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Abstract—The concept of single valued neutrosophic graphs 

(SVNGs) generalizes the concept of fuzzy graphs and 

intuitionistic fuzzy graphs. The purpose of this research paper is 

to define different types of strong degrees in SVNGs and 

introduce novel concepts, such as the vertex truth-membership, 

vertex indeterminacy-membership and falsity-membership 

sequence in SVNG with proof and numerical illustrations. 

 Keywords—Single valued neutrosophic graph (SVNG); 

neutrosophic set; sequence; strong degree 

I. INTRODUCTION 

In [1], [3] Smarandache  explored  the  notion of 
neutrosophic sets (NS in short) as a powerful tool which 
extends the concepts of crisp set, fuzzy sets and intuitionistic 
fuzzy sets [2]-[6]. This concept deals with uncertain, 
incomplete and indeterminate information that exist in real 
world. The concept of NS sets associate to each element of the 

set a degree of membership ( )AT x ,a degree of 

indeterminacy     and a degree of falsity      , in which 
each membership degree is a real standard or non-standard 
subset of the nonstandard unit ]-0, 1+[. Smaranadache [1], [2] 
and Wang [7] defined the concept of single valued 
neutrosophic sets (SVNS), an instance of NS, to deal with real 
application. In [8], the readers can found a rich literature on 
SVNS. 

In more recent times, combining the concepts of NSs, 
interval valued neutrosophic sets (IVNSs) and  bipolar 
neutrosophic sets with graph theory, Broumi et al. introduced 
various types of neutrosophic graphs including single valued 
neutrosophic graphs (SVNGs for short) [9], [11], [14], interval 
valued neutrosophic graphs [13], [18], [20], bipolar 
neutrosophic graphs [10], [12], all these graphs are studied 
deeply. Later on, the same authors presented some papers for 
solving the shortest path problem on a network having  single 

valued neutrosophic edges length [17], interval valued 
neutrosophic edge length [32], bipolar neutrosophic edge 
length [21], trapezoidal neutrosophic numbers [15], SV-
trapezoidal neutrosophic numbers [16], triangular 
fuzzy  neutrosophic [19].Our approach of neutrosophic graphs 
are different from that of Akram et al. [26]-[28] since while 
Akram considers, for the neutrosophic environment (<=, <=, 
>=) we do (<=, >=, >=) which is better, since while T is a 
positive quality, I, F are considered negative qualities. Akram 
et al. include “I” as a positive quality together with “T”. So 
our papers improve Akram et al.’s papers. After that, several 
authors are focused on the study of SVNGs and many 
extensions of SVNGs have been developed. Hamidi and 
Borumand Saeid [25] defined the notion of accessible-SVNGs 
and apply it social networks. In [24], Mehra and Manjeet 
defined the notion of single valued neutrosophic signed 
graphs. Hassan et al. [30] proposed some kinds of bipolar 
neutrosophic graphs. Naz et al. [23] studied some basic 
operations on SVNGs and introduced vertex degree of these 
operations for SVNGs and provided an application of single 
valued neutrosophic digraph (SVNDG) in travel time. Ashraf 
et al. [22] defined new classes of SVNGs and studied some of 
its important properties. They solved a multi-attribute decision 
making problem using a SVNDG. Mullai [31] solved the 
spanning tree problem in bipolar neutrosophic environment 
and gave a numerical example. 

Motivated by the Karunambigai work’s [29].The concept 
of strong degree of intuitionistic fuzzy graphs is extended to 
strong degree of SVNGs 

This paper has been organized in five sections. In 
Section 2, we firstly review some basic concepts related to 
neutrosophic set, single valued neutrosophic sets and SVNGs. 
In Section 3, different strong degree of SVNGs are proposed 
and studied with proof and example. In Section 4, the concepts 
of vertex truth-membership, vertex indeterminacy-
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membership and vertex falsity- membership is discussed. 
Lastly, Section 5 concludes the paper. 

II. PRELIMINAREIS AND DEFINTIONS 

In the following, we briefly describe some basic concepts 
related to neutrosophic sets, single valued neutrosophic sets 
and SVNGs. 

Definition 2.1 [1] Given the universal set   . A 
neutrosophic set A on   is characterized by  a truth 
membership function   ,an indeterminacy membership 
function     and falsity membership function   , where 
  ,  ,  :  ]−0,1 +[. For all x  , x=(x,                    
A is neutrosophic element of A. 

The neutrosophic set can be written in the following form: 

A = {<x:                 >, x  }              (1) 

with the condition 

                                   (2) 

Definition 2.2 [7] Given the universal set  . A single 
valued neutrosophic set A on  is characterized by a truth 
membership function    , an indeterminacy membership 
function     and falsity membership function   , 
where   ,   ,   :        . For all x   , x=(x, 
     ,               A is a single valued neutrosophic 
element of A. 

The single valued neutrosophic set can be written in the 
following form: 

A = {<x:     ,           >, x  }            (3) 

with the condition 

0                     3            (4) 

Definition 2.3 [14] ASVN-graph G is of the form 
G=(A,B)  where A 

1. A={          }Such that the functions   : A   [0 ,1], 
  :   [0, 1 ],   :A  [0, 1]denote the truth-membership 
function, an indeterminacy-membership function and falsity-
membership function of the element     A respectively and 

0       +      +       3      

i=1,2,…,n. 

2.B={(  ,  ); (  ,  )     } and the function   :B 
 0,1], 

  :B  [0,1] ,   :B  [0, 1] are defined by 

           min (             )            (5) 

           max(             )            (6) 

          max(             )            (7) 

Where  ,   ,   denotes the truth-membership function, 
indeterminacy membership function and falsity membership 
function of the edge (     )  B respectively where 

 0          +           +           3           (8) 

           , i, j {1,2,…,n} 

A is called the vertex set of G and B is the edge set of G. 

The following Fig. 1 represented a graphical representation 
of single valued neutrosophic graph. 

 
Fig. 1. Single valued neutrosophic graph. 

III. STRONG DEGREE IN SINGLE VALUEDNEUTROSOPHIC 

GRAPH 

The following section introduces new concepts and proves 
their properties. 

 Definition 3.1 Given the SVN-graph G= (V, E). The T-

strong degree of a vertex iv V  is defined as 

( ) ( )
ij

s T i ij

e E

d v T


  ,
ije are strong edges incident at iv . 

Definition 3.2 Given the SVN-graph G=(V, E).The I-

strong degree of a vertex iv V  is defined as 

( ) ( )
ij

s I i ij

e E

d v I


  ,
ije  are strong edges incident at iv . 

Definition 3.3 Given the SVN-graph G=(V, E).The F-

strong degree of a vertex iv V  is defined as 

( ) ( )
ij

s F i ij

e E

d v F


  ,
ije  are strong edges incident at iv . 

Definition3.4 Let G = (V,E) be SVNG. The strong degree 

of a vertex  iv V  is as follow

( ) , ,

ij ij ij

s i ij ij ij

e E e E e E

d v T I F
  

 
 
  
   , where 

ije  are strong edge 

incident at iv . 

Definition 3.5 Let G=(V, E) be a SVNG. The minimum 
strong degree of G is defined as 

( ) ( ) ( )(G) ( (G), (G), (G)s s T s I s F   
, where 

 (T) (T)(G) (v ) / vs s i id V     is the minimum T-

strong degree of G. 



Future of Information and Communication Conference (FICC) 2018 

5-6 April 2018 | Singapore 

3 | P a g e  

978-1-5386-2056-4/18/$31.00©2018 IEEE 

 ( ) (I)( ) (v ) / vs I s i iG d V    is the minimum I-

strong degree of G. 

 ( ) ( )( ) (v ) / vs F s F i iG d V    is the minimum F-

Strong degree of G. 

Definition 3.6 Given the SVN-graph G=(V, E). The 
maximum strong degree of G is defined as 

(T) (I) (F)( ) ( (G), (G), (G))s s s sG    
, where 

 ( ) (T)( ) (v ) / vs T s i iG d V    is the maximum  T-

strong degree of G. 

 ( ) ( )( ) (v ) / vs I s I i iG d V    is the maximum I-

strong degree of G. 

 (F) (F)(G) (v ) / vs s i id V     is the maximum F-

Strong degree of G. 

Definition 3.7 Let G be a SVNG, the T-total strong degree 

of a vertex iv V in G is defined as

(T) (T)( ) ( )s i s i itd v d v T  , 

Definition 3.8 Let G be a SVNG, the I-total strong degree 

of a vertex in G is defined as iv V

(I) (I)( ) ( )s i s i itd v d v I  , 

Definition 3.9 Let G be a SVNG, the F-total strong degree 

of a vertex  iv V  in G is defined

( ) ( )( ) ( )s F i s F i itd v d v F  , 

Definition 3.10 Let G be a SVNG, the total strong degree 

of a vertex iv V in G is defined as 

( ) ( ) ( )( ) ( ), ( ), ( )s i s T i s I i s F itd v td v td v td v     

Definition 3.11 Given the SVN-graph G=(V, E). The 
minimum total strong degree of G is defined as 

( ) ( ) ( )( ) ( ( ), ( ), ( ))ts ts T ts I ts FG G G G   
, where 

 ( ) ( )( ) (v ) / vts T ts T i iG d V    is the minimum T-

total strong degree of G. 

 ( ) (I)( ) (v ) / vts I ts i iG d V    is the minimum I- 

total strong degree of G. 

 ( ) ( )( ) (v ) / vts F ts F i iG d V    is the minimum F-

total strong degree of G. 

Definition 3.12 Given the SVN-graph G = (V, E). The 
maximum total strong degree of G is defined as: 

( ) ( ) ( )( ) ( ( ), (G), ( ))ts ts T ts I ts FG G G    
, where 

 ( ) (T)(G) (v ) / vts T ts i id V    is the maximum T-

total strong degree of G. 

 ( ) ( )( ) (v ) / vts I ts I i iG d V    is the maximum I- 

total strong degree of G. 

 (F) (F)(G) (v ) / vts ts i id V    is the maximum F-

total strong degree of G. 

Definition 3.13 Given the SVN-graph G=(V,E). The T-
strong size of a SVNG is defined as 

( ) ( )
i j

s T ij

v v

S G T


  where ijT
is the membership of strong 

edge ije E
. 

Definition 3.14 Given the SVN-graph G=( V, E). The I-
strong size of a SVNG is defined as 

( ) ( )
i j

s I ij

v v

S G I


  where
ijI is the indeterminacy-

membership of strong edge 
ije E . 

Definition 3.15 Given the SVN-graph G=(V, E). The F-
strong size of a SVNG is defined as 

( ) ( )
i j

s F ij

v v

S G F


  where ijF
is the non-membership of 

strong edge ije E
. 

Definition 3.16 Given the SVN-graph G=(V, E). The 
strong size of a SVNG is defined as 

(T) (I) ( )( ) (G), (G), (G)s s s s FS G S S S     

Definition 3.17 Given the SVN-graph G=(V,E). The T-
strong order of a SVNG is defined as 

( ) ( )
i

s T i

v V

O G T


 where iv is the strong vertex in G. 

Definition 3.18 Given the SVN-graph G=(V, E). The I-
strong order of a SVNG is defined as 

(I) ( )
i

s i

v V

O G I


 where iv is the strong vertex in G. 

Definition 3.19 Given the SVN-graph G=(V, E).The F-
strong order of a SVNG is defined as 

(F) ( )
i

s i

v V

O G F


 where iv is the strong vertex in G. 

Definition 3.20 Given the SVN-graph G=(V, E). The 
strong order of a SVNG is defined as 

( ) ( ) ( )( ) ( ), ( ), ( )s s T s I s FO G O G O G O G     
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Definition 3.21 Let G be a SVNG. If 
( ) 1( )s T id v k , 

( ) 2( )s I id v k and , 
( ) 3( )s F id v k for all 

vi V
, then the 

SVNG is called as ( 1k
, 2k

, 3k
) - strong constant SVNG (or) 

Strong constant SVNG of degree  ( 1k
, 2k

, 3k
). 

Definition 3.22 Let G be a SVNG. If 
( ) 1( )s T itd v r , 

( ) 2( )s I itd v r and , 
(F) 3( )s id v r for all 

vi V
, then the 

SVNG is called as ( 1r , 2r , 3r ) – totally strong constant SVNG 

(or) totally strong constant SVNG of degree  ( 1r , 2r , 3r ). 

Proposition 3.23 In a SVNG, G 

2 ( ) ( )s TS G
=

( )

1

( )
n

s T i

i

d v


 , 2 ( ) ( )s IS G
=

( )

1

( )
n

s I i

i

d v


  and 

2 ( ) ( )s FS G
=

( )

1

( )
n

s F i

i

d v



 

Proposition 3.24 In a connected SVNG, 

1)      (vi)       ,      (vi)       and      (vi)       

2)       (vi)        ,       (vi)        and 

 t     (vi)        . 

Proposition 3.25 Let G be a SVNG where crisp graph    
is an odd cycle. Then G is strong constant if f      ,    ,      

is constant function for every      E. 

Proposition 3.26 Let G be a SVNG where crisp graph    
is an even cycle. Then G is strong constant if f   
    ,    ,      is constant function or alternate edges have same 

true membership, indeterminate membership and false 
membership  for every      E. 

Remark 3.27 The above proposition 3.25 and proposition 
3.26 hold for totally strong constant SVNG, if    ,   ,     is 
a constant function. 

Remark 3.28 A complete SVNG need not be a strong 
constant SVNG and totally strong constant SVNG. 

Remark 3.29 A strong SVNG need not be a strong 
constant SVNG and totally strong constant SVNG. 

Remark 3.30 For a strong vertex     V, 

1)   (  ) =    (  ) ,   (  ) =    (  ) and 

   (  ) =    (  ) 

2)    (  ) =     (  ) ,    (  ) = t   (  ) and 

 t  (  ) =     (  ) 

Theorem 3.31 Let G be a complete SVNG with V = 
{  ,  ,… ,  } such that   ≤   ≤    ≤ … ≤   ,    ≥   ≥   ≥ … 
≥   and    ≥   ≥   ≥ … ≥    Then 

1)    is minimum edge truth membership,     is the 

maximum edge indeterminacy membership and     is the 

maximum edge falsity membership of     emits from    for all 

j = 2,3,4,…, n. 

2)     is maximum edge truth membership,     is the 

minimum edge indeterminacy membership and     is the 

minimum edge falsity membership of among all edges from  

emits from    to    for all i = 1, 2,3,4,…, n-1. 

3) t  (  ) =     
(G) = n.T1 , t  (  ) =     

(G) = n.I1 and 

t  (  ) =      
(G) = n.F1. 

4) t  (  ) =     
(G) = ∑   

 
   , t  (  ) =     

(G)  = 

∑   
 
   , and t  (  ) =      

(G) = ∑   
 
   . 

Proof: Throughout the proof, suppose that    ≤   ≤    ≤ 
… ≤   ,    ≥   ≥   ≥ … ≥   and    ≥   ≥   ≥ … ≥    . 

1) To prove that     is minimum edge truth membership, 

    is the maximum edge indeterminacy membership and     

is the maximum edge falsity membership of     emits from 

v1 j=2,3,….,n. Assume the contrary  i.e.     is not an edge of 

minimum true membership, maximum indeterminate 

membership and maximum false membership emits from  . 

Also let     , 2 ≤ k ≤ n,k  l be an edge with minimum true 

membership,, maximum indeterminate membership and  

maximum false membership  emits from   . 

Being a complete SVNG,  

   = min {   ,    } ,    = max {    ,    } and    = max {   , 
   } 

Then    = min {   ,    } ,    = max {    ,    } and 

   = max {   ,    } 

Since           min {   ,    }   min {   ,    }  

Thus either       or      . 

Also since          max {    ,    }   max {   ,    }, so 
either        or        . 

Since l, k    1, this is contradiction to our vertex 
assumption that     is the unique minimum vertex true 
membership,    is the maximum vertex indeterminate 
membership and   is the maximum vertex false membership. 

Hence     is minimum edge true membership,    is the 

maximum edge indeterminate membership and      is the 

maximum edge false membership of     emits from    to   for 

all j = 2, 3, 4,…, n. 

2) On the contrary, assume let    is not an edge with 

maximum true membership, minimum indeterminate 

membership and minimum false membership emits from    

for 1   k   n-1. On the other hand, let     be an edge with 

maximum true membership, minimum indeterminate 

membership and minimum false membership emits from    

from 1   r   n-1, k   r. 

Then          min {   ,    }   min{   ,    }     , 
so       , 

        max{  ,    }  max{   ,    }     , so     
  and 
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Similarly           max {   ,    }   max {   ,    } 
   ,         

So     =   =    ,    =    =     and     =    =     , which 
is a contradiction. Hence     is an edge with maximum true 
membership, minimum indeterminate membership and 
minimum false membership among all edges emits from   to 
  . 

3) Now  

t  (  ) =    (  )      

 = ∑              = ∑       
 
    

= (n-1).   +   = n  -   +   = n  , 

t  (  ) =    (  )     

 = ∑              = ∑       
 
    

= (n-1).   +   = n  -   +   = n   and 

Similarly, 

t  (  ) =    (  )      

= ∑              = ∑       
 
    

 = (n-1).   +   = n  -   +   = n   

Suppose that t  (  )      
(G) and let     , k   1 be a 

vertex in G with minimum T- total degree.  

Then, 

t  (  )   t  (  )  

 ∑      

 

   

 ∑       

        

 

 ∑     

 

   

    ∑         

        

 

Since       =    for i = 1, 2, 3, …, n and for all other 
indices j,         , it follow that 

(n - 1).   +    ∑                   (n-1).   +    

Hence, t  (  )   t  (  ) , a contradiction. 

Therefore, t  (  ) =     
(G). 

Suppose that t  (v1)       
(G) and let     , k   1 be a 

vertex in G with maximum I- total degree. 

Then, 

t  (  )   t  (  )  

 ∑      

 

   

 ∑       
        

 

 ∑     

 

   

    ∑         
        

 

Since       =    for i = 1, 2, 3, …, n and for all other 
indices j,         , it follow that 

(n-1).   +    ∑                   (n-1).   +    

So that t  (  ) t  (  ) , a contradiction. 

Therefore, t  (  ) =     
(G). 

Also, Suppose that t  (v1)       
(G) and let     , k   1 

be a vertex in G with maximum F- total degree. 

Then 

t  (  )   t  (  ) 

 ∑      

 

   

 ∑       

        

 

 ∑     

 

   

    ∑         

        

 

Since       =    for i = 1, 2, 3, …, n and for all other 
indices j,         , it follow that 

(n-1).   +    ∑                   (n-1).   +    

So that t  (  ) t  (  ) , a contradiction . 

Therefore, t  (  ) =     
(G). 

Hence, 

t  (v1) =     
(G) = n.T1 , 

t  (v1) =     
(G) = n.I1 and 

t  (v1) =      
(G) = n.F1. 

4) Since,       ,       and       , i = 1, 2, 3, …, n-1 

and G is complete 

    =      =    ,     =       =   and      =       =    . 

Hence, t  (  ) = ∑       
   
     

= ∑            
   
    = ∑      

   
    

= ∑   
 
    , 

t  (  ) = ∑       
   
     

  = ∑            
   
    = ∑      

   
    

= ∑   
 
    

And t  (  ) = ∑       
   
     

 = ∑             
   
    = ∑      

   
    

 = ∑   
 
    . 

Suppose that t  (  )       
(G). Let    , 1 ≤ l ≤ n-1 be a 

vertex in G such that t  (  )        
(G) and 

t  (  )   t  (  ) . In addition, 

t  (  ) = [ ∑    
   
    + ∑    

   
      +     ] +    
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 [ ∑   
   
    + (n-l)   +    ] +    

 ∑   
   
    +    

 ∑   
 
    = t   (   ). Thus t   (   )   t   (   ) , 

contradiction. So, t  (  ) =     
(G) = ∑   

 
   . 

Suppose that t  (  )       
(G). Let    , 1 ≤ l ≤ n-1 be a 

vertex in G such that t  (  )        
(G) and t  (  )   t    ) .  

In addition, 

t  (  ) = [ ∑    
   
    + ∑    

   
      +     ] +     

 [ ∑   
   
    + (n-l)   +    ] +    

 ∑   
   
    +     

 ∑   
 
    = t  (  ). Thus t  (  )   t  (  ) , contradiction. 

So, t  (  ) =     
(G) = ∑   

 
   . 

Also, suppose that t  (  )       
(G). Let    , 1 ≤ l ≤ n-1 

be a vertex in G such that t  (  )        
(G) and t  (  )   

t    ) . In addition, 

t  (  ) = [ ∑    
   
    + ∑    

   
      +     ] +    

 [ ∑   
   
    + (n-l)   +    ] +    

 ∑   
   
    +    

 ∑   
 
    = t   (   ). Thus    (   )  t   (   ) , 

contradiction. So,    (  ) =     
(G) = ∑   

 
   . 

Hence the lemma is proved. 

Remark 3.32 In a complete SVNG G, 

1) There exists at least one pair of vertices   and    such 

that    
=    

=   (G) ,    
=    

 =   (G) and     
=    

 =   (G), 

2) t      =          
      t      =           

(G) 

and        =   (G)=    
(G)for a vertex     V, 

3) ∑        
 
    = 2   (G)+   (G) , ∑        

 
    = 

2            and ∑        
 
    = 2  (G) +   (G). 

IV. VERTEX TRUTH MEMBERSHIP , VERTEX INDTERMINACY 

MEMBERSHIP AND VERTEX FALSITY MEMEBERSHIP SEQUENCE 

IN SVNG 

In this section, vertex truth membership, vertex 
indeterminacy membership and vertex falsity membership 
sequences are defined in SVNGs. 

Definition 4.1 Given a SVN-graph G with | | = n. The 
vertex truth membership sequence of G is defined to be 
       

  with           …     where   , 0     1, is 
the truth membership value of the vertex    when vertices are 
arranged so that their truth membership values are non- 
decreasing. 

Particular,    is smallest vertex truth membership value 
and    is largest vertex truth membership value in G. 

Note 4.2 If vertex truth membership sequence    is 
repeated more than once in G, say r   1 times, then it is 
denoted by   

  in the sequence. 

Example 4.3 In Fig. 2 the vertex truth membership 
sequence of G is {0.1, 0.1, 0.3, 0.3, 0.4, 0.8 } or {     ,      , 
0.4, 0.8 }. 

 

Fig. 2. Vertex truth membership sequence. 

Definition 4.4 Let G be a SVNG with | | = n. The vertex 
indeterminacy membership sequence of G is defined to be 
       

  with           …    where    , 0     1, is 
the indeterminacy membership value of the vertex    when 
vertices are arranged so that their indeterminacy membership 
values are non- increasing. 

Particular,    is largest vertex indeterminacy membership 
value and    is smallest vertex indeterminacy membership 
value in G. 

Note 4.5 If vertex indeterminacy membership sequence    
is repeated more than once in G, say r   1 times, then it is 
denoted by   

  in the sequence. 

Example 4.6 In Fig. 3 the vertex indeterminacy 
membership sequence of G is {0.7, 0.6, 0.6, 0.5, 0.4, 0.4 } or { 
0.7     , 0.5,     }. 

 
Fig. 3. Vertex indeterminacy membership sequence. 

Definition 4.7 Let G be a SVNG with | | = n. The vertex 
falsity membership sequence of G is defined to be        

  with 
          …    where    , 0     1, is the falsity 
membership value of the vertex    when vertices are arranged 
so that their falsity membership values are non- increasing. 
Particular,    is largest vertex falsi Y membership value and 
   is smallest vertex falsity membership value in G. 
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Note 4.8 If vertex falsity membership sequence    is 
repeated more than once in G, say r   1 times, then it is 
denoted by   

  in the sequence. 

Example 4.9 In Fig. 4 the vertex falsity membership 
sequence of G is {0.8, 0.8, 0.7, 0.6, 0.6, 0.5} or {    , 
0.7,    , 0.5}. 

 

Fig. 4. Vertex falsity membership sequence. 

Definition 4.10 If a SVNG with | | = n has vertex truth 
membership sequence        

  , vertex indeterminacy 
membership sequence       

   and vertex falsity membership 
sequence       

  in same order, then it said to have vertex 
single valued neutrosophic sequence and denoted by   
              

 . 

Example 4.11 In Fig. 5 the vertex truth membership, 
vertex indeterminacy membership and vertex falsity 
membership sequence of G is{<0.4, 0.4, 0.5>, < 0.2,0.3,0.5>,< 
0.1,0.2,0.6> , < 0.5,0.4,0.8>, < 0.4,0.5,0.4>, < 0.3,0.1,0.7> }. 

 
Fig. 5. Vertex single valued neutrosophic sequence. 

The properties of vertex truth membership, vertex 
indeterminacy membership and vertex falsity sequences of 
complete SVNGs are discussed below: 

Theorem 4.12 Let G=(V,E) be a complete SVNG with| | 
= n. Then  

1) If the vertex truth membership sequence of G is of the 

form {  
   ,   }, vertex indeterminacy membership sequence 

of G is of the form {  
   ,  } and vertex falsity membership 

sequence of G is of the form {   
   ,  }, then 

a.    
 (G) = n.   and      

(G)=  ∑   
 
    

      
 (G) = n.   and      

(G)=∑   
 
    

c.    
(G)= n.   and      

(G) =  ∑   
 
    

2) If the vertex truth membership sequence of G is of the 

form {  
  ,   

    }, vertex indeterminacy membership of G is 

of the form {  
  ,   

    } and vertex falsity membership 

sequence of G is of the form {  
  ,   

    } with 0     n-2, 

then there exists exactly    vertices with minimum T- total 

degree     
(G), maximum I-total degree     

   and 

maximum F-total degree     
  and exactly (n-  ) vertices with 

maximum T- total degree      
(G) , minimum I- total degree 

    
(G) and minimum F- total degree     

(G). 

3) If the vertex truth membership sequence of G is of the 

form {  
  ,   

   ,   
  , . . . ,   

  }, vertex indeterminacy 

membership sequence of G is of the form {  
  ,   

   ,   
  , . . 

. ,   
  } and vertex falsity membership sequence of G is of the 

form {  
  ,   

   ,   
  , . . . ,   

  } with     1 and k   2, then 

there exists exactly    vertices with minimum T- total degree 

    
(G), maximum I- total degree     

and maximum F-total 

degree     
. Also, there exists exactly    vertices with 

maximum T- total degree     
(G), minimum I- total degree 

    
(G) and minimum F- total degree     

(G). 

Proof: The proof of (1) and (2) are obvious. 3 Let   
   

 be 

the set of vertices in G, for j = 1, 2, 3, . . . ,    , 1   i   k. Then 
by the Theorem3.31 

      
   

 =    
   =n.  =n.   , 

      
   

 =    
   = n.  =n.   , and 

      
   

 =    
   = n.  =n.   , , for j= 1, 2, 3,. . ,   . 

Since T(  
   

,    
   

) = T(  
   

 >   for 2   i   k , j= 1, 2, 3,. 

.. . ,    , l = 1, 2, 3, . . . ,      , no vertex with truth membership 
more than    can have degree      

(G), 

 I(  
   

,    
   

) = I(  
   

     for 2   i   k , j = 1, 2, 3, . . . , 

   , l = 1, 2, 3, . . . ,      , no vertex with indeterminacy 
membership less than    can have degree      

(G) 

And F(  
   

,    
   

) = F(  
   

     for 2   i   k , j = 1, 2, 3, . 

. . ,    , l = 1, 2, 3, . . . ,      , no vertex with falsity 
membership less than    can have degree      

(G). 

Thus, there exist exactly    vertices with degree     
(G), 

    
(G),     

(G). 

To prove    (  
   

) =    
   , 

t  (  
   

) =    
 (G) and 

   (  
   

) =    
 (G), t=1,2,3 . . ,   . 

Since, T(  
   

) is maximum vertex truth membership, 

T(  
   

,  
   

)       t  j, t, j=1, 2, 3,…,   

T(  
   

,  
   

) = min { T(  
   

) , T(  
   

)} = T(  
   

)  for t= 

1,2,3. . . ,    , j = 1, 2, 3, . . . ,   ,  i=1,2,3,… , k-1 
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Thus for  t= 1,2,3, . . . ,   , 

   (  
   

) = ∑ ∑     
   

 
  
   

 
   + (  - 1)   

= ∑   
 
    

=     
(G) by Theorem 3.31 

Now, if    is vertex such that   =      , then 

t  (  ) = ∑ ∑        
   

 
  
   

   
    + (    - 1+   )     +    

= ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)     +    

 ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)   +    

=     
(G) 

Thus, there exist exactly    vertices with degree     
(G).  

To prove t  (  
   

) =     
(G) , for t = 1, 2, 3, . . . ,    

Since I(   
   

) is minimum vertex indeterminacy 

membership, 

I(  
   

,  
   

) =    , t   j , t, j = 1, 2, 3, . . . ,    

I(  
   

,  
   

) = max{ I(  
   

) , I(  
   

)} = I(  
   

) for t = 1, 2, 3, 

. . . ,    , j = 1, 2, 3, . . . ,   ,   

i = 1, 2, 3, . . . , k-1. 

Thus for t = 1, 2, 3, . . . ,   , 

t  (  
   

) = ∑ ∑     
   

 
  
   

 
    + (  - 1)   

= ∑   
 
    

=     
(G) by Theorem 3.31 

Now, if    is vertex such that   =      , then 

t  (  ) = ∑ ∑        
   

 
  
   

   
    + (    - 1+   )     +    

= ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)     +    

 ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)   +    

=     
(G) 

So, there exist exactly    vertices with degree     
(G).  

Similarly, it can be proved that t  (  
   

) =     
(G) , for t = 

1, 2, 3, . . . ,    

Since F(  
   

) is minimum vertex falsity membership, 

F(  
   

,  
   

) =    , t   j , t, j = 1, 2, 3, . . . ,    

F(  
   

,  
   

) = max{ F(  
   

), F(  
   

)} = F(  
   

) for t = 1, 2, 

3, . . . ,    , j = 1, 2, 3, . . . ,   , i = 1, 2, 3, . . . , k-1. 

Thus for t = 1, 2, 3, . . . ,   , 

t  (  
   

) = ∑ ∑     
   

 
  
   

 
    + (  - 1)   

= ∑   
 
    

=     
(G) by Theorem 3.31 

Now, if    is vertex such that   =      , then 

t  (  ) = ∑ ∑        
   

 
  
   

   
    + (    - 1+   )     +    

          = ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)     + 

   

 ∑ ∑     
   

 
  
   

   
    + ∑       

   
 

    
    + (  -1)   +    

=     
(G) 

So, there exist exactly    vertices with degree     
(G). 

V. CONCLUSION 

In this paper, the idea of strong degree is imposed on the 
existing concepts of degrees in SVNGs. After that, we defined 
the vertex truth-membership, vertex indeterminacy-
membership and vertex falsity membership sequence in 
SVNG with proofs and suitable examples. In the next 
research, the proposed concepts can be extended to labeling 
neutrosophic graph and also characterize the corresponding 
properties. 
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