〈{0, 0.1, 0.2}, {0.2, 0.3, 0.1}, {0.9, 1, 0.8}〉
y3 〈{0.7, 0.8, 0.9}, {0.4, 0.6, 0.5}, {0.2, 0.1, 0.3}〉 〈{0.9, 0.9, 1}, {0.4, 0.5, 0.6}, {0.1, 0.3, 0.2}〉
y4 〈{0, 0.1, 0.1}, {0.3, 0.2, 0.4}, {0.8, 0.7, 0.9}〉 〈{0, 0.1, 0.2}, {0.1, 0.2, 0.2}, {0.8, 0.7, 0.9}〉
y5 〈{0, 0.2, 0.1}, {0.2, 0.3, 0.4}, {0.7, 0.6, 1}〉 〈{0.1, 0.2, 0.4}, {0.2, 0.4, 0.3}, {0.7, 0.8, 0.6}〉

5.2. An illustrative example

In this subsection, an example of medical diagno-
sis is illustrated to demonstrate the feasibility of the
method proposed in Subsection 5.1.

We take into account the medical diagnosis
problem partly adopted from [25] and adjust the
hesitant fuzzy environment to neutrosophic envi-
ronment. Let U = {x1, x2, x3, x4} be a set of
four diseases, where xi (i = 1, 2, 3, 4) represents
“common cold”, “malaria” “typhoid”, and “stom-
ach disease” respectively and the universe V =
{y1, y2, y3, y4, y5} be a set of five symptoms, where
yj (j = 1, 2, 3, 4, 5) represents “fever”, “headache”,
“stomachache”, “cough”, and “chest-pain”, respec-
tively. Let R be a p-dimension SVNRR from U to V

which is actually a medical knowledge statistic data
of the relationship between the disease xi (xi ∈ U)
and the symptom yj (yj ∈ V ). The statistic data is
provided in Table 2.

The symptoms of a patient A are illustrated by
a 3-dimension SVNRS in the universe V which are
obtained at different time intervals such as 7:00 am,
12:00 and 6:00 pm as follows:

A = {〈y1, {0.8, 0.9, 1}, {0.2, 0.3, 0}, {0.1, 0.3, 0}〉,
〈y2, {0.7, 0.9, 0.8}, {0.1, 0.2, 0.1}, {0.1, 0.2, 0.2}〉,
〈y3, {0.7, 0.8, 0.8}, {0.2, 0.4, 0.3}, {0.1, 0.2, 0.3}〉,
〈y4, {0.1, 0.2, 0.1}, {0.3, 0.4, 0.2}, {0.8, 0.7, 0.9}〉,
〈y5, {0, 0.1, 0}, {0.1, 0.2, 0.3}, {0.8, 0.9, 1}〉}.

In what follows, we illustrate the decision-making
process by the six steps:

Step 1. According to Definition 5.1, we can obtain
that

R(A) = {〈x1, {0.2, 0.3, 0.1}, {0.3, 0.4, 0.3}, {0.7, 0.7, 0.8}〉,
〈x2, {0.7, 0.9, 0.8}, {0.3, 0.4, 0.3}, {0.1, 0.3, 0.3}〉,
〈x3, {0.7, 0.6, 0.8}, {0.3, 0.4, 0.3}, {0.1, 0.3, 0.3}〉,
〈x4, {0.7, 0.7, 0.6}, {0.3, 0.4, 0.3}, {0.1, 0.3, 0.4}〉},

R(A) = {〈x1, {0.5, 0.6, 0.6}, {0.2, 0.3, 0.2}, {0.2, 0.3, 0.2}〉,
〈x2, {0.8, 0.9, 0.9}, {0.1, 0.2, 0.2}, {0.1, 0.2, 0.1}〉,
〈x3, {0.8, 0.9, 0.9}, {0.1, 0.3, 0.1}, {0.1, 0.2, 0.1}〉,
〈x4, {0.7, 0.8, 0.8}, {0.2, 0.3, 0.1}, {0.1, 0.3, 0.3}〉}.

Step 2. Let k(x) = − log(x), then k−1(x) = e−x,
l(x) = − log(1 − x), and l−1(x) = 1 − e−1(x). By
Definition 5.2, we have

R(A) � R(A)

= {〈x1, {0.60, 0.72, 0.64}, {0.06, 0.12, 0.06},
{0.14, 0.21, 0.16}〉, 〈x2, {0.94, 0.99, 0.98},
{0.03, 0.08, 0.06}, {0.01, 0.06, 0.03}〉,
〈x3, {0.94, 0.96, 0.98}, {0.03, 0.12, 0.03},
{0.01, 0.06, 0.03}〉, 〈x4, {0.91, 0.94, 0.92},
{0.06, 0.12, 0.03}, {0.01, 0.09, 0.12}〉}.

Step 3. According to above results, we calcu-
late the ideal single valued neutrosophic refined
element

I = 〈{0.94, 0.99, 0.98}, {0.03, 0.08, 0.03},
{0.01, 0.06, 0.03}〉.

Step 4. By Definiton 5.3, we can compute that

S((R(A) � R(A))(x1), I) = 0.9718,

S((R(A) � R(A))(x2), I) = 0.9998,
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S((R(A) � R(A))(x3), I) = 0.9996,

S((R(A) � R(A))(x4), I) = 0.9975,

It follows that

S((R(A) � R(A))(x2), I)

> S((R(A) � R(A))(x3), I)

> S((R(A) � R(A))(x4), I)

> S((R(A) � R(A))(x1), I).

Step 5. From discussion above, x2 is the optimal
choice.

Step 6. There is only one optimal choice x2, so the
patient A is suffering from x2–malaria.

Compared with the model and algorithm proposed
in [18], the model and algorithm in this paper can
deal with information which come from different
time intervals or different information providers in
the process of decision making. For single valued
neutrosophic refined sets is a generalization of sin-
gle valued neutrosophic sets, the algorithm based
on single valued neutrosophic refined rough sets on
two universes suits more general decision-making
environment.

6. Conclusion

In this paper, we propose the hybrid model of
single valued neutrosophic refined sets and rough
sets—single valued neutrosophic refined rough sets.
Specifically, we investigate the single valued neu-
trosophic refined rough sets from both constructive
and axiomatic approaches. Then, single valued neu-
trosophic refined rough sets on two universes are
introduced for wider application of single valued neu-
trosophic refined rough sets. In addition, we provide
an algorithm to handle decision making problem in
medical diagnosis based on single valued neutro-
sophic refined rough sets on two universes. Finally,
a numerical example is employed to demonstrate the
validness of the proposed single valued neutrosophic
refined rough sets. It should be highly noted that the
model and algorithm proposed in this present paper
is available not only in medical diagnosis but also in
other decision making problems such as investment
decision-making, shopping decision-making and so
on. For the future prospects, we will devote to explore
the application of the proposed model to data mining
and attribute reduction.
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