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Abstract

The nonlinear Bohm-Poisson-Schroedinger equation is studied further. It has
solutions leading to repulsive gravitational behavior. An exact analytical expression
for the observed vacuum energy density is obtained. Further results are provided
which include two possible extensions of the Bohm-Poisson equation to the full
relativistic regime. Two specific solutions to the novel Relativistic Bohm-Poisson
equation (associated to a real scalar field) are provided encoding the repulsive na-
ture of dark energy. One solution leads to an exact cancellation of the cosmological
constant, but an expanding decelerating cosmos; while the other solution leads to
an exponential accelerated cosmos consistent with a de Sitter phase, and whose
extremely small cosmological constant is Λ = 3

R2
H

, consistent with current observa-

tions. We conclude with some final remarks about Weyl’s geometry.

1 Introduction

In physical cosmology and astronomy, dark energy is an unknown form of energy which is
hypothesized to permeate all of space, tending to accelerate the expansion of the universe
[1] . Assuming that the standard model of cosmology is correct, the best current mea-
surements indicate that dark energy contributes 68.3 percent of the total energy in the
present-day observable universe. The mass-energy of dark matter and ordinary (bary-
onic) matter contribute 26.8 and 4.9 percent respectively, and other components such
as neutrinos and photons contribute a very small amount. The density of dark energy
much less than the density of ordinary matter or dark matter within galaxies. However,
it dominates the mass-energy of the universe because it is uniform across space [1]. Two
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proposed forms for dark energy are the cosmological constant, [2] representing a con-
stant energy density filling space homogeneously, and scalar fields such as quintessence or
moduli, dynamic quantities whose energy density can vary in time and space.

The nature of dark energy is more hypothetical than that of dark matter, and many
things about the nature of dark energy remain matters of speculation [1]. Dark en-
ergy is thought to be very homogeneous, not very dense and is not known to interact
through any of the fundamental forces other than gravity. In the models based on the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, it can be shown that a strong
constant negative pressure in all the universe causes an acceleration in universe expan-
sion if the universe is already expanding, or a deceleration in universe contraction if the
universe is already contracting. This accelerating expansion effect is sometimes labeled
“gravitational repulsion”.

A major outstanding problem is that quantum field theories predict a huge cosmo-
logical constant, more than 100 orders of magnitude too large. This would need to be
almost, but not exactly, cancelled by an equally large term of the opposite sign. Some
supersymmetric theories require a cosmological constant that is exactly zero, which does
not help because supersymmetry must be broken. Nonetheless, the cosmological constant
is the most economical solution to the problem of cosmic acceleration. Thus, the current
standard model of cosmology, the Lambda-CDM (cold dark matter) model, includes the
cosmological constant as an essential feature [1].

The evidence for dark energy is heavily dependent on the theory of general relativity.
Therefore, it is conceivable that a modification to general relativity also eliminates the
need for dark energy. There are very many such theories, and research is ongoing [3], [4],
[6], [7], [9]. The measurement of the speed of gravity with the gravitational wave event
GW170817 ruled out many modified gravity theories as alternative explanation to dark
energy [1].

In quintessence models of dark energy, the observed acceleration of the scale factor
is caused by the potential energy of a dynamical field, referred to as quintessence field.
Quintessence differs from the cosmological constant in that it can vary in space and time.
In order for it not to clump and form structure like matter, the field must be very light so
that it has a large Compton wavelength. This class of theories attempts to come up with
an all-encompassing theory of both dark matter and dark energy as a single phenomenon
that modifies the laws of gravity at various scales. This could for example treat dark
energy and dark matter as different facets of the same unknown substance, a “dark fluid”
[5], or postulate that cold dark matter decays into dark energy.

The Schrödinger-Newton equation has had a long history since the 1950’s [11], [12]. It
is the name given to the system coupling the Schrödinger equation to the Poisson equation.
In the case of a single particle, this coupling is effected as follows: for the potential energy
term in the Schrödinger equation take the gravitational potential energy determined by the
Poisson equation from a matter density proportional to the probability density obtained
from the wave-function. For a single particle of mass m the coupled system of equations
leads to the nonlinear and nonlocal Newton-Schrödinger integro-differential equation
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ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r, t) Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t)

(1.1)
Exact solutions to the stationary spherically symmetric Newton-Schrödinger equation
were found in terms of integrals involving generalized Gaussians [19]. The energy eigen-
values are also obtained in terms of these integrals which agree with the numerical results
in the literature.

Bohm’s quantum potential VQ = − h̄2

2m
(∇2√ρ/√ρ) was shown to be proportional to

the Weyl scalar spatial curvature produced by an ensemble density of paths associated
with one, and only one particle, as shown in [14]. The constant of proportionality is − h̄2

2m
.

It can be generalized to the relativistic case. This geometrization process of quantum
mechanics allowed to derive the Schroedinger, Klein-Gordon [14] and Dirac equations
[16]. Most recently, a related geometrization of quantum mechanics was proposed [18]
that describes the time evolution of particles as geodesic lines in a curved space, whose
curvature is induced by the quantum potential. This formulation allows therefore the
incorporation of all quantum effects into the geometry of space-time, as it is the case for
gravitation in the general relativity.

Based on these results we proposed in [19] the following nonlinear quantum-like Bohm-
Poisson equation for static solutions ρ = ρ(~r)

∇2VQ = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (1.2)

such that one could replace the nonlinear Newton-Schrödinger equation for the above
non-linear quantum-like Bohm-Poisson equation (1.2) where the fundamental quantity is
no longer the wave-function Ψ (complex-valued in general) but the real-valued probability
density ρ = Ψ∗Ψ. The logic behind eq-(1.2) is based on the idea that the laws of physics
should themselves determine the distribution of matter. This is going one step further
from General Relativity where a given distribution of matter determines the geometry.
Eq-(1.2) is based on Bohm’s quantum potential

VQ ≡ −
h̄2

2m

∇2√ρ
√
ρ

(1.3)

If, in addition to the Bohm-Poisson equation (1.2), one were to add the Schrödinger
equation for the complex-valued wave-function Ψ ≡ √ρeiS/h̄, one can obtain consistent
solutions, which avoids having an overdetermined system of equations, when the external
potential is itself a function of ρ as we shall show next. Hence in this scenario we will have
the Bohm-Poisson-Schrödinger equation instead of the Newton-Schrödinger equation (1).

This work is organized as follows. In section 2.1 we construct solutions to the Bohm-
Poisson-Schrödinger equation. In section 2.2 we obtain an exact expression for the
currently observed vacuum energy density. In section 3.1 we review the derivation of the
Klein-Gordon equation based on the relativistic version of Bohm’s potential. In section
3.2 we posit the novel Relativistic Bohm-Poisson equation. Two specific solutions to
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this Relativistic Bohm-Poisson equation (associated to a real scalar field) are provided
encoding the repulsive nature of dark energy. One solution leads to an exact cancellation of
the cosmological constant, but an expanding decelerating cosmos; while the other solution
leads to an exponential accelerated cosmos consistent with a de Sitter phase, and whose
extremely small cosmological constant is Λ = 3

R2
H

, consistent with current observations.

We conclude with some final remarks about Weyl’s geometry.

2 The Vacuum Energy and Bohm-Poisson-

Schroedinger Equation

2.1 The Bohm-Poisson-Schrödinger equation

We may include the Schrödinger equation, in addition to the Bohm-Poisson equation
(1.2), to find what is the potential V which reproduces the positive definite probability
density ρ = Ψ∗Ψ and which is related to the matter density ρ̃m = mρ solution of the
Bohm-Poisson equation (1.2).

It is straightforward to verify that a spherically symmetric solution to eq-(2) in a 3D
spatially flat background 1

− h̄2

2m
∇2 (

∇2√ρm√
ρm

) = 4πGmρm, ∇2f(r) ≡ r−2∂r(r
2∂rf(r)). (2.1)

is given by

ρm(r) =
A

r4
, A = − h̄2

2πGm2
< 0 (2.2)

At first glance, since ρm(r) ≤ 0, one would be inclined to dismiss such solution as
being unphysical. However, one may notice that the Bohm-Poisson’s (BP) equation (2.1)
is invariant under ρm → −ρm, and G→ −G. Consequently −ρm ≥ 0 is a valid positive-
definite solution to a BP equation associated to a negative gravitational coupling −G < 0,
and which is tantamount to repulsive gravity.

It remains to prove next that the external potential V (r) appearing in the spherically
symmetric Schrödinger equation is indeed repulsive. This does not mean, however, that
V (r) will just be the Newtonian potential with a change of sign. Because we have replaced
the Newtonian potential for the Bohm potential in the BP equation (2.1) one should not
expect this trivial change of sign to happen.

As shown by David Bohm, the Schrödinger equation for the complex valued wave

function Ψ ≡
√
ρ(~x, t) eiS(~x,t)/h̄ is equivalent to the coupled pair of equations

− ∂S

∂t
=

p2

2m
+ VQ + V =

(∇S)2

2m
− h̄2

2m

∇2√ρ
√
ρ

+ V (2.3a)

1For the time being we shall not discuss solutions in curved backgrounds
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∂ρ

∂t
+ ∇(ρ

∇S
m

) = 0 (2.3b)

The first equation is the Hamilton-Jacobi equation corresponding to an external potential
V and including Bohm’s quantum potential VQ; the second equation is the continuity
equation. The momentum (not to be confused with pressure) is ~p = ∇S. Inserting
the positive-definite spherically symmetric static solutions |ρm|/m = ρ = |A|/mr4 of the
Bohm-Poisson equation into the above eqs-(2.3) it leads to a coupled system of differential
equations which determine the potential V (r) and the action (phase) S(r, t) = S(r)−Et.

After some lengthy but straightforward algebra, the solutions to the Bohm-Poisson-
Schrödinger equation in the spherically symmetric case are

ρ(r) =
|ρm|
m

=
|A|
mr4

=
1

2πGm3r4
, V (r) = E − (E − Vo) (

r

ro
)4 +

h̄2

mr2
(2.4)

VQ = − h̄2

2m

∇2√ρ
√
ρ

= − h̄2

mr2
(2.5)

S(r, t) = S(r) − E t, S(r) =
√

2m(E − Vo)
r3

3r2
o

+ So, E > Vo (2.6)

One can verify that the spherically symmetric wave function Ψ(r, t) ≡
√
ρ(r) eiS(r,t)/h̄ built

from the expressions in eqs-(2.4-2.6) is a stationary solution of the Schrödinger equation

ih̄ (
∂Ψ(r, t)

∂t
) = − h̄2

2m

1

r2
∂r(r

2∂rΨ(r, t)) + V (r) Ψ(r, t) (2.7)

with
Ψ(r, t) ≡

√
ρ(r) eiS(r,t)/h̄ = (

√
ρ(r) eiS(r)/h̄) e−iEt/h̄ = Ψ(r) e−iEt/h̄ (2.8)

As expected, the external potential V (r) cannot be arbitrary but is itself determined
in terms of ρ. It can be rewritten as

V (ρ(r)) = co +
c1

ρ(r)
+ c2

√
ρ(r) (2.9)

where co, c1, c2 are numerical coefficients given in terms of E, Vo, ro. By inspection of
eq-(2.4) we can see that such potential leads to a repulsive force F = −∇V > 0, for
r > 0, when E > Vo. Therefore, the Bohm-Poisson-Schrödinger equation admits solutions
encoding a repulsive gravity consistent with having replaced G for −G. In the next
section we shall find cosmological solutions mimicking dark energy.

The explicit presence of h̄2 in the expression for the external potential V (r) in eq-
(2.4) is not very common in the Quantum Mechanical problems that we are familiar
with. However, as emphasized by Klauder in his monograph [20], the principal purpose
of the Enhanced Quantization program is to describe and apply a new way to quantize
classical systems, which in turn, lead to classical enhanced Hamiltonians that explicitly
contain nonvanishing h̄ terms. A typical example of this is the introduction of Bohm’s
quantum potential into the classical Hamilton-Jacobi equations. This was the reason why
a h̄-dependent term appears in the external potential V (r).
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2.2 The Vacuum Energy Density

In the previous subsection we exploited the fact that the Bohm-Poisson’s (BP) equation
is invariant under ρm → −ρm, and G→ −G, and such that −ρm ≥ 0 is a positive-definite
solution to the BP equation associated to a negative gravitational coupling −G < 0, and
which is tantamount to repulsive gravity.

In this subsection we shall explore another possibility which does not rely in changing
signs but instead in adding the vacuum energy density contribution ρo to the negative-
definite density solution (2.2) of the BP equation ρm, and leading to a large region where
ρ+ ρo ≥ 0.

Despite that the BP equation is nonrelativistic we can still borrow this line of reasoning
(adding a constant ρo to ρ) by noticing that the Einstein field equations (in spherical
coordinates), when the stress energy tensor has the diagonal form expressed in terms of
the density σ and different pressure components (no summation over indices)

Tµν = ( g00 σ, grr p(r), gθθ p(θ), gφφ p(φ) ) (2.10)

are given by

Rtt −
1

2
gtt R + Λ gtt = 8πG gtt σ (2.11a)

Rrr −
1

2
grr R + Λ grr = 8πG grr p(r), . . . (2.11b)

in this case one can absorb the cosmological constant into a redefinition of σ : σ → ρm,
by simply rewriting

σ = ρm +
Λ

8πG
= ρm + ρo (2.12)

leading then to field equations without the cosmological constant, but rewritten in terms
of ρm as follows

Rtt −
1

2
gtt R = 8πG gtt ρm (2.13)

similarly one can do the same with the other components of the field equations.
Therefore, borrowing this shifting procedure from the relativistic Einstein field equa-

tions to the nonrelativistic case, it gives the following expression for σ in terms of the
above solution (2.2) ρm of the nonrelativistic BP equation

σ = ρm + ρo =
A

r4
+ ρ0, A = − h̄2

2πGm2
(2.14)

and consequently, when Λ > 0, one can now concentrate on the domain of values of r
where σ(r) > 0. And, in doing so, it will permit us to show that the value of ρ0 can be
made to coincide exactly with the (extremely small) observed vacuum energy density, by
simply introducing an ultraviolet length scale l that is very close to the Planck scale, and
infrared length scale L equal to Hubble scale RH .
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A rigorous procedure would require a covariant (relativistic) extension of the BP equa-
tion. For signature (−,+,+,+), it may be defined in terms of the D’Alambertian oper-
ator, and a proper mass density Ω(~r, t) of physical dimensions (length)−5, such that

m =
∫

Ω(~r, t)
√
|g| d4x, as follows

− 2

2
√

Ω(~r, t)√
Ω(~r, t)

 = 4πGm Ω(~r, t), 2 ≡ 1√
|g|
∂µ(

√
|g| gµν ∂ν), h̄ = c = 1 (2.15)

However, for the sake of the arguments and the discussion that follows we shall go ahead
and proceed with eq-(2.14). Another relativistic (field theory) extension of the BP equa-
tions will be the subject of the next section.

Focusing for now on the static spherically symmetric solutions (2.2) of the BP equation,
let us choose the ultraviolet scale l to coincide with the node (zero) of σ(r) given by eq-
(2.14) such that

σ(r = l) = − h̄2

2πGm2

1

l4
+ ρo = 0 ⇒ ρo =

h̄2

2πGm2

1

l4
(2.16)

The domain of physical values of r must be r ≥ l in order to ensure a positive-definite
density σ(r) ≥ 0. One could include all the values of r from 0 to∞. The density diverges
at r = 0, while the integral

∫∞
0 σ(r)4πr2dr =∞−∞. The +∞ contribution stems from

the region r ≥ l, while the −∞ contribution stems from the region r < l. Therefore
one needs to introduce a suitable and judicious regularization involving an ultraviolet and
infrared scale.

In natural units of h̄ = c = 1, after introducing the ultraviolet scale l and infrared
scale L = RH in the normalization condition (otherwise the mass would diverge) it yields
the integral

m =
∫ RH

l
σ(r) 4πr2 dr =

∫ RH

l
(
A

r4
+ ρ0) 4πr2 dr =

∫ RH

l

(
− 1

2πGm2

1

r4
+ ρ0

)
4πr2 dr

(2.17)

In conventional QM, the plane wave solutions Ψ = ei
~k.~r are not square integrable. Nev-

ertheless we bypass this problem after introducing an infrared cutoff by putting the free
particle in a box of finite volume. Similarly, we follow this regularization procedure in
eq-(2.17). Upon performing the integral in eq-(2.17), and plugging in the value of ρ0

derived from eq-(2.16), with the provision that when RH >> l the dominant contribution
to the integral stems solely from ρo, one ends up with the following relationship

4πR3
H

3
ρo =

4πR3
H

3

1

2πGm2l4
= m ⇒ m3 =

2

3

R3
H

Gl4
(2.18)

solving for m one gets

m = (
2

3Gl4
)1/3 RH (2.19)
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One can verify that when the ultraviolet scale l is chosen to be very close to the Planck
scale, and given by

l4 =
4

3
L4
P ⇒ l = (

4

3
)1/4 Lp = 1.0745 Lp (2.20)

then upon inserting the values for m and l obtained in eqs-(2.19,2.20) into the expression
for ρo derived in eq-(2.16), after setting L2

p = 2G, 2 it gives in natural units of h̄ = c = 1

ρo =
1

2πGm2

1

l4
=

1

2πG
(
3 G l4

2
)2/3 1

R2
H l4

=
3

8πG

L4
p

R2
H L4

p

=
3

8πGR2
H

(2.21)

which is precisely equal to the observed vacuum energy density ρ = (Λ/8πG) associated
with a cosmological constant Λ = (3/R2

H) and corresponding to a de Sitter expanding
universe whose throat size is the Hubble radius RH ( = c/Ho, Ho is today’s value of the
Hubble parameter).

The physical reason behind the choice of the ultraviolet scale l in eq-(2.20) is based
on re-interpreting ρo as the uniform energy (mass) density inside a black hole region of
Schwarzschild radius R = 2Gm

ρbh =
m

(4π/3)R3
=

3

8πGR2
, L2

P = 2G, h̄ = c = 1 (2.22)

In the regime R = 2Gm >> l, when the dominant contribution to the integral (2.17)
stems from the ρo term, we may equate the expression for ρo in eq-(2.16) to ρbh in eq-(2.22)
giving

1

2πGm2l4
=

1

2πl4
(2G)2

GR2
=

1

2πl4
L4
p

GR2
=

3

8πGR2
⇒ l = (

4

3
)1/4 Lp, h̄ = c = 1

(2.23)
and leading once again to the value of l = 1.0745Lp in eq-(2.20). Therefore, when R =
2Gm >> l, the value of l is always very close to the Planck scale, and independent of
R = 2Gm, because the scale R has decoupled in eq-(2.23).

In this way, one can effectively view the observable universe as a “black-hole” whose
Hubble radius RH encloses a mass MU given by 2GMU = RH . From eq-(14) it follows
that when R = RH , the black hole density ρbh = ρo = ρobs coincides with the observed
vacuum energy density. It is well known that inside the black hole horizon region the
roles of t and r are exchanged due to the switch in the signature of the gtt, grr metric
components. Cosmological solutions based on this t ↔ r exchange were provided by the
Kantowski-Sachs metric. For references on Black-Hole Cosmology see [13].

To conclude this section, our interpretation of these results of being able to express the
vacuum energy density ρo in terms of an ultraviolet (Planck) and infrared scale (Hubble
scale) stems from the inherent non-locality of Bohm’s formulation of QM. Such non-
locality is reflected in this ultraviolet/infrared entanglement.

2Some authors absorb the factor of 2 inside the definition of Lp, we define the Planck scale such that
the Compton wavelength coincides with the Schwarzschild radius
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3 Dark Energy and the Relativistic Bohm-Poisson

Equation

3.1 Derivation of the Klein-Gordon Equation

The relativistic version of the Bohm potential for a scalar field is [14], [16]

VQ = h̄2
2(
√
φ∗(~r, t)φ(~r, t))√
φ∗(~r, t)φ(~r, t)

(3.1)

Note that VQ has now physical units of (mass)2 instead of mass. Given the signature
(+,−,−,−) the relativistic analog of the Hamilton-Jacobi equation eq-(2.3a) is

(∂µS)2 = m2 + VQ = m2 + h̄2
2(
√
φ∗(~r, t)φ(~r, t))√
φ∗(~r, t)φ(~r, t)

(3.2)

the four-current is

Jµ = i ( φ∗(~r, t) ∂µφ(~r, t) − φ(~r, t) ∂µφ
∗(~r, t) ) (3.3)

and obeys the conservation law (continuity equation)

∂µJ
µ = 0 (3.4)

related to the conservation of a Noether charge Q =
∫
JµdΣµ that is given by the flux of the

current Jµ through a spatial 3-surface Σµ. Q counts the number of scalar particles minus
the number of anti-particles flowing through the 3-spatial surface. In QFT (relativistic
QM) the scalar field φ is no longer a wave function, hence it is not related to a probability
amplitude as such.

Writing the complex scalar field in the polar form

φ ≡ ||φ(~r, t)|| eiS(~r,t)/h̄ =
√
φ∗(~r, t)φ(~r, t) eiS(~r,t)/h̄ (3.5)

allows to solve for S = − ih̄
2
ln( φ

φ∗
). After a lengthy but straightforward algebra leads to

the Klein-Gordon equation 3

(h̄2 2 + m2) φ(~r, t) = 0, (h̄2 2 + m2) φ∗(~r, t) = 0 (3.6)

It was noticed long ago by [14] that the relativistic version of Bohm’s potential VQ
(3.1) is proportional to the Weyl scalar curvature RW in flat spacetime backgrounds
when Weyl’s gauge field of dilatations is Aµ ∼ ∂µln(φ∗φ). Because Aµ is pure gauge
(total derivative) the Weyl’s field strength Fµν = ∂µAν − ∂νAµ = 0, which implies that

3Using a different signature (−,+,+,+) requires changing the signs in the right hand side of (3.2)
and it leads to the Klein-Goldon equation with a sign change in the m2 term
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the rate of the ticking of clocks will be independent of their paths taken from point A
to B. Consequently, atomic clocks arriving on earth via different trajectories will tick at
the same rate (same spectral lines). In this fashion one can avoid Einstein’s criticism of
Weyl’s gravity.

A conformally covariant equation4 equation in curved backgrounds in 4D with a
curvature scalar coupling, can also be obtained via Bohm’s quantum potential [14], [16]

(h̄2 gµνDµDν + m2 +
RW

6
) φ(~r, t) = (h̄2 gµν∇µ∇ν + m2 +

R

6
) φ(~r, t) = 0 (3.7)

where Dµ = ∇µ+Aµ is the Weyl covariant derivative and RW is the Weyl scalar curvature.
The “conformal” mass m parameter is posited to scale under Weyl scalings with a Weyl
weight of −1. The weight of gµν and RW is −2, while the weight of φ is −1. Due to key
factor of 1

6
(that varies with the spacetime dimension) in the Weyl scalar curvature RW ,

the field Aµ decouples entirely from the left hand side of the equation leading to the right
hand side expressed solely in terms of the Riemannian scalar curvature R and covariant
derivatives ∇µ based on the Christoffel connection.

A Weyl-gauge invariant proof of the spin-statistics theorem, and solving the Quantum
nonlocality enigma by Weyl’s Conformal Geometry can be found in more recent work by
[15]. The coupling to the Electromagnetic field via the prescription pµ → pµ − eAµ leads
to a modified Klein-Gordon equation by simply replacing 2 with (∂µ− ieAµ)(∂µ− ieAµ).

To conlude this brief review of the Klein-Gordon equation, one should add that the
deep question of whether or not Bohmian mechanics can be be made relativistic was stud-
ied in [17]. In relativistic space-time, Bohmian theories can be formulated by introducing
a privileged foliation of space-time. The introduction of such a foliation - as extra absolute
space-time structure - would seem to imply a clear violation of Lorentz invariance, and
thus a conflict with fundamental relativity. The authors [17] considered the possibility
that, instead of positing it as extra structure, the required foliation could be covariantly
determined by the wave function. This allowed for the formulation of Bohmian theo-
ries that seem to qualify as fundamentally Lorentz invariant. They concluded with some
discussion of whether or not they might also qualify as fundamentally relativistic.

3.2 Dynamical Dark Energy and the Relativistic Bohm-Poisson
Equation

Having reviewed briefly how to derive the Klein-Gordon equation based on the relativistic
version of Bohm’s potential we proceed with the cosmological applications. Given the
Lorentzian signature (−,+,+,+), let us begin with the action in a curved background
with a cosmological constant

S =
∫

d4x
√
−g

(
(R − 2Λ)

16πG
− gµν

2
(∂µφ) (∂νφ) − V (φ)

)
(3.8)

4The homogeneous differential equation is also conformally invariant

10



and associated with a canonical real scalar field φ with a potential V (φ). The FLRW
metric is

ds2 = − (dt)2 + a2(t)

(
(dr)2

1− kr2
+ r2 (dΩ)2

)
, k = 1, 0;−1 (3.9)

k is the spatial scalar curvature parameter with units of (length)−2. More precisely,
k → k

l2
, where the scale l has been set to unity.

Inserting this metric into the Einstein field equations yield in c = 1 units

a−2 (
da

dt
)2 +

k

a2
− Λ

3
=

8πG

3
ρ (3.10a)

2 a−1 (
d2a

dt2
) + a−2 (

da

dt
)2 +

k

a2
− Λ = − 8πG p (3.10b)

From now one we shall abbreviate the temporal derivatives by ∂ta = ȧ; ∂2
t a = ä, · · · when

appropriate.
The latter pair of equations is equivalent to the following pair of equations

ρ̇ = − 3
ȧ

a
(ρ + p) (3.11a)

ä

a
= − 4πG

3
(ρ + 3p) +

Λ

3
(3.11b)

One must supplement eqs-(3.10) with the equations of motion for the φ field

2φ(xµ) = dV (φ)
dφ

. In the special case φ = φ(t), it becomes

− a−3(t) ∂t ( a3(t) ∂tφ(t) ) =
dV (φ)

dφ
(3.12)

The real scalar field φ = φ(t) is assumed to behave as a perfect fluid whose density
and pressure are [4]

ρ =
1

2
(
dφ

dt
)2 + V (φ), p =

1

2
(
dφ

dt
)2 − V (φ) (3.13)

When the cosmological constant is set to zero Λ = 0, by suitably choosing the potential,
it is still possible to reproduce the cosmic expansion at late times. There is a plethora of
different models which are possible for different potentials. For example, one potential is
the Ratras-Peeble potential V (φ) = M4+nφ−n, with n > 0 [4].

The difference now is that we shall not set Λ to zero, and derive also the unique
functional form of the potential function V (φ) directly from the relativistic analog of the
Bohm-Poisson equation, instead of being an a priori suitably chosen function. Previously
we showed how to derive the form of the repulsive potential V (r) from the solutions to
the Bohm-Poisson-Schroedinger equation. We are going to follow a similar procedure for
the relativistic case.

To simplify matters, let us take a real-valued field φ = φ∗. The relativistic, field
theory analog of the Bohm-Poisson equation in D dimensions, that we propose in this
work is defined by the following equation
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(
h̄

m
)2 2

(
2φ(~r, t)

φ(~r, t)

)
= 4πG gµν Tµν , 2 ≡ 1√

|g|
∂µ(

√
|g| gµν ∂ν), c = 1 (3.14)

where the trace of the stress energy tensor T = gµνTµν appears in the right hand side.
Both sides of eq-(3.14) are scalars as they should. The gravitational coupling constant in
D-dimensions is related to the Planck scale in D-dimensions by GD ∼ LD−2

P . Eq-(3.14)
has the same physical units as the cosmological constant Λ.

In passing we should mention that of the many articles surveyed in the literature per-
taining the role of Bohm’s quantum potential and cosmology, [21], [22], [23] we did not
find any related to the Bohm-Poisson equation proposed in this work.5. The authors [22],
for instance, have shown that replacing classical geodesics with quantal (Bohmian) trajec-
tories gives rise to a quantum corrected Raychaudhuri equation (QRE). They derived the
second order Friedmann equations from the QRE, and showed that this also contains a
couple of quantum correction terms, the first of which can be interpreted as cosmological
constant (and gives a correct estimate of its observed value), while the second as a radi-
ation term in the early universe, which gets rid of the big-bang singularity and predicts
an infinite age of our universe. The model of “dark energy without dark energy” based
on the sub-quantum potential associated with the CMB particles by [24] also differs from
the work presented here.

From eqs-(3.13) one obtains the trace of the stress energy tensor T

T = − ρ + 3p = (φ̇)2 − 4V (φ) =

− 3

8πG

(
(
ȧ

a
)2 +

k

a2
− Λ

3

)
− 3

8πG

(
2 (

ä

a
) + (

ȧ

a
)2 +

k

a2
− Λ

)
(3.15)

Inserting T into eq-(3.14) actually leads to two separate equations

(
h̄

m
)2 2

(
2φ(~r, t)

φ(~r, t)

)
= 4πG

(
(φ̇)2 − 4V (φ)

)
(3.16)

and

(
h̄

m
)2 2

(
2φ(~r, t)

φ(~r, t)

)
= − 3

(
ä

a
+ (

ȧ

a
)2 +

k

a2
− 2Λ

3

)
(3.17)

For complex-valued fields, one simply replaces φ for
√
φ∗φ in the left hand side of

(3.14), whereas for the right hand side one must evaluate the stress energy tensor, and its
trace corresponding to complex scalar fields. To simplify matters we shall focus on real-
valued scalar fields. As usual, one must supplement eqs-(3.16, 3.17) with the equations
of motion for the scalar φ field. When φ = φ(t), it becomes

2φ(t) = − a−3(t) ∂t ( a3(t) ∂tφ(t) ) =
dV (φ)

dφ
(3.18)

5A Google Scholar search provided the response “Bohm-Poisson equation and cosmological constant
did not match any articles”
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To sum up, one has a coupled system of 3 differential equations (3.16, 3.17, 3.18 ) to
solve for a(t), φ(t), and V (φ). Things simplify considerably in the massless case m = 0.
Because then one may bring the m factor into the right-hand side of eqs-(3.16,3.17), and
then set m = 0, leading now to one single equation

m = 0 ⇒ 2

(
2φ(~r, t)

φ(~r, t)

)
= a−3(t) ∂t

(
a3(t) ∂t [ a−3(t) φ−1(t) ∂t ( a3(t) ∂tφ(t) ) ]

)
= 0

(3.19)
Note that despite we set m = 0 this does not force the trace T to be zero because the
action (3.8) is not conformally invariant. In this massless case, one must still include
eq-(3.15), which in conjunction with eqs-(3.18, 3.19), furnishes a simpler coupled system
of 3 differential equations to solve for a(t), φ(t), and V (φ).

We are going to find a simple, but not trivial solution, to eqs-(3.15, 3.18, 3.19) when
the spatial curvature parameter k = 0. A solution can simply be found by requiring

2φ(t) = − a−3(t) ∂t ( a3(t) ∂tφ(t) ) = − (3 H φ̇ + φ̈) =
dV (φ)

dφ
= 0 (3.20)

where the Hubble function is defined by H(t) ≡ ȧ
a
.

After some lengthy but straightforward algebra, one finds that the solutions to eqs-
(3.18, 3.19, 3.20) are

φ(t) =
1

2
√

3πG
ln(

t

to
), a(t) = ao (

t

to
)
1
3 (3.21a)

H(t) =
1

3
t−1, V = Vo = − Λ

8πG
(3.21b)

ρ(t) =
1

24πG
(t−2 − 3Λ), p(t) =

1

24πG
(t−2 + 3Λ) (3.21c)

The upshot of these solutions (3.21) obtained when m = k = 0, is :

(i) At late times, t → ∞, ρ = −p = − Λ
8πG

which corresponds to the dark energy
equation of state. Choosing the sign of Λ to be Λ < 0 yields ρ > 0 and p < 0 (negative
pressure).

(ii) If one sets to to coincide with the present value of the Hubble time tH = (Ho)
−1

(equal to RH in c = 1 units), at the present time t = to, the value of the scalar field φ

vanishes but not its derivative φ̇(t = tH) =
t−1
H

2
√

3πG
. Because the logarithmic function has

a slow growth, despite that the values of the scalar field will remain very small (almost
vanishing) for times t ∼ tH , there is a non-vanishing energy density permeating all of
space. For instance, the present day value of the kinetic energy density 1

2
(φ̇)2 is 1

24πGR2
H

,

and which is quite close to the observed vacuum energy density 3
8πGR2

H
.

(iii) Inserting the constant value of the potential V = Vo = − Λ
8πG

back into the classical
action (3.8) it will cancel exactly the cosmological constant term, irrespective of the value
and sign of Λ. If one wishes to identify Λ

8πG
with the enormous vacuum energy density

due to the zero-point fluctuations of the fields associated with the Standard Model, it will
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be cancelled exactly by the Vo contribution in the action (3.8). Therefore, the relativistic
Bohm-Poisson equation associated with the massless real scalar field, when the spatial
curvature parameter is chosen to be k = 0, provides a natural and simple mechanism to
cancel the cosmological constant in the action (3.8) without invoking supersymmetry.

There is a caveat because, rigorously speaking, one would have to include the con-
tribution of the Standard Model fields into the action in order to study the dynamics of
all the fields. In turn, this would affect the functional form of the new solutions, and
an exact cancellation of Λ might no longer occur. Nevertheless it is encouraging that a
simple action like (3.8) permits an exact cancellation of Λ.

(iv) In the m = 0 case, h̄ decouples from all the equations giving a “classical”
appearance (flavor) to all the equations. However eq-(3.19) is intrinsically Quantum
Mechanical because it is based on the relativistic version of Bohm’s Quantum potential.
When m 6= 0, h̄ will no longer decouple from the solutions to the equations.

(v) The scaling factor a(t) (3.21) obeys ȧ > 0, and ä < 0, hence it corresponds to an
expanding, but decelerating, universe. Inserting the solutions (3.21) one can verify that
the Λ terms cancel out exactly in eq-(3.11b) yielding a decelerating cosmos ä

a
= −2

9
t−2 < 0.

(vi) The scalar spacetime curvature associated with the scaling factor a(t) = ao ( t
to

)
1
3 ,

when k = 0, is

R = 6
(
ä

a
+ (

ȧ

a
)2
)

= − 2

3
t−2 (3.22)

and it asymptotically vanishes as t→∞. Similarly, the kinetic terms in the action (3.8)
vanish in that limit. One may also notice that the action (3.28) vanishes on-shell for all
values of t (since gtt = −1). The magnitude of R at the present-day value of the Hubble
time (Hubble scale) tH = RH is |R| = 2

3R2
H

which is quite close to the (extremely small)

observed value of Λ = 3
R2
H

.

(vii) R and φ blow up at t = 0, consistent with the Big-Bang singularity.

(viii) One may verify by simple inspection that the solutions to eqs-(3.15, 3.18, 3.19),
given by eqs-(3.21a, 3.21b, 3.21c), also solve eqs-(3.10a, 3.10b, 3.18). This is a sign of
consistency.

Finally, we proceed to find other solutions which correspond to an exponentially ex-
panding cosmos like de Sitter space. Upon inserting the ansatz a = eHot into eqs-(3.15,

3.18, 3.19), and solving for the function Θ ≡ 2φ(t)
φ(t)

which obeys eq-(3.19) 2Θ = 0, gives

Θ ≡ 2φ(t)

φ
= A e−3Hot (3.23)

which in turn yields the following set of equations

φ̈ − 2A e−3Hot φ = 0 (3.24)

3Ho φ̇ +
3

2
φ̈ = 0 (3.25)

(φ̇)2 − 4V = − 3

2πG
( H2

o −
Λ

3
) (3.26)
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after using

Θ ≡ 2φ(t)

φ(t)
= φ−1 dV

dφ
= φ−1 V̇

φ̇
=

1

2

φ̈

φ
= A e−3Hot (3.27)

and obtained from differentiating eq-(3.26). There are no nontrivial solutions to the pair
of equations (3.24, 3.25). The solutions to (3.24) are given in terms of Bessel functions;
whereas the solutions to (3.25) are given in terms of simple exponentials. Therefore the
solutions to eqs-(3.24, 3.25, 3.26) are

φ(t) = 0, V = Vo =
3

8πG
( H2

o −
Λ

3
) (3.28)

Plugging Vo back into the classical action (3.8) leads to an exact cancellation of Λ, irre-

spective of its value and sign, leaving only the remaining term −3H2
o

8πG
, and which coincides

with the contribution of the vacuum energy density (critical energy density). There is no
problem with the minus sign in front, because it will be offset by another minus sign in

the definition of the stress energy tensor Tµν = − 2√
|g|

δ(
√
|g|Lm)

δgµν
giving a positive value.

Whereas, if Vo in eq-(3.28) is set to zero Vo = 0⇒ Λ = 3H2
o = 3

R2
H

, it then yields the

observed extremely small value of the cosmological constant. Either way, whether or not
we set Vo to zero, leads to the same value of the vacuum energy density. To sum up, in
this case the classical action (3.8) reduces to a pure gravitational action with a very small
cosmological constant Λ = 3

R2
H

corresponding to an exponential expanding cosmos in a de

Sitter phase, as it is currently observed.
Let us compare the solutions (3.28) (when a(t) = eHot) with the solutions to the 3

equations (3.10a, 3.10b, 3.12) when a(t) = eHot. These solutions are φ = φo = constant
and Vo = 3

8πG
(H2

o − Λ
3
). After choosing φo = 0 one then recovers the solutions (3.28) once

again. This is a sign of consistency.
In the most general case, in 4D there are 10 Einstein field equations for the 10 inde-

pendent metric components gµν . There is one equation of motion 2φ = dV
dφ

for the φ(xµ)

field giving 11 equations for a total of 12 unknown functions {gµν , φ, V (φ)}. Adding the
relativistic Bohm-equation (3.14) will then bring the total number of equations to 12
which matches now the number of 12 unknown functions.

When there are spacetime symmetries (Killing vectors) this counting of degrees of
freedom, and independent number of field equations, will be reduced. There are only 2
field equations corresponding to the FLRW metric (3.10a, 3.10b). After adding eq-(3.12)
yields 3 equations for the 3 unknown functions a(t), φ(t), V (φ). Will there always be
consistency among the solutions to (3.10a, 3.10b, 3.12), and the solutions to eqs-(3.12,
3.16, 3.17) ? This is a question that needs to be investigated. The solutions to a coupled
system of nonlinear ordinary/partial differential equations is a complex subject, see [25]
and references therein for mathematical details. What we learned from the prior counting
of equations is that there is a perfect match among the number of equations and unknown
functions. The question to be investigated is whether or not a Killing symmetry reduction
of these equations will affect matters of consistency of the solutions to eqs-(3.10a, 3.10b,
3.12), and eqs-(3.12, 3.16, 3.17).
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There are myriads of other solutions for the m = 0, k = 0 case. Also when k 6= 0,
and/or m 6= 0. Given k = 1, 0,−1, and m = 0,m 6= 0, there are 6 cases to consider within
the FLRW metrics, and each one of them provides many different families of solutions.
The solutions in the most general case are not easy to obtain. The main result of this
work is that we have been able to find solutions in two cases with clear physical relevance
in Cosmology. In particular, the second solution yields the very small value 3

R2
H

of Λ when

Vo = 0.
To conclude, one can extend the action (3.8) to one involving conformal gravity based

on Weyl’s geometry. The results in [14] led to a key relationship between the Weyl gauge
field Aµ and the scalar φ of the form

Dµφ = 0 ⇒ Aµ ∼ − ∂µ ln(
φ

φo
) ⇒ φ ∼ φo e

−
∫
Aµ dxµ (3.29)

where Dµ is the Weyl covariant derivative. Therefore, the Weyl-covariantly-constant
scalar field φ (which is a source of dark energy) can be identified with minus the expo-
nential of the line integral6 of the Weyl gauge field Aµ of dilatations. Since Aµ is pure
gauge, locally it can be gauged to zero, but not globally since there may be topological
obstructions in doing so. For this reason it is warranted to explore what role non-trivial
topologies might play in Cosmology. If Aµ can be gauged to zero globally, then the scalar
φ = φo can be set (gauged) to a constant.

A more recent proposal that advocates the fall of dark matter may be found in [10].
Scale invariance is assumed in the empty regions of space. The Weyl gauge field Aµ con-
tributes to modifications of the Christoffel connection leading then to repulsive corrections
to the geodesic equations. Another approach to solve these cosmological puzzles based
on the scaling properties of fractals can be found in Nottale’s Scale Relativiy Theory [26].
Conformal gravity has also been proposed as a solution of the problems with dark matter
and dark energy by [8]. The role of Weyl geometry warrants further investigation. An-
other project that needs to be studied is the issue of instabilities. Because the Relativistic
Bohm Poisson equation has higher derivatives than two this question has to be studied
further.
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